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Abstract: Imaging spectroradiometer is highly susceptible to noise.  Accurately quantitative processing with higher quality is 

obligatory before any derivative analysis, especially for precision agricultural application.  Using the self-developed 

Pushbroom Imaging Spectrometer (PIS), a wavelet-based threshold (WT) denoising method was proposed for the PIS imaging 

hyperspectral data.  The WT with PIS was evaluated by comparing with other popular denoising methods in pixel scale and in 

regional scale.  Furthermore, WT was validated by chlorophyll concentration retrieval based on red-edge position extraction.  

The result indicated that the determination coefficient R2 of the chlorophyll concentration inversion model of winter wheat 

leaves was improved from 0.586 to 0.811.  It showed that the developed denoising method allowed effective denoising while 

maintaining image quality, and presented significant advantages over conventional methods. 
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1  Introduction  

Hyperspectral images consist of spatial maps of 

intensity variations across a large number of spectral 

bands or wavelengths, integrating both spectroscopy and 

imaging techniques; alternatively, they can be thought of 

as a measurement of the spectrum of light transmitted or 

reflected from each spatial location in a scene.  Due to 

its non-destructive and chemical-free advantages, 

currently imaging hyperspectral data is used in a variety 

of applications such as precision agriculture
[1-4]
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environment monitoring
[5]

, geological survey
[6]

, food 

security
[7-9]

 and medical diagnosis
[10]

. 

However, imaging spectroradiometer is highly 

susceptible to noise.  The type of sensor is incapable of 

capturing a lot of energy due to their narrow bandwidth 

configuration, and cause self-generated noise inside the 

sensor.  The recorded signal was influenced by complex 

environment including solar illumination and atmospheric 

absorption in the field.  Most applications based on 

hyperspectral imagery data will be disturbed by the 

existing noise.  Therefore, as a fundamental 

preprocessing, noise removal is an essential step before 

any further application.  

Great efforts have been made to develop noise 

reduction techniques by signal processing community 

over the past several decades.  As shown in the previous 

study
[11]

, diffusion-weighted images can be denoised 

effectively through sparse dictionary learning constrained 

by the physical properties of the signal.  Luo et al.
[12]

 

proposed an approach to medical image denoising based 

on a reconstruction-average mechanism.  A multi-scale 

sparsity based tomographic denoising method was 
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developed for optical coherence tomography images by 

Fang et al
[13]

.  Mohanet et al.
[14]

 used nonlocal 

neutrosophic set approach of Wiener filtering for 

magnetic resonance images.  Wang et al.
[15]

 proposed a 

modified illumination model for image deblurring and 

denoising problems.  Perceptual frequency weighting 

filter is incorporated into Wiener filter to improve speech 

enhancement algorithms
[16]

.  Despite diverse techniques 

aimed at different applications, there is no universal 

denoising method for all data since different signals have 

their own properties.  In comparison to the 

above-mentioned methods which based on spatial domain 

or frequency domain, the method required in agriculture 

application of remote sensing pays main attention in 

spectral domain.  Liu et al
[17]

 and Li et al
[18]

 used 

combination of wavelet package transformation and other 

filters for infrared spectrum.  Axell et al
[19]

 proposed a 

Bayesian approach for spectrum sensing denoising; Lin et 

al.
[20]

 applied wavelet-based denoising for near infrared 

spectral data.  These methods emphasized noisy portions 

of the spectrum where SNR (Singal-Noise-Ratio) was 

high and attenuated portions of the spectrum where the 

SNR was low.  However, these methods were designed 

just for spectrum data (in one dimension) instead of for 

hyperspectral imaging data (in spectral and spatial 

dimension).  More importantly, they were validated just 

by simulated data not actual data. 

In 2010, a new field-based pushbroom imaging 

spectrometer (PIS) was developed by Zhang et al.
[21]

.  

