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Abstract: The nutritional status of citrus leaves is very important to the determining of fertilization plans.  The spectrum 

technique is a quick, un-injured method and is becoming widely used for plant nutrient estimation.  The possibility and method 

of using spectrum technique to estimate the nutrient of citrus leaf was explored in this study.  A total amount of 135 leaves 

from the mature spring shoots of navel orange trees (C. sinensis Osbeck, “Newhall”) were collected and randomly grouped into 

two sets of samples: 100 leaves for the calibration set and 35 leaves for the prediction set.  The hyperspectral images were 

scanned upper and lower side of each leaf and then the total nitrogen (N) and phosphorus (P) contents of each leaf were 

measured.  The raw spectra data were extracted to generate average spectra curves, preprocessed with five different methods, 

and was used to build N and P content prediction models.  The performances of the five preprocessing methods, i.e., 

Savitzky-Golay smoothing (SGS), standard normal variate (SNV), multiplicative scatter correction (MSC), first-derivative 

(1-Der) and second-derivative (2-Der), were tested with linear partial least squares (PLS) models and nonlinear least 

squares-support vector machine (LS-SVM) models.  The results showed that the SG-PLS and PLS were the best for the N 

predicting (Rp=0.9049, RMSEP=0.1041) and P (Rp=0.9235, RMSEP=0.0514) in citrus leaves, respectively; the hyperspectral 

image data from leaf‟s upper side predicting better for the contents of N and P.  The study suggested that the hyperspectral 

image data from the upper side of the citrus leaves are suitable for nondestructive estimation of nutrient content. 
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1  Introduction1 

As the most important nutrient elements, excess or 

insufficiency of N and P in leaves will both affect the 
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growth and development of the plants.  Hence, a 

real-time and accurate estimation for their nutrition levels 

is essential to fertilize to help achieving higher yield, 

better quality, and minimize water pollution from 

excessive fertilizers usage
[1]
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Generally, the measuring method of N and P content 

in leaves is chemical analysis, which is costly, time 

consuming and laborious, as well as the leaves will be 

destructed and unsuitable for the continuously monitoring 

in the field.  Therefore, a rapid and nondestructive 

method of N and P content measurements is practically 

needed. 

Hyperspectral imaging technique has been widely 

applied in quantitative and qualitative analysis in 

agriculture, food, medicine and other industrial fields as a 

nondestructive, low cost and reliable detection method
[2-4]

.  

Some studies utilized visible and near-infrared spectral 

reflectance from plant leaves or canopies to detect 

moisture content and nutrient stress.  Furthermore, Min 

et al.
[5]

 focused on developing sensors to predict nutrition 

concentrations from single orange leaf.  Based on the 

previous studies
[6-8]

, they selected chlorophyll and protein 

spectral absorption bands (620-950 nm and 1 400-      

2 500 nm) for the sensor and designed a reflectance 

housing to block environmental noise and ensure single 

leaf measurement.  The nitrogen sensor could classify 

unknown leaf samples into low, medium and high 

nitrogen levels with 70% accuracy.  Considering the 

differences in color, exposure to light during growth, 

stomata distribution, other structural and biochemical 

traits, the upper and the lower sides of the leaves must be 

different in spectroscopy as shown by their respective 

near-infrared spectra
[9-10]

.  The results of multiple 

regression analysis (MRS) of the spectra from both sides 

of tomato leaves showed that the spectra in the lower side 

of leaves were better in predicting chlorophyll content of 

leaves
[11]

. Similarly, better significant positive 

correlations of chlorophyll content with B, B/R, b, b/r 

values of the RGB system, and with the saturation(S) 

values of the HIS color system were observed on the 

lower side than on the upper side of the leaves
[12]

.  The 

results indicated that using images of the lower side of a 

rice leaf was easier to measure the leaf area than using the 

traditional computer vision technology
[13]

.  There are 

quite a few researches had been done on the technique for 

measuring the nutritional status of leaves, but few 

research results had been reported to compare the 

prediction accuracy of hyperspectral images collected 

from the lower and upper side of a leaf. 

