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Abstract: This paper describes the development of a hyperspectral imaging approach for identifying fruits infected with citrus 

black spot (CBS).  Hyperspectral images were taken of healthy fruit and those with CBS symptoms or other potentially 

confounding peel conditions such as greasy spot, wind scar, or melanose.  Spectral angle mapper (SAM) and spectral 

information divergence (SID) hyperspectral analysis approaches were used to classify fruit samples into two classes: CBS or 

non-CBS.  The classification accuracy for CBS with SAM approach was 97.90%, and 97.14% with SID.  The combination of 

hyperspectral images and two classification approaches (SID and SAM) have proven to be effective in recognizing CBS in the 

presence of other potentially confounding fruit peel conditions.  The study result can be a reference for the non-destructive 

detection of fruits infected with citrus black spot. 
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1  Introduction  

Once citrus trees are infected with CBS, their fruit 

yield and visual quality are greatly reduced and fruits 

with CBS symptoms are not acceptable in some important 

fresh fruit export markets, such as those of the European 

Union
[1]

.  Therefore, it is important to control this 

disease in the field to preserve profitable production and 

to detect and eliminate infected fruit at the packinghouse 

to maintain marketability. 

                                                 
Received date: 2014-11-23    Accepted date: 2014-12-02 

Biographies: Daegwan Kim, PhD, Graduate Student, research 

interests: hyperspectral imaging. Email: dgkim0306@gmail.com. 

Mark A. Ritenour, PhD, Professor, research interests: post harvest 

technology. Email: ritenour@ufl.edu. Jianwei Qin, PhD, 

Postdoctoral Research Associate, research interests: optical sensing 

and control.  Email: jianwei.qin@ars.usda.gov. 

* Corresponding author: Thomas F. Burks, PhD, Professor, 

research interests: robotics and machine vision. Mailing address: 

1740 Museum Rd, POB 110570, Gainesville, FL 32606.  Email: 

tburks@ufl.edu.  Tel.:+1-352-392 1864; Fax: +1-352-392-4092 

CBS symptoms can be quite variable and are 

identified by cosmetic lesions on the fruit peel
[2]

.  CBS 

hard spot lesions, the most common symptom type, begin 

as small orange or red spots with black margins that 

enlarge and become necrotic.  Other symptoms of CBS 

on citrus fruit peel include virulent spot, cracked spot, 

and false melanose
[3]

.  Detecting fruits infected with 

CBS can also help in controlling the spread of this disease 

to areas that are currently free of CBS.  The design and 

implementation of technologies that can efficiently detect 

CBS disease will greatly aid in the control effort. 

The identification of various crops and plant using 

machine vision and image processing techniques has been 

studied by numerous researchers.  Jimenez et al.
[4]

 

surveyed several computer vision approaches for locating 

fruit in trees for robotic harvesting.  Regunathan and 

Lee
[5]

 identified fruit count and size using machine vision 

and an ultrasonic sensor.  Burks et al.
[6]

 developed a 

method for classifying weed species using color texture 
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features and discriminant analysis.  Tang et al.
[7]

 

presented gabor wavelets and neural networks algorithms 

to develop a texture-based weed classification method.  

Pydipati et al.
[8]

 identified citrus disease using the 

co-occurrence matrix method, (CCM) texture feature 

method and discriminant analysis.  Du et al.
[9]

 described 

five different texture feature methods, including the 

common first-order gray-level statistics (FGLS), run 

length matrix (RLM), gray-level co-occurrence matrix 

(GLCM), fractal dimension (FD), and wavelet transform 

(WT) based methods. 

In recent years, optical techniques have been used 

widely in the food processing and inspection application.  

In particular, hyperspectral imaging technologies have 

had growing interest for use in quality and safety 

inspection of food and agricultural products
[10]

.  

Previous research has demonstrated hyperspectral 

imaging technologies and applications for agricultural 

products.  Jiang et al.
[11]

 used hyperspectral fluorescence 

imaging to analyze the differences between walnut shells 

and meat.  A hyperspectral fluorescence imaging system 

scanned samples at 79 different wavelengths ranging 

from 425 nm to 775 nm with 4.5 nm increments, later 

data redundancy was reduced through principal 

component analysis (PCA).  Zhang et al.
[12]

 suggested a 

novel classification approach for distinguishing healthy 

and fungal infected wheat kernels during storage.  The 

research showed the potential use of NIR hyperspectral 

imaging in grain quality assessment.  The research used 

NIR hyperspectral imaging and support vector machine 

(SVM) for identifying the fungi that caused the infection.  