The obtained hyperspectral images produce notable noise 

at both spatial dimension and spectrum dimension.  The 

PIS is specially designed for precision agriculture 

application, such as vegetation nutrition diagnosis and 

nitrogen content retrieval quantitatively, which is very 

sensitive to denoising effect.  It brings great challenge 

because the noise should be eliminated in high quality, 

and in the meanwhile the details should be preserved.  

Therefore, the goal of the study is to develop an 

optimal denoising method suitable for PIS.  Specially, 

the objectives are to: 1) evaluate the capacity of 

wavelet-based threshold denoising method for 

hyperspectral imagery data from PIS, when compared 

with other denoising methods; 2) validate the method by 

actual application, when crop leaf chlorophyll 

concentration was retrieved based on the denoised PIS 

data. 

2  Materials and methods 

2.1  Data collection  

In the study, experimental data were collected in the 

key scientific observation station of precision agriculture 

and ecological environment located on Xiaotangshan 

town, Changping District of Beijing, China (40°11′16′′ N, 

116°27′03′′ E).  The cultivar of winter wheat, Jing 411 

was selected as the research material and planted on 

September 30
th
, 2010.  When the winter wheat was at 

the jointing stage, the hyperspectral data of 30 leaves 

were collected by PIS in the field on a sunny and breezy 

day.  In the field the sample leaves were quickly picked 

and placed flat on a black, non-reflective cloth, and the 

corresponding spectra were measured at a distance of  

120 cm from the lens of PIS to the sample leaf from 

10:30 am to 15:30 pm during the day.  After PIS data 

measurements were completed, all relative chlorophyll 

contents of the leaves were also measured by a 

SPAD-502 meter (Konica Minolta, Tokyo, Japan) for 

agricultural quantitative analysis. 

Before the data acquisition of PIS, laboratory 

calibration was carried out to determine the location of 

the wavelengths, spectral response function, radiation 

accuracy, and spatial displacement.  The specification 

parameters of PIS are spectral resolution closes 2 nm and 

spectral interval is 0.7 nm in the wavelength range from 

400 to 1 000 nm.  The field of view includes two types, 

which are 16° and 23°, respectively, and the former was 

used to collect data in the study.  

2.2  Data processing 

Hyperspectral imagery can be viewed as a 

three-dimensional data cube which is constituted by a 

two-dimensional image and a one-dimensional spectrum.  

The two-dimensional image describes the target’s spatial 

information feature while the one-dimensional spectrum 

information reveals the spectral profile feature of every 

pixel in the image.  For every pixel in the image 

acquired by PIS, a sequence of digital number (DN) was 

obtained with a 0.7 nm spectrum interval.  

http://www.researchgate.net/researcher/63129952_Hui_Li/
http://www.scientific.net/author/Xiao_Mei_Lin
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Instrument calibration was performed firstly so that 

the DN values could be transformed into the relative 

reflectance.  In the calibration, a linear empirical method 

was adopted: 

Xi = Ai × DN + Bi             (1) 

In Equation (1), the coefficients Ai and Bi are 

calculated using the least squares method, and then the 

reflectance Xi is determined, in which, i is the index of 

any wavelength.  

2.3  Denoising approaches 

For a more accurate inversion of crop biochemical 

parameters, hyperspecral imagery data should be 

denoised for improving accuracy.  In the study, a 

wavelet transform (WT) method was explored to remove 

the noise of the PIS imagery data, and some traditional 

denoising methods such as the Savitzky-Golay (SG) 

filter
[22]

, moving average (MA)
[23]

, and median filter 

(MF)
[24]

 were also applied for purposes of comparison. 