The objectives of this study were as follows: 1) 

explore the possibility of using hyperspectral imaging 

technique (400-1 000 nm) to determine the nutritional 

contents (nitrogen and phosphorus) in citrus leaves; 2) 

evaluate the performance of different spectral data 

preprocessing methods, including Savitzky-Golay (SG) 

smoothing, standard normal variate (SNV), multiplicative 

scatter correction (MSC), first-derivative (1st-Der), and 

second-derivative (2nd-Der); 3) determine which side of 

a leaf (upper vs lower ) is better to predict nitrogen and 

phosphorus content, and 4) compare the prediction 

accuracy of linear partial least squares (PLS) model with t 

nonlinear least squares-support vector machine (LS-SVM) 

model.  

2  Materials and methods 

2.1  Sample preparation 

Newhall navel orange (Citrus sinensis Osbeck), a 

leading navel orange cultivar in China, was used in this 

experiment.  The trees were grown in the experimental 

field of the Citrus Research Institute, Chinese Academy 

of Agricultural Sciences, Chongqing, China (29.81°N, 

106.40°E).  Leaves were collected from spring shoots 

that reached full maturity in mid-September, 2013. 

Leaves were kept in ice-box and taken immediately back 

to the lab.  A total of 135 leaves were used and their 

hyperspectral data were collected within 6 h. 

2.2  Hyperspectral image collection  

2.2.1  Hyperspectral imaging system 

Hyperspectral data were obtained by using the 

hyperspectral imaging system (Figure 1).  The system 

was mounted with following components: 1) a 

spectrograph (ImSpector V10E, Finland), 2) an 

electron-multiplying charge-coupled device (EMCCD) 

camera (Raptor photonics, FA285-CL, England), 3) a 

lighting system with two halogen lamps (150 W/21 V, 

Illumination Technologies, Inc, USA), 4) an electric 

controlled mobile platform, and 5) a main-control 

computer.  The first 4 components were enclosed in a 

whole enclosure. 
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Figure 1  Hyperspectral imaging system used in this study 

 

2.2.2  Image acquisition and correction 

Hyperspectral images were collected by the system in 

a wavelength range of 400-1 000 nm with a spectral 

resolution of 2.8 nm.  Leaves were fixed on a black 

cardboard with negligible reflectance and then placed on 

the mobile platform.  During image acquisition, the 

mobile platform for line scanning had an optimized 

velocity of 1.78 mm/s, and the camera exposure time was 

60 ms.  A corrected hyperspectral image was calculated 

using the following equation: 
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c

w d

R R
R

R R





               (1) 

where, Rc was the relative reflectance image; Rs was the 

sample image; Rw was the white image and Rd was the 

dark image.  Rw was obtained using a standard white 

board with 99% reflectance, and Rd was acquired by 

covering the lens with a cap. 

2.2.3  Software 

Image acquisition was controlled by imaging data 

acquisition software (Spectral Image software, Isuzu 

Optics Corp., Taiwan, China) and image correction was 

done using software HSI Analyzer (Isuzu Optics Corp., 

Taiwan, China).  Spectral data were extracted with 

ENVI 4.7 (The Environment for Visualizing Images, ITT 

Visual Information Solutions Corp., USA), and analyzed 

using the Unscrambler software (version 9.7, CAMO, 

ASA, Norway) and Matlab R2010a (The Mathworks, Inc., 

Natick, MA, USA).  

2.3  Measurement of leaf nitrogen and phosphorus 

content 

Following hyperspectral image collection, leaves 

were placed immediately into an oven at 105°C for    

20 min to inactivate enzymes, and then let cooled to 75°C 

to dry until constant weight.  The dry leaves were 

individually ground into fine powder.  The powder of 

each leaf was weighed and wet digested in 5 mL of 

concentrated sulfuric acid at room temperature overnight.  

Sulfuric acid/hydrogen peroxide digestion and 

colorimetric determination was used to determine total 

content of phosphorus and nitrogen in each leaf
[14-15]

.  

Concentrations of nitrogen and phosphorus were 

calculated.  The quantity unit for nitrogen and 

phosphorus contents shown in tables and figures is the 

percentage of dry weight (%). 

2.4  Modeling 

2.4.1  Spectral data extraction 

As shown in Figure 2, A1 and B1 were the RGB (R: 

650 nm, G: 550 nm, B: 450 nm) images of the upper and 

the lower side of the same citrus leaf, respectively.  