Kim et al.
[13]

 researched a method for using hyperspectral 

data to identify wavebands to be used in multispectral 

detection systems, and evaluated spatial and spectral 

responses of hyperspectral reflectance images of fecal 

contaminated apples.  Lee et al.
[14]

 used the hyperspectral 

imaging technique to detect defects on apple peel after 

harvest using a wavelength selection method. 

In hyperspectral image classification approaches, a 

spectral angle mapper (SAM) and spectral information 

divergence (SID) classification that measures the spectral 

similarity between two spectra has been applied to 

various agricultural products and systems.  Park et al.
[15]

 

used SAM algorithms to detect fecal and ingesta 

contaminants on the surface of poultry carcasses.  Qin et 

al.
[16]

 introduced the detection of citrus canker using SID 

classification methods.  Yang et al.
[17]

 used the SAM 

method on airborne hyperspectral imagery for mapping 

yield variability. 

This paper reports on work to develop a hyperspectral-  

based machine vision system for detecting and 

distinguishing fruit CBS symptoms from other common 

citrus peel conditions.  This approach could be used in 

an off-line fruit blemish detection system, or could be 

used as the basis for the development of a real-time 

multi-spectral detection system.  The overall objective 

of this research was to develop and compare the 

performance of two hyperspectral classification methods, 

spectral angle mapper (SAM) and spectral information 

divergence (SID), for detection of CBS using a 

hyperspectral imaging system. 

2  Materials and methods 

2.1  Fruit sample collection 

‘Valencia’ oranges were hand-picked from citrus 

groves near Ft. Pierce in southeastern Florida in Apr. 

2010.  The fruit samples included marketable fruit and 

those with symptoms of CBS, greasy spot, melanose, and 

wind scar for a total of 525 samples.  Representative 

images for each peel condition are shown in Figure 1.  

All fruit samples were washed with a mild soap to 

remove surface dirt before imaging.  To maximize the 

number of hyperspectral images collected from the 

limited number of CBS samples, three faces of each fruit 

(with 120° rotation intervals) were collected. 

 

Figure 1  Representative images for each peel condition 
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2.2  Hyperspectral image acquisition 

A hyperspectral line-scan imaging system, as shown 

in Figure 2, was used for acquiring hyperspectral images 

of the fruit samples. 

 
Figure 2  Hyperspectral line-scan imaging system 

 

This system was based on design recommendations 

by Kim et al.
 [13]

  The imaging system consisted of an 

electron-multiplying charge-coupled-device (EMCCD) 

camera (Luca, Andor Technology Inc., South Windsor, 

CT) with imaging spectrograph (ImSpector V10E, 

Spectral Imaging Ltd., Oulu, Finland) and a C-mount lens 

(Rainbow CCTV S6X11, International Space Optics, S.A., 

Irvine, CA), a pair of halogen line lamps (21 V, 150 W) 

powered with a DC voltage regulated power supply 

(Dolan-Jenner Industries, Inc., Lawrence, MA).  This 

equipment was placed inside a dark box to eliminate 

undesirable external light.  The reflectance light source 

consisted of two 21 V, 150 W halogen lamps powered 

with a DC voltage regulated power supply (Techni Quip, 

Danville, CA).  The light was transmitted through 

optical fiber bundles toward line light distributors.  Two 

line lights were arranged to illuminate the Image Field of 

View (IFOV). 

The EMCCD has 1004×1002 pixels and a double- 

stage Peltier device to cool to –80°C.  A programmable, 

motorized positioning table (BiSlide-MN10, Velmex Inc., 

Bloomfield, NY) moved citrus samples (five for each run) 

transversely through the line of the IFOV.  For five fruit 

samples 1 740 line scans were performed, and 400 pixels 

covering the scene of the fruit at each scan were saved, 

generating a 3-D hyperspectral image cube with the 

spatial dimension of 1740×400 for each band. 

The hyperspectral imaging software to transfer data 

and parameterization was developed using the Andor 

Software Development Kit (SDK, Luca, Andor 

Technology Inc.) for the hyperspectral line scan imaging 

system.  An Hg-Ne spectral calibration lamp (Oriel 

Instruments, Stratford, CT) was used to investigate spec-

tral calibration of the system.  Because of low light 

output in the visible region less than 450 nm, and low 

quantum efficiency of the EMCCD in the NIR region 

beyond 930 nm, the wavelength range between 451.67 

and 927.71 nm was used (totaling 92 bands with a 

spectral resolution of 5.2 nm). 

