Nanoparticles based sensors for rapid detection of foodborne pathogens

Paul Chen, Yanbin Li, Tianhong Cui, Roger Ruan

Abstract


Rapid detection of foodborne pathogens is a key step in the control of food related diseases. Conventional methods for the detection of food pathogens, although typically sensitive, often require multiple time-consuming steps such as extraction, isolation, enrichment, counting, etc., prior to measurement, resulting in testing times which can be days. There is a need to develop rapid and sensitive detection methods. This review is intended to provide food scientists and engineers an overview of current rapid detection methods, a close look at the nanoparticles especially magnetic nanoparticle-antibody conjugates based methods, and identification of knowledge gaps and future research needs.

Keywords


nano-sensor, magnetic nano-particle, food pathogens, nuclear magnetic resonance

Full Text:

HTML PDF

References


Panchal R G, Halverson K M, Ribot W, Lane D, Kenny T, Abshire T G, et al. Purified Bacillus anthracis lethal toxin complex formed in vitro and during infection exhibits functional and biological activity. J Biol Chem, 2005; 280(11): 10834-10839.

Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996; 382(6592): 607- 609.

Kayal S, Charbit A. Listeriolysin O. A key protein of Listeria monocytogenes with multiple functions. FEMS Microbiol Rev, 2006; 30(4): 514-529.

Medina M B. Development of a fluorescent latex microparticle immunoassay for the detection of staphylococcal enterotoxin B (SEB). J Agric Food Chem, 2006; 54(14): 4937-4942.

Chen S, Carroll D L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett, 2002; 2: 1003-1007.

Swaminathan B, Feng P. Rapid detection of food-borne pathogenic bacteria. Annual Review of Microbiology, 1994; 48: 401-426.

Feng P. Rapid methods for detecting foodborne pathogens. In: FDA, editor. Bacteriological Analytical Manual Online, 2001.

Jain K K. Nanotechnology in clinical laboratory diagnostics. Clin Chim Acta, 2005; 358(1-2): 37-54.

Saxena S K, O'Brien A D, Ackerman E J. Shiga toxin, Shiga-like toxin II variant, and ricin are all single-site RNA N-glycosidases of 28 S RNA when microinjected into Xenopus oocytes. J Biol Chem, 1989; 264(1): 596-601.

Salyers A A, Whitt D D. Bacterial Pathogenesis: A Molecular Approach. 2nd ed. Washington, D.C: ASM Press; 2002.

Banada P P, Bhunia A K. Antibodies and immunoassays for detection of bacterial pathogens. Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems, 2008; pp. 567-602.

Kaittanis C, Santra S, Perez J M. Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev, 2009..

O'Farrell N, Houlton A, Horrocks B R. Silicon nanoparticles: applications in cell biology and medicine. Int J Nanomedicine, 2006; 1(4): 451-472.

Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnology, 2004; 2(1): 3.

Elghanian R, Storhoff J J, Mucic R C, Letsinger R L, Mirkin C A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997; 277(5329): 1078-1081.

Qin D, He X, Wang K, Tan W. Using fluorescent nanoparticles and SYBR Green I based two-color flow cytometry to determine Mycobacterium tuberculosis avoiding false positives. Biosens Bioelectron, 2008; 24(4): 626-631.

Edgar R, McKinstry M, Hwang J, Oppenheim A B, Fekete R A, Giulian G, et al. High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc Natl Acad Sci U S A, 2006; 103(13): 4841-4845.

Rosi N L, Mirkin C A. Nanostructures in biodiagnostics. Chem Rev, 2005; 105(4): 1547-1562.

Weinstein J S, Varallyay C G, Dosa E, Gahramanov S, Hamilton B, Rooney W D, et al. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab, 2010; 30(1): 15-35.

Jain T K, Richey J, Strand M, Leslie-Pelecky D L, Flask C A, Labhasetwar V. Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials, 2008; 29(29): 4012-4021.

Sun C, Lee J S, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev, 2008; 60(11): 1252-1265.