Apparently, the upper side (A1) had stronger reflection 

areas than the lower side (B1).  A rectangular region of 

interest (ROI) was manually selected for both sides of 

leaf.  Double thresholds segmentation method was 

employed to obtain the grey images of A2 and B2 by 

adding the corresponding blue band (480 nm) and red 

band (760 nm).  ROIs (within A3 and B3) were extracted 

from areas with gray levels between 0.45 and 0.70.  The 

average reflectance spectrum was calculated from the 

ROIs of both images by averaging the spectral values of 

all pixels.  

 
A1, B1: RGB images (R: 650 nm, G: 550 nm, B: 450 nm) of the upper side and 

the lower side of the same leaf; A2, B2: Sum image of 480 nm and 760 nm 

images; A3, B3: Effective region segmentation of leaf. 

Figure 2  Effective region segmentation of leaf samples 

 

2.4.2  Spectral features of citrus leaves 

The spectrums reflect curves for both the upper and 

the lower leaf sides were extracted from ROI images 

(Figure 3).  The highest difference in reflectance 

between the upper and the lower sides was at 550 nm of 

green wavelength where the lower side was significantly 

higher than the upper side.  This may be related to a 
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lower level of pigmentation in the lower side.  In the 

near-infrared wavelengths of 760-1 000 nm, where a high 

reflective platform was formed, the reflectance of lower 

side was slightly lower than which of the upper side, 

indicating that the leaf spectra could be related to internal 

concentrations of biochemical‟s and to structures of 

leaves
[16]

. 

 

Figure 3  The reflective spectra of upper side and lower side of a 

same leaf 

 

2.4.3  Results of Spectral preprocessing 

Spectral pretreatment is usually performed to 

mathematically treat the extracted spectral data correct 

undesired effects such as light scattering and random 

noise resulting from variable physical sample properties 

or instrumental effects
[17]

.  Results from various 

preprocessing methods, including SG smoothing, SNV, 

MSC, 1st-Der and 2nd-Der, were compared in the 

calibration stage.  SG, SNV and MSC were used for 

de-noising, light scatter correction and light path length 

correction
[18]

.  Derivatives were applied to correct the 

baseline shift
[19]

.  All the preprocessing methods were 

implemented with “The Unscrambler V 9.8” (CAMO AS, 

Oslo, Norway).  

2.4.4  Calibration models 

Both the linear and the nonlinear calibration methods 

were used to retrieve the relationships between spectral 

data (X-variables) and nitrogen and phosphorus content 

(Y-variables).  PLS analysis was used for linear 

calibrations
[20]

 and LS-SVM was used for nonlinear 

calibrations
[21]

.  

For PLS modeling, the input X-variables (spectral 

data) were extracted into new eigenvectors (latent 

variables, LVs) to represent the most relevant information 

in the original spectra.  A full cross-prediction process 

was used to construct a stable and robust PLS model.  

The prediction performance was evaluated by the samples 

in the prediction set.  

The free LS-SVM toolbox (LSSVM V1.5, Suykens, 

Leuven, Belgium) was applied to develop LS-SVM 

models and the details of this method could be found in 

previous studies
[22-24]

.  The method employed a set of 

linear equations using support vectors instead of 

quadratic programming problems to reduce the 

complexity of optimization processes.  The input 

variables were settled by preprocessing methods, and 

radials basis function (RBF) kernel was used as the kernel 

function because it can reduce the computational 

complexity in handling nonlinear correlations and give a 

good performance under general smoothness assumptions.  

The model parameters of gamma (γ) and sigma
2
 (σ

2
) were 

settled by a two-step grid search technique with the use of 

leave-one-out cross-prediction.  The LS-SVM algorithm 

was implemented by Matlab.  

The prediction performance was mainly evaluated by 

following indices: correlation coefficients of calibration 

(Rc) and prediction (Rp), root mean squares error (RMSE) 

of calibration (RMSEC) and prediction (RMSEP).  The 

RMSE was calculated as: 

2

1
ˆ( )

n

i ii
y y

RMSE
n







           (2) 

where, n was the number of samples; and yi and ŷ i were 

the reference and predicted values of the i
th
 leaf, 

respectively. 