2.3  Flat-field corrected images  

Flat-field corrections were performed on the 

hyperspectral images to obtain the relative reflectance 

prior to image analysis and image processing for 

classification.  Equation (1) was used for the flat-field 

correction to obtain the relative reflectance R for the 92 

spectral bands.  Flat-field correction technique can 

reduce uneven illumination and distortion. 

( ) ( )
( )

( ) ( )

sample dark

white dark

R w R w
R w r

R w R w


 


       

(1) 

where, R(w) is the relative reflectance; Rsample(w) is the 

original sample image with the CCD values ranging 

between 0–16383 (14-bit EMCCD); Rwhite(w) is the 

reference image acquired from the white spectralon cali-

bration panel; Rdark(w) is the dark current image obtained 

with a cap covering the camera lens; w is the wavelength; 

r is the reflectance factor of the calibration panel.  

The actual reflectance factor for the white spectralon 

panel is about 99% in the wavelength range measured by 

the hyperspectral imaging system, however a reflectance 

factor of 100% was used in this study for simplicity.  

The relative reflectance R(w), which has a value between 

0 and 1, was then scaled to a range of 0 to 10 000 to 

increase the dynamic range of the adjusted reflectance.  

To reduce image noise and processing time, the fruit 

peel area was separated from the background by creating 

a fruit parameter mask.  The mask was created, by 

manual inspection, using a threshold value determined 

from the hyperspectral image which gave the largest 

contrast between the fruit and background.  After 
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masking the background, the size of image was reduced 

by half by resampling which yielded equivalent spatial 

resolution in the horizontal and vertical dimensions.  

The resulting pre-processed images then became the test 

samples to be used in classification studies to validate the 

performance of SID and SAM algorithms for identifying 

CBS conditions on fruit. 

2.4  Hyperspectral image analysis and classification 

The spectral angle mapper (SAM) and spectral 

information divergence (SID) algorithms are two 

important supervised classification methods used in 

analyzing the spectral characteristics of agricultural 

products.  They are described in the following section.  

2.5  Spectral angle mapper 

The main concept of SAM is to calculate the angle 

between endmember spectra and target spectra as vectors 

in a space with dimensionality equal to the number of 

bands (Yang et al.
[18]

).  The formula of spectral angle (θ) 

is calculated as: 

1 1

'

'

cos ( )

M

L L

 


 

 

  


             

(2) 

where, M is the number of spectral bands; ρλ 
is the 

reflectance of endmember spectrum; ρ′λ is the reflectance 

of a target spectrum; Lρ
 
is the length of the endmember 

vector; Lρ′ is the length of the target spectrum vector. 

The length of the endmember vector and the target 

spectrum vector are calculated as: 

2 2

1 1

,  
M M

L L   
 

 

 

  
         

(3) 

After the spectral angle (θ) is found, it is then 

compared with a threshold value if the threshold is below 

the angle, the target spectrum is determined as classifying 

to the end member class.
[18]

 

2.6  Spectral Information Divergence 

While SAM is a deterministic method, SID is a 

probabilistic method that allows for variations in pixel 

measurements, where probability is measured from zero 

to a user-defined threshold
[19]

.  Chang
[20]

 described the 

derivation of SID.  

The hyperspectral pixel vector is given by 

1 2 3( , , , , , , )T

n NX x x x x x     
          

(4) 

Each component x can be modeled as a random 

variable by defining an appropriate probability 

distribution.  Due to the nature of reflectance, assume 

that all components xn’s in X are non-negative.  Thus, 

the probability measure can be defined as: 

1

j

j N

n

n

x
p

x





                  

(5) 

and the desired probability vector is 
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is another pixel with the probability distribution given by 

1
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Thus, spectral information divergence (SID) can be 

given by: 

( , ) ( || ) ( || )SID X Y D X Y D Y X 
       

(9) 

where, (X||Y), called as the relative entropy of Y with 

respect to X, is defined by 
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(10) 

Therefore, the value of SID shows the use of the 

relative entropy and the similarity between two spectral 

pixels. 

2.7  Black spot classification 

A detailed flowchart illustrating the SAM and SID 

classification algorithms is shown in Figure 3.  