2.3.1  Wavelet transforms method 

Among the numerous noise reduction techniques that 

were developed over the past several decades, 

wavelet-based threshold method has been one of the most 

successfully ones.  Since its advent, WT has been 

utilized to remove noise in many different types of 

signals.  WT transforms and zeros the coefficients below 

a certain threshold value, which is known as hard 

threshold, and then the noise coefficients would have 

significantly lower amplitude than the coefficients 

corresponding to the specific features.  In addition, the 

coefficients remaining after the threshold operation could 

be reduced by the threshold value as well, which is 

known as soft threshold.  In this study, the 

threshold-based wavelet denoising algorithm will include 

following three steps. 

1) The discrete WT is carried out on the data 

sequence f(t) after the wavelet filter and the numbers of 

decomposition layers are selected: 

Y(d)= Y(f)+ Y(z)             (2) 

In Equation (2), Y(d), Y(f) and Y(z) are the 

high-frequency WT components of the noisy data, truth 

data, and pure noise data, respectively.  

2) A threshold is chosen for every level of the 

high-frequency coefficient and the WT coefficient ˆ( )Y f  

is estimated from the threshold.  The soft threshold and 

hard threshold can be applied in Equations (3) and (4), in 

which T was the threshold. 

For the soft threshold:  

( ( ))( ( ) )    | ( ) |
ˆ( )

0                                   | ( ) |

sgn Y d Y d T Y d T
Y f

Y d T

 
 


   (3) 

For the hard threshold:  

( )    | ( ) |
ˆ( )

0          | ( ) |

Y d Y d T
Y f

Y d T


 


          (4) 

3) Wavelet reconstruction ˆ( )Y f  was conducted to 

obtain an estimate of ˆ( )Y t : 

1ˆ ˆ( ) ( )Y t Y f               (5) 

In Equation (5), ω
-1

 was the operator of wavelet 

inverse transformation. 

It should be noted that the WT filter method is based 

on the choice of the threshold scheme.  Usually, there 

are four schemes: Rigrsure, Sqtwolog, Heursure, and 

Minimaxi.  While Rigrsure selects an adaptive threshold 

based on the Stein unbiased likelihood principle, 

Sqtwolog adopts a fixed threshold 2 log( ( ))length x .  

Heursure is a mixture of these two schemes, while 

Minimaxi selects the mean square extreme error under 

non-ideal circumstances as the threshold.  

Therefore, the effect of wavelet threshold method was 

influenced by many issues such as the choice of wavelet, 

the choice of decomposition level, threshold selection, 

and the choice of thresholding functions.  

2.3.2  SG, MA and MF 

SG filtering is based on least squares polynomial 

smoothing.  It finds a smoothed value for each point in 

the spectrum of a subset of data within a slide window.  

The window contains the points to be smoothed in the 

centre position of the window as well as several of its 

neighbors.  Only the central point is smoothed for each 

window position, although all the data within the window 

are used to perform the least squares fit.  Other points 

are smoothed by moving the window across the spectrum 

point by point, performing a least squares approximation 

to the windowed data at each location. 

The MA approach regards the average spectral value 

of all points within a specified window as the new value 
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of the middle point of the window.  The method is solely 

based on linear calculations and has only one critical 

parameter, which is the filter window size.  The MF 

method is similar to MA but the median value instead of 

the average value was used. 

2.3.3  Smoothing index 

A smoothing index (SI) in the study was designed to 

evaluate the denoising effect quantitatively.  The 

expression formula was displayed as in Equation (6).   

11

11

ˆ ˆ| |

| |

n

i ii

n

i ii

SI
 

 













            (6) 

In Equation (6), ̂  and   represent the denoised 

spectrum and original spectrum, respectively, n means the 

number of wavebands, and SI reflects the curve 

smoothness.  When SI value is smaller, the denoised 

spectrum is smoother. 

3  Results and analysis 

3.1  Denoising effect at different noise levels 

As the blue curve in Figure 1, the reflectance 

spectrum of a single pixel was presented.  The signal 

was contaminated by server noise in the wavelength 

range from 450 nm to 950 nm.  Subsequently, much 

noise was filtered out after WT was applied, and a 

smooth curve (the red in Figure 1) which also preserved 

the spectrum shape was obtained.  