3  Results and discussion 

3.1  Nutritional analysis 

All of 135 leaves collected for hyperspectral images 

were individually analyzed for their N and P levels.  one 

hundred of leaves were randomly selected as calibration 

set, and the remaining 35 leaves were used as the 

prediction set.  No leaf was used in both calibration set 

and prediction set.  As shown in Table 1, the distribution 

of nitrogen and phosphorus content in the calibration 

sample set is consistent with that in the prediction sample 

set, and the difference between the two sets is very small.  

This indicates that our data is available for the building of 

predicting models for N and P content in leaves. 
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Table 1  Total nitrogen and phosphorus content in the 

calibration and prediction sample sets 

Nutrient  

element 

Sample  

set 
Leaves 

Mean  

/% 

Min  

/% 

Max  

/% 

Standard 

deviatio

n 

Nitrogen 
Calibration 100 2.53 2.37 3.11 0.2587 

Prediction 35 2.59 2.46 3.06 0.2753 

Phosphorus 
Calibration 100 0.15 0.11 0.17 0.0158 

Prediction 35 0.14 0.12 0.17 0.0155 

 

3.2  PLS models 

Different PLS models were built using the 

aforementioned preprocessing methods and evaluated by 

Rp and RMSEP.  As shown in Table 2, compared with 

other preprocessing methods, SG got the highest Rp and 

the lowest RMSEP and can be considered as the best 

preprocessing method.  The spectral data from the upper 

side of the leaf is better than the lower side.  The 

optimal prediction is achieved by SG-PLS for both 

nitrogen (Rp=0.9049 and RMSEP=0.1041) and 

phosphorus (Rp=0.9235 and RMSEP=0.0514) using the 

spectra data of the upper leaf side.  

3.3  LS-SVM models 

The RBF kernel function was used in LS-SVM 

models.  The model parameters (γ, σ
2
) were determined 

by a two-step grid search and cross-prediction process.  

The search region (γ, σ
2
) was set from 10

−4 
to 10

4
 for 

nitrogen and 10
−3 

to 10
3
 for phosphorus.  And the optimal 

γ and σ
2
 thus obtained were 0.1 and 100, respectively.  

The prediction results for nitrogen and phosphorus in 

both the calibration and the prediction sets using the 

upper and lower leaf side spectral data are shown in  

Table 3.  We can find from the results of LS-SVM 

models that the SG is also the best preprocessing method 

judging by prediction performance.  In comparison, 

results of SG-PLS is better than SG-LS-SVM (Rp=0.8962 

and RMSEP=0.0179) in predicting nitrogen content using 

the upper side spectral data.  In contrast, SG-LS-SVM 

got better prediction results for phosphorus (Rp=0.9146 

and RMSEP=0.2566) using the lower side spectral data, 

but its overall performance is worse than the SG-PLS.  

 

Table 2  Prediction results of nitrogen and phosphorus by PLS using different preprocessing methods 