In this study, the mean reflectance spectra from 3×3 

pixel regions of interest (ROIs) from 10 CBS sample 

regions were used for describing endmember spectra to 

extract statistics data for classification.  The ROIs were 

randomly selected from CBS infected image samples by 

manually selecting the 3×3 window inside the boundary 

of a CBS lesion. Since the endmember spectra was 

composed of the mean of the actual 10 CBS samples, it 

created a unique endmember, thus allowing the original 

10 CBS samples to be returned to the data set and used 

for testing.  After applying SID and SAM mappings to 

the hyperspectral image of each test sample, rule images 
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were used to separate CBS lesions from other fruit peel conditions.  

 

Figure 3  A detailed illustration of SAM and SID classification algorithms 

 
 

3  Results and analyses 

3.1  Spectral characteristics of black spot and other 

conditions 

The reflectance spectra of the various peel conditions 

(CBS, market quality and other diseases) over the 

wavelength range from 483 nm to 959 nm are shown in 

Figure 4.  These plots were developed using the mean of 

10 CBS spectra from different hyperspectral image 

samples.  The spectra of each peel condition shows a 

similar pattern, regardless of the surface, with the 

difference appearing as shifts either upward or downward 

depending on the peel conditions reflectance characteristics. 

 

Figure 4  Mean reflectance spectra of 10 samples each with black 

spot, normal and different diseases over the wavelength range 

between 483 nm and 959 nm 

All the spectral plots feature a local minimum around 

675 nm.  CBS and other conditions have the difference 

of local minimum due to light absorption of chlorophyll 

and carotenoid.  As shown in Figure 4, the spectra from 

market fruit had the highest slope in reflectance vs. 

wavelengths from 500 nm to 575 nm, while other 

disorders increased at a lower rate in reflectance in this 

region.  CBS remained fairly flat in this region, having a 

consistently lower reflectance than the other conditions.  

The spectral reflectance values of other disorders 

generally are bounded between the spectra of CBS 

(lowest) and market (highest) for wavelengths between 

550 to 650 nm with reflectance ranging between 12% and 

50%.  In the region from 700 nm to 800 nm, the 

reflectance ranges between 40% and 70%.  Reflectance 

spectra from hyperspectral images were extracted using 

ENVI 4.3 (ITT Visual Information Solutions, Boulder, 

CO). 

3.2  SID and SAM based classification  

SID and SAM mappings were generated using the end 

spectra of CBS with the resulting rule images showing 

enhanced CBS regions.  The SAM angle and SID 

divergence values of CBS ranged from 0.01 to about 0.1.  

Based on these values, a threshold algorithm was used to 

generate the binary classification image, which separated 
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CBS from other conditions by setting each pixel to either 

“1” for CBS or “0” for the other classes.  

SID-based CBS classification results are shown in 

Table 1 for seven different threshold values.  

Classification trials were conducted by incrementally 

increasing the SID threshold value from the lowest value 

of 0.01 to the highest value of 0.07 at a step increment 

size of 0.01.  As indicated in Table 2, the value of 0.04 

provided the best overall performance of 97.14%.  When 

the threshold was changed from 0.01 to 0.04, the 

classification accuracy increased from 74.28% to 97.14%, 

respectively.  However, the overall classification ac-

curacy peaked at threshold value 0.04 and decreased as 

the threshold value was further increased to 0.05. Based 

on the results shown in Table 2, the SID classification 

accuracy for “CBS” class was 98%, while the accuracy 

for “No CBS” class was 96.92%.  Only three CBS 

samples were misclassified at the threshold value of 0.04, 

while 12 non CBS class samples were misclassified (eight 

greasy spot and four wind scar samples).  All melanose 

and market samples were correctly classified at a 0.04 

SID threshold.  Therefore decisions can be made to 

optimize for CBS detection, rather than overall 

classification.  
 