Sosnovik D E, Nahrendorf M, Weissleder R. Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res Cardiol, 2008; 103(2): 122-130.

Yang J, Gunn J, Dave S R, Zhang M, Wang Y A, Gao X. Ultrasensitive detection and molecular imaging with magnetic nanoparticles. Analyst, 2008; 133(2): 154-160.

Cao M, Li Z, Wang J, Ge W, Yue T, Li R, et al. Food related applications of magnetic iron oxide nanoparticles: Enzyme immobilization, Protein purification, and food analysis. Trends in Food Science & Technology, 2012; 27(1): 47-56.

Chiang C L, Sung C S, Wu T F, Chen C Y, Hsu C Y. Application of superparamagnetic nanoparticles in purification of plasmid DNA from bacterial cells. J Chromatogr B Analyt Technol Biomed Life Sci, 2005; 822(1-2): 54-60.

Bao J, Chen W, Liu T, Zhu Y, Jin P, Wang L, et al. Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano, 2007; 1(4): 293-298.

Gu H, Xu K, Xu C, Xu B. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun (Camb), 2006; (9): 941-9.

Varshney M, Yang L, Su X L, Li Y. Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157:H7 in ground beef. J Food Prot, 2005; 68(9): 1804-1811.

Hua Y, Liangwei Q, Wimbrow A N, Xiuping J, Yaping S. Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR. International Journal of Food Microbiology, 2007; 118(2): 132-138.

Perez J M, Wilhelm E J, Sucholeiki I. The use of power ultrasound coupled with magnetic separation for the solid phase synthesis of compound libraries. Bioorg Med Chem Lett, 2000; 10(2): 171-174.

Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005; 26(18): 3995-4021.

Duan H L, Shen Z Q, Wang X W, Chao F H, Li J W. Preparation of immunomagnetic iron-dextran nanoparticles and application in rapid isolation of E.coli O157:H7 from foods. World J Gastroenterol, 2005; 11(24): 3660-3664.

Josephson L, Tung C H, Moore A, Weissleder R. High-Efficiency Intracellular Magnetic Labeling with Novel Superparamagnetic-Tat Peptide Conjugates. Bioconjugate Chemistry, 1999; 10(2): 186-191.

Koh I, Hong R, Weissleder R, Josephson L. Nanoparticle-target interactions parallel antibody-protein interactions. Anal Chem, 2009; 81(9): 3618-3622.

Perez J M, Josephson L, Weissleder R. Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. ChemBioChem, 2004; 5(3): 261-264.

Nath S, Kaittanis C, Ramachandran V, Dalal N S, Perez J M. Synthesis, Magnetic Characterization, and Sensing Applications of Novel Dextran-Coated Iron Oxide Nanorods. Chemistry of Materials, 2009; 21(8): 1761-1767.

Kaittanis C, Naser S A, Perez J M. One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Lett, 2007; 7(2): 380-383.

Lee H, Sun E, Ham D, Weissleder R. Chip-NMR biosensor for detection and molecular analysis of cells. Nat Med. 2008; 14(8): 869-874.

Perez J M, Josephson L, O'Loughlin T, Hogemann D, Weissleder R. Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol, 2002; 20(8): 816-820.

Perez J M, Simeone F J, Saeki Y, Josephson L, Weissleder R. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J Am Chem Soc, 2003; 125(34): 10192-10193.

Kaittanis C, Nath S, Perez J M. Rapid nanoparticle- mediated monitoring of bacterial metabolic activity and assessment of antimicrobial susceptibility in blood with magnetic relaxation. PLoS One, 2008; 3(9): e3253.

Mao X, Yang L, Su X L, Li Y. A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosensors and Bioelectronics, 2006; 21(7): 1178-1185.

Liu F, Li Y, Su X L, Slavik M, Ying Y, Wang J. QCM immunosensor with nanoparticle amplification for detection of Escherichia coli O157:H7. Sensing and Instrumentation for Food Quality and Safety, 2007; 1(4): 161-168.

Lowery T J, Palazzolo R, Wong S M, Prado P J, Taktak S. Single-coil, multisample, proton relaxation method for magnetic relaxation switch assays. Analytical chemistry, 2008; 80(4): 1118-1123.