 

Figure 1  Results of WT for the single-pixel case 

 

In fact, the spectrum noise can be reduced by 

exploiting the spatial correlation in the two-dimensional 

image which exists in the adjacent pixels.  Hence, a 

region of interest in an image can be selected and an 

average reflectance in this region can be obtained for 

every band.  For the multi-pixel case, a spectral curve 

with less noise was shown as blue curve in Figure 2.  

Even so further application of this noisy curve could have 

problematic in quantitative inversion of crop parameter.  

Therefore, WT was also applied on this less noisy 

spectrum.  The denoised red curve in Figure 2 showed 

that the noise was removed effectively and the shape of 

the spectral curve was maintained in general.  

 

Figure 2  Results of WT for the multi-pixel case 

 

It should be noted that the same WT parameters set 

was used at different noise levels (single-pixel and 

multi-pixel).  Sqtwolog, soft threshold, and hierarchy 

threshold scheme were selected in wavelet transform 

filter (decomposition layers = 5, wavelet radix = 

‘symlets20’).  With these parameters WT was fairly 

consistent in noise reduction at different noise levels. 

From Figures 1 and 2, it was found that the 

reflectance curves were abnormal at wavelengths of 

450-480 nm, as they were higher than the normal value.  

This phenomenon was more serious with the decrease of 

the wavelength.  In this wavelength range, the spectrum 

had high disturbance, and even after WT, noise still 

existed in both single-pixel and multi-pixel case.  The 

problem may come from the instrument itself or 

reflectance calibration.  Therefore, only the wavelength 

range greater than 480 nm was considered in the further 

analysis. 

Therefore, the results presented the capability of 

wavelet-based denoising method both in pixel scale and 

in regional scale.  It was worthy of noting that study in 

single pixel is usually used for instrument performance 

evaluation and calibration while study in region is more 

used for quantitative retrieval in agriculture.  
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3.2  Comparison with SG, MA and MF 

For the purpose of comparison with the WT method, 

the SG, MA, and MF methods were also used for noise 

reduction.  To present more details, a noisy spectrum 

and a spectrum denoised by WT and SG only within the 

range of 670-970 nm were shown in Figure 3.  Visually, 

it was clear that the spectrum denoised by WT was 

smoother while much jaggedness were remained in the 

one denoised by SG.  However, usually it was hard to 

distinguish the difference visually.  Here we used the SI 

to assess the affection of noise reduction in different 

denoised methods.  Table 1 listed the SI values of the 

four methods.  We defined the SI of noisy spectrum as 1, 

if SI value became littler; it meant denoised effect was 

better.  The SIs of the four methods in Table 1 were 0.09 

(WT), 0.14 (SG), 0.13 (MA), 0.18 (MF), respectively, the 

order of denoised effect was WT>MA> SG>MF.  This 

indicated that WT had the best performance regard to 

smoothing ability. 

 

Figure 3  Results of the WT and SG denoising 
 

Table 1  SIs of the four methods 

Original WT SG MA MF 

1.00 0.09 0.14 0.13 0.18 

Note: WT, wavelet transform; SG, Savitzky-Golay; MA, moving average; MF, 

median filter. 
 

3.3  Application analysis 

Use of noise reduction methods made the spectral 

curves smoother, but may cause some loss of information 

or change certain subtle feature of original spectrum 

simultaneously, which will produce incorrect results in 

subsequent analyses.  Therefore, besides smoothing 

ability, an excellent noise reduction technique should 

maintain the curve characteristics, which were reflected 

by the curve shape or location of characteristics such as 

peaks, valleys, inflection points, and so on. 