Table 1  Misclassification for differentiating black spot from 

other conditions using SID mapping of hyperspectral images 

 Threshold value 

 Number 0.01 0.02 0.03 0.04 0.05 0.06 0.07 

Black spot 135 135 66 12 3 2 2 0 

Greasy spot 90 0 1 3 8 22 38 53 

Market 90 0 0 0 0 1 1 1 

Melanose 105 0 0 0 0 0 0 1 

Wind scar 105 0 0 1 4 11 19 33 

Accuracy/%  74.28 87.24 96.95 97.14 93.14 88.57 83.24 

Avg. Overall accuracy /% 88.65 

 

During the SAM classification trials, shown in Table 

3, the SAM threshold values were changed from 0.06 to 

0.11 by a 0.01 increment. % (0.09) at the peak, and then 

decreased to about 90%.  SAM showed similar 

classification accuracy characteristics to that of SID, 

however SAM mapping had a higher overall accuracy in 

the tested range.  As shown in Table 4, for the best 

classification result, the classification accuracies for 

‘CBS’ class, and ‘No CBS’ class were 98% and 97.95%, 

respectively.  There were three misclassified samples for 

‘CBS’ class, and eight misclassified samples for ‘Non 

CBS’ class which consisted of greasy spot samples alone.  

The other three non-CBS classes (‘Market’, ‘Wind Scar’, 

and ‘Melanose’) had perfect classification results (100%).  

The plot of reflectance spectra in Figure 4 illustrated that 

greasy spot was very close to those of CBS, which 

contributed to the misclassification.  Imaging parameters 

that will enhance the difference between the CBS samples 

and other confounding conditions such as greasy spot will 

be investigated in future studies.  These will include 

looking into the effect of varying the illuminating source 

and changing the optical device to improve both 

reflectance and resolution of the images. 
 

Table 3  Misclassification for differentiating black spot from 

other conditions using SAM mapping of hyperspectral images 

  Threshold value 

 Number 0.06 0.07 0.08 0.09 0.10 0.11 0.12 

Black spot 135 92 42 14 3 1 1 1 

Greasy spot 90 0 0 2 8 16 29 44 

Market 90 0 0 0 0 0 0 1 

Melanose 105 0 0 0 0 0 0 0 

Wind scar 105 0 0 0 0 2 4 6 

Accuracy /% 525 82.48 92.00 96.95 97.90 96.38 93.52 90.10 

Avg. Overall accuracy /% 92.76 
 

4  Discussion 

In this study, a hyperspectral imaging system was 

developed to distinguish citrus fruits exhibiting symptoms 

of citrus black spot (CBS) from fruits with other peel 

conditions.  Five fruit classes were evaluated; 1) CBS, 

2) greasy spot, 3) melanose, 4) wind scar, and 5) market.  

The fruit samples were collected from a grove near Ft. 

Pierce, FL and hyperspectral images were collected at the 

University of Florida laboratory over a spectral range of 

400 nm to 900 nm.  Reference spectrum of CBS was 

obtained from the ROIs that were manually selected from 

the CBS hyperspectral images. 

Based on the results, a CBS classification accuracy of 

97.9% was obtained using the SAM approach with an 

optimal threshold value of 0.09.  The SID mapping had 

a CBS classification accuracy of 97.14% with a 0.04 

optimal threshold.  All melanose and market fruit 

samples were correctly classified using the two mapping 
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approaches, while the accuracy for greasy spot was about 

91% and wind scar was over 96%.  Overall, the 

performances of both classification approaches in 

detecting CBS along with other peel conditions were very 

good.  However, it was found that SAM was superior to 

SID in threshold sensitivity.  SID’s performance 

deteriorated faster as the threshold value moves away 

from the optimal threshold value, while SAM’s 

classification performance was not greatly affected as the 

threshold was changed.  

5  Conclusions 

A large number of spectral channels in a 

hyperspectral images increase the potential of 

discriminating peel conditions between CBS and others.  

However, it presents challenges to image analysis 

because of the huge volume of data that the hyperspectral 

image usually consists of.  Therefore, the appropriate 

hyperspectral mapping method is needed for further 

improvement of the classification accuracies. 

This research demonstrated that hyperspectral 

imaging combined with an appropriate image processing 

algorithm such as SAM and SID mapping could be used 

for detecting CBS.  The two hyperspectral image 

classification methodologies succeed in taking advantage 

of the spectral information for detecting CBS.  The 

method performs well for images representing different 

conditions: those containing image data with spectrally 

confusing disease conditions and containing small and 

complex structures.  Although this approach may not be 

appropriate for packinghouse applications, it 

demonstrates the potential for hyperspectral imaging to 

be used for identifying CBS among other confounding 

peel conditions.  

Future studies will explore the identification of 

significant wavelengths from the reference spectrum to 

develop a multispectral imaging approach that could be 

applied in real time on packing line applications. 
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