Source of spectrum Nutrient element Preprocessing mothod LVs 

Calibration sample set Prediction sample set 

Rc RMSECV Rp RMSEP 

Upper side 

of leaf 

Nitrogen 

RAW 7 0.9452 0.1051 0.8935 0.1244 

SG 8 0.9584 0.0915 0.9049 0.1041 

MSC 11 0.5714 0.2539 0.7042 0.2024 

SNV 10 0.5023 0.2653 0.6575 0.2130 

1－Der 6 0.8000 0.1876 0.8272 0.1531 

2－Der 2 0.8354 0.1705 0.8129 0.167 

Phosphorus 

RAW 8 0.9111 0.2377 0.9234 0.0515 

SG 8 0.9109 0.238 0.9235 0.0514 

MSC 11 0.8951 0.2571 0.7838 0.159 

SNV 13 0.9352 0.2043 0.8067 0.1465 

1－Der 6 0.9048 0.2456 0.8822 0.0782 

2－Der 2 0.8222 0.3283 0.839 0.1041 

Lower side 

of leaf 

Nitrogen 

RAW 8 0.8536 0.1595 0.8038 0.1799 

SG 6 0.8368 0.1616 0.8149 0.0306 

MSC 9 0.806 0.1811 0.5757 0.0542 

SNV 9 0.8102 0.1794 0.5527 0.0582 

1－Der 3 0.7649 0.1971 0.7664 0.0419 

2－Der 3 0.7808 0.1912 0.753 0.0382 

Phosphorus 

RAW 8 0.9221 0.2231 0.8341 0.124 

SG 7 0.9187 0.2278 0.8489 0.0118 

MSC 9 0.8703 0.2840 0.6061 0.2268 

SNV 9 0.8704 0.2840 0.6057 0.2278 

1－Der 3 0.8289 0.3226 0.7497 0.1908 

2－Der 6 0.9247 0.2196 0.7603 0.1679 
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Table 3  Prediction results of nitrogen and phosphorus by LS-SVM using different preprocessing methods 

Leaf side Nutrient element Preprocessing method LVs/(γ, σ
2
) 

Calibration sample set Prediction sample set 

Rc RMSECV Rp RMSEP 

Upper 

Nitrogen 

RAW 10/(6.2437, 22.3190) 0.8523 0.1601 0.8933 0.0154 

SG 10/(10.4135, 22.8921) 0.8615 0.1554 0.8962 0.0179 

MSC 3/(0.7229, 10.3051) 0.8593 0.1566 0.7705 0.0389 

SNV 3/(4.9196, 84.3228) 0.8406 0.1658 0.7436 0.0419 

1－Der 6/(1.9683, 24.9862) 0.8608 0.1558 0.8492 0.0210 

2－Der 6/(6.9329, 34.4926) 0.7680 0.1960 0.8283 0.0250 

Phosphorus 

RAW 8/(5.9395, 23.8610) 0.9405 0.1995 0.8714 0.3067 

SG 8/(3.6748, 23.0513) 0.9347 0.2108 0.8706 0.3111 

MSC 5/(16.7512, 129.2642) 0.6731 0.4273 0.6856 0.4506 

SNV 5/(8.4065, 107.0960) 0.6690 0.4301 0.6835 0.4524 

1－Der 8/(5.1178, 29.6687) 0.8910 0.2646 0.8136 0.4077 

2－Der 8/(1.9976, 25.1116) 0.8157 0.3414 0.7368 0.4244 

Lower 

Nitrogen 

RAW 5/(21.5122, 48.7186) 0.8714 0.1506 0.8317 0.1735 

SG 5/(10.4793, 32.0715) 0.8708 0.1512 0.8104 0.1738 

MSC 9/(3.8715, 30.5067) 0.3561 0.2688 0.7200 0.2157 

SNV 5/(9.9384, 47.4192) 0.6273 0.2389 0.5780 0.2247 

1－Der 8/(15.4215, 41.2877) 0.8603 0.1568 0.7839 0.2104 

2－Der 5/(13.2613, 38.9166) 0.7308 0.2100 0.7001 0.2058 

Phosphorus 

RAW 9/(10.4135, 22.8921) 0.9374 0.1101 0.8957 0.1247 

SG 9/(2.2544, 20.4216) 0.9312 0.2236 0.9146 0.2566 

MSC 3/(0.5646, 3.6439) 0.6370 0.4522 0.6906 0.4417 

SNV 3/(0.5885, 4.0266) 0.6317 0.4540 0.6912 0.4414 

1－Der 5/(4.4448, 27.6468) 0.8270 0.3270 0.8395 0.3189 

2－Der 5/(15.3029, 58.9035) 0.8340 0.3195 0.8148 0.3424 

3.4  Comparative analysis of the optimal models 

Comparison of the prediction results nitrogen and 

phosphorus content by using spectrum information from 

both sides of leaves is shown in Table 4.  The best 

prediction results were obtained by using SG-PLS 

(Rp=0.9049 and RMSEP=0.1041) for nitrogen and PLS 

(Rp=0.9235 and RMSEP=0.0514) for phosphorus 

respectively.  