Red edge, which reflects variations in the chlorophyll 

content and biomass of vegetation, is a very important 

feature to invert biochemical and biophysical parameters 

of vegetation using hyperspectral remote sensing.  The 

position of the red edge and the chlorophyll content are of 

great relevance
[25]

.  When the chlorophyll content 

becomes high, the red edge moves towards the long 

wavelength direction.  To evaluate the feature- 

conservation ability of the WT method, red edge position 

(REP)
 [26]

 was extracted from the noisy spectrum and the 

denoised spectrum, respectively, and then analyzed the 

relationship between REP and the chlorophyll content of 

the corresponding leaf (Figure 4).  The high correlation 

coefficient (R
2
) indicated a strong feature-conservation 

ability and better denoising effect.  The first order 

derivative was used for red edge position extraction.  

The relative chlorophyll contents were measured by 

SPAD-502. 

 
(a) 

 

(b) 
 

Figure 4  (a) Relationship between SPAD and REP of noisy 

spectra; (b) Relationship between SPAD and REP of denoised 

spectra 

 

After removing three abnormal samples from the 30 

leaf samples collected, the linear regression models of the 
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27 samples were presented in Figure 4.  In Figure 4(a), 

the determination coefficient R
2
 was 0.586 between 

SPAD and REP extracted from the noisy spectra, while in 

Figure 4(b) R
2
 reached 0.811 between SPAD and REP 

extracted from the WT-based denoised spectra.  Thus, 

after noise reduction by using WT, the coefficient of 

correlation was obviously improved.  However, there 

was significant difference for scattered points in Figure 4.  

The former variation regions of REP were from 688 nm 

to 728 nm, and almost focused on 700-710 nm.  The 

latter change ranges were from 689 nm to 716 nm, and 

almost concentrated on 700-705 nm.  Although the 

determination coefficient had the larger improvement 

before and after WT-based denoising, why the variance 

of scattered points had obviously changed, which can be 

explained by combining Figure 1 with Figure 2.  In the 

study, REP was calculated as maximum value of first 

order derivative, and especially flexible altered in spectral 

interval of 0.7 nm after noisy disturbance.  This was a 

very important reason that we must explore suitable 

denoised way to decrease the randomness of 

hyperspectral data.  

From the above, combination spectral curve (Figures 

1 and 2) with analysis result of inversion model (Figure 

4), it can be concluded that the WT maintained the 

spectral characteristics efficiently.         

4  Conclusions and discussion  

This study presented an approach to remove the noise 

on hyperspectral imagery data collected by PIS.  With 

the aim of carrying out quantitative inversion of crop 

biochemical parameters, the WT method was developed, 

and commonly used denoising methods such as the SG 

method, MA method, and MF method were compared.  

A SI index was designed to evaluate the denoising effect.  

For the SI queuing, it was concluded that 

WT>MA>SG>MF, which indicated that the WT method 

had the best smoothness.  Meanwhile, WT showed its 

consistency when applied to a noisy spectrum at different 

noise levels.  Furthermore, the REP was extracted from 

the denoised spectrum and its relationship with the 

chlorophyll content was analyzed.  The R
2
 of WT-based 

denoised reached 0.811, which was better than that of 

noisy spectra (R
2
=0.586).  The improvement in the 

application revealed that WT had fine 

feature-conservation ability.  

However, the research results still have obvious 

shortages that need deeply exploration and perfection.  

In the study, we focused on spectral denoising of leaf 

hyperspectral image.  Through comparing the traditional 

methods, the proposed MT was the best, the way whether 

adapted for other data such as crop canopy, different 

vegetation leaf and so on; this needs to design more 

experiments to validate.  Moreover, we utilized the 

model based-red edge position to assess the 

feature-conservation effect of WT denoising, the result 

displayed that REP was an effective method to evaluate 

feature-conservation of denoised spectra
[26]

.  However, 

this study was only a simple validation and needed 

multi-resource data to improve the WT-based denoised 

method.  Besides, the data from PIS owned the 

advantage image and spectra as one; we should also 

explore certain imagery analysis method to promote 

better to utilize spectral information.         
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