Fornara A, Johansson P, Petersson K, Gustafsson S, Qin J, Olsson E, et al. Tailored magnetic nanoparticles for direct and sensitive detection of biomolecules in biological samples. Nano Lett, 2008; 8(10): 3423-3428.

Kaittanis C, Santra S, Perez J M. Role of nanoparticle valency in the nondestructive magnetic-relaxation-mediated detection and magnetic isolation of cells in complex media. J Am Chem Soc. 2009; 131(35): 12780-12791.

Perez J M, O'Loughin T, Simeone F J, Weissleder R, Josephson L. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J Am Chem Soc. 2002; 124(12): 2856-2857.

Farahi R, Passian A, Tetard L, Thundat T. Critical issues in sensor science to aid food and water safety. ACS Nano, 2012; 6(6): 4548-4556.

Respaud M, Broto J M, Rakoto H, Fert A R, Thomas L, Barbara B, et al. Surface effects on the magnetic properties of ultrafine cobalt particles. Physical Review B, 1998; 57: 2925.

Bødker F, Mørup S, Linderoth S. Surface effects in metallic iron nanoparticles. Physical Review Letters, 1994; 72: 282.

Paulus P M, Bönnemann H, van der Kraan A M, Luis F, Sinzig J, de Jongh L J. Magnetic properties of nanosized transition metal colloids: the influence of noble metal coating. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 1999; 9(1): 501-504.

Kaittanis C, Santra S, Perez J M. Role of Nanoparticle Valency in the Nondestructive Magnetic-Relaxation- Mediated Detection and Magnetic Isolation of Cells in Complex Media. Journal of the American Chemical Society, 2009; 131(35): 12780-12791.

Ruan R R, Chen P L. Water in foods and biological materials. Lancaster, Pa.: Technomic Pub. Co.; 1998.

Schoenfelder W, Gläser H-R, Mitreiter I, Stallmach F. Two-dimensional NMR relaxometry study of pore space characteristics of carbonate rocks from a Permian aquifer. Journal of Applied Geophysics, 2008; 65(1): 21-29.

Marigheto N, Moates G, Furfaro M, Waldron K, Hills B. Characterisation of Ripening and Pressure-Induced Changes in Tomato Pericarp Using NMR Relaxometry. Applied Magnetic Resonance, 2009; 36(1): 35-47.

Bie C, Ruan R, Chen P, editors. NMR study of the states of water in dough. ASAE/CSAE-SCGR Annual International Meeting; 1999 18-21 July, 1999; Toronto, Ontario, Canada: American Society of Agricultural Engineers (ASAE), St Joseph, USA.

Chen P L, Long Z, Ruan R, Labuza T P. Nuclear Magnetic resonance studies of water mobility in bread during storage. Lebensmittel Wissenschaft & Technologie, 1997; 30(2): 178-183.

Chulkyoon M, Jinning Q, Chen P, Ruan R. NMR relaxometry of water in set yogurt during fermentation. Food Science & Biotechnology, 2008; 17(5): 895-898.

Chung M, Ruan R, Chen P, editors. Study of caking of powdered foods using nuclear magnetic resonance (NMR). ASAE/CSAE-SCGR Annual International Meeting; 1999 18-21 July, 1999; Toronto, Ontario, Canada: American Society of Agricultural Engineers (ASAE), St Joseph, USA.

Lin X, Ruan R, Chen P, Chung M, Ye X, Yang T, et al. NMR state diagram concept. Journal of Food Science, 2006; 71(9): R136-R145.

Ruan R R, Chen P L, Roles, Editors. Water in foods and biological materials: a nuclear magnetic resonance approach. Technomic Publishing Co., Inc., Lancaster-Basel, 1998; 298(Other): 298.

Hogemann D, Ntziachristos V, Josephson L, Weissleder R. High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes. Bioconjugate Chemistry, 2002; 13(1): 116-121.




Copyright (c)



2023-2026 Copyright IJABE Editing and Publishing Office