 

Table 4  Optimal modeling for prediction of nitrogen and phosphorus content in leaf 

Leaf side Nutrient element Model LVs/(γ, σ
2
) 

Calibration sample set Prediction sample set 

Rc RMSECV Rp RMSEP 

Upper 
Nitrogen SG-PLS 8 0.9584 0.0915 0.9049 0.1041 

Phosphorus PLS 8 0.9109 0.2380 0.9235 0.0514 

Lower 
Nitrogen LS-SVM 5/(21.5122, 48.7186) 0.8714 0.1506 0.8317 0.1735 

Phosphorus SG -LS-SVM 9/(2.2544, 20.4216) 0.9312 0.2236 0.9146 0.2566 

 

In this study, although the multivariate calibration 

models were used, better prediction results for nitrogen 

and phosphorus content are both based on the upper leaf 

reflective spectrum data.  However, the reflectance data 

showed that the information extracted from the lower side 

of the citrus leaves (Figure 3-B3) was more informative 

than that from the upper side (Figure 3-A3).  The 

possible explanations for the discrepancy would be:  

1) The upper side is smoother with a thicker layer of 

wax, and the immediate underneath palisade tissue 

contains more chlorophyll and is more uniform in cell 

structure.  These can contribute to stability of the 

reflectance spectral data, and thus enhanced the 

prediction accuracy.  In contrast, the lower side is 

rougher, with cilia, oil glands and stomata and sponge 

tissues that contain less chlorophyll and is looser in cell 

structure.  And all the structural uniformity of the lower 

leaf side can reduce the stability of the spectral data and 

the prediction power.  Table 4 showed that the data of 

upper leaf side was suitable for multiple linear 
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regressions analysis (PLS) and the lower side data was 

better for nonlinear regression analysis (LS-SVM).  Our 

results are consistent with the upper leaf side with a 

flatter surface and a higher pigment level which is 

suitable for extracting spectral data for multiple linear 

regression analysis
[11,25]

.  

2) As aforementioned, the pigment content in upper 

side is higher than in lower side
[26]

.  This certain extent 

meant that the content of nitrogen and phosphorous is 

higher in the upper side potion and lower in the lower 

side potion. 

These factors make the upper side spectral data of the 

leaf more powerful and robust than the lower side 

spectral data in building models for predicting leaf 

nutrient content
[27]

.  The best scatter plots between 

predicted values and true content of nitrogen and 

phosphorus are shown in Figure 4 and Figure 5, 

respectively.  

 

Figure 4  The best prediction result for nitrogen by SG-PLS model 

 

Figure 5  The best prediction result for phosphorus by PLS model 

4  Conclusions 

Hyperspectral imaging technique combined with 

chemometrics were used for nondestructive estimation of 

nitrogen and phosphorus content in leaf from both sides 

of the citrus leaves.  The spectral data after preprocessed 

with different methods were compared for their accuracy 

in predicting nitrogen and phosphorus content in leaves 

by using PLS and LS-SVM models.  The best prediction 

model is SG-PLS for nitrogen with Rp=0.9049 and 

RMSEP=0.0138, and PLS for phosphorus with 

Rp=0.9235 and RMSEP=0.0514.  The results suggest: 

1) The correlation is much stronger than several 

reported nitrogen and phosphorus content and its Vis/NIR 

spectra based on Hyperspectral imaging technique studies 

on in-field plants.  Firstly, the hyperspectral data of the 

leaves was obtained by using the hyperspectral imaging 

system in lab which reduced the interference from the 

external environment in the study; secondly, we extracted 

a rectangular ROI which was manually selected with the 

method of double thresholds; thirdly, spectral 

pretreatment was performed to mathematically treat the 

extracted spectral data correct undesired effects such as 

light scattering and random noise resulting from variable 

physical sample properties or instrumental effects; 

fourthly, the set of individual leaves used in our study 

was small, that was why the correlation was much 

stronger than several reported nitrogen and phosphorus 

content and its Vis/NIR spectra based on Hyperspectral 

imaging technique studies on in-field plants;  

2) The linear of PLS model and nonlinear of LS-SVM 

model fit better with spectral data of the upper side and 

lower side of leaves, respectively;  

3) The hyperspectral imaging data from the upper side 

of leaves are better indicators of N and P content of 

leaves than those from lower side.  In conclusion, using 

the hyperspectral data collecting and processing system to 

handle upper side of leaves can successfully get nutrition 

status of citrus leaves.  
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