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Abstract: Traditional environmental control methods for poultry housing which rely solely on environmental factors fall short 
in meeting thermal and physiological needs of the animals.  New methods are needed that factor in the physiological needs and 
responses of the animals in order to maximize well-being of the animals and minimize heat stress.  Deep body temperature 
(DBT) has been shown in the literature to be a strong indicator of heat stress, therefore studies are needed that help us gain a 
deeper understanding of the relationship between this variable and environmental conditions.  The aim of this study was to 
identify the order of the dynamic response of poultry DBT to large step changes in ambient temperature (AT).  Temperature 
steps had to be big enough to take the chickens out of their homeothermic zone.  A total of 46 DBT/AT data sets with 23 
upward AT steps and 23 downward AT steps were obtained using a biotelemetry system, and involving three chickens.  DBT 
responses of individual chickens to step changes in AT were found to have a 0.88 average Pearson correlation suggesting 
consistency in chickens’ responses to the same stimuli (p<0.0005).  The data indicated that DBT responses to AT followed a 
first order behavior in most cases with an average time constant of 1.6 h, and the curve fitting method was used to validate this 
observation.  There was a 0.88 average correlation between DBT model and measured data (p<0.0005).  These results 
indicate statistical significance in the data used and the model derived from it.  In conclusion, it is reasonable to assume that 
the dynamic response of poultry DBT to large step changes in ambient temperature follows a first order model.  Although 
further studies are needed to more fully derive the model, this study provided a stepping-stone towards gaining a better 
understanding of the relationship between DBT and AT, therefore taking us one step closer towards making optimal 
management and risk assessment decisions that are based on physiological needs of the chickens. 
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1  Introduction  

Physiological responses of animals to environmental 
stimuli provide a much-needed insight into how well 
chickens are coping with stressful conditions.  Modeling 
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such responses not only presents an invaluable tool for 
predicting behavior to environmental stimuli, therefore 
informing management and risk assessment decisions, but 
it also offers a unique opportunity to design model-based 
environmental controllers that respond directly to 
real-time physiological needs of the chickens.  Control 
of poultry housing environmental conditions using 
physiological responses from the chickens is an exciting 
new direction in poultry management research[1].  
Hamrita et al.[2] highlighted the limitations of current 
poultry environmental control practices and called for 
new research and practices that incorporate physiological 
responses of the birds.  Fournel et al.[3] discussed 
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research opportunities in environmental control of 
confined animal housing systems through what they 
referred to as precision livestock farming.  This term 
was used to imply that the use of continuous and 
automatic monitoring of physiological behavior among 
other things, contributes to more precise assessment and 
management of the animals’ wellbeing.  Moreover, 
Fournel et al.[4] presented a critical review of the state of 
the art of precision environment control of livestock 
buildings, identifying knowledge gaps, research 
opportunities and technical challenges.  Hamrita et al.[5] 
highlighted advances in biotelemetry, which make it 
possible to monitor chickens physiological responses in 
real-time for the purposes of modeling and control.  
Sellier et al.[6] reviewed methods to monitor animal body 
temperature in precision farming due to the importance of 
this variable.  Hamrita et al.[7] investigated the use of 
variable air velocity for closed loop control of poultry 
deep body temperature.  Studies, which examine and 
model the dynamic impact of environmental conditions 
on chickens’ physiological responses such as deep body 
temperature and heat production are a prerequisite for 
developing physiologically responsive dynamic control 
systems.  In particular, model-based control schemes 
often require compact mathematical models to predict the 
dynamic process response to the controller[8]. 

Several studies have been reported in the literature on 
real-time monitoring of dynamic physiological responses 
of poultry such as DBT[9-13], heat production[14,15] and 
heart-rate[16,17], to changes in ambient stimuli, such as 
light, humidity and AT.  Fewer studies have gone as far 
as modeling physiological responses to environmental 
stressors.  Nascimento et al.[18] developed mean surface 
temperature prediction models for broiler chickens. But 
of particular interest to our study is the research 
conducted by Aerts et al.[8,14,15] in modeling poultry heat 
production.  Aerts et al.[8] identified the order of the 
dynamic heat production response of broiler chickens to 
step changes in temperature and light intensity 
concluding that it was a first order response.  Moreover, 
Aerts et al.[15] studied the dynamic and static responses of 
total heat production of broiler chickens to step changes 
in temperature and light intensity using a dynamic first 

order transfer function model.  The static response was 
quantified by means of the steady state gain.  The 
dynamic response was quantified by means of a time 
constant.  In a later study[4], the same group further 
explored dynamic data-based modeling of heat 
production and growth of broiler chickens for the 
purposes of developing an integrated poultry process 
management system. 

The study described in this paper is part of a 
long-term research project aimed at developing the 
next-generation poultry environmental controller, which 
integrates chickens’ physiological responses into the 
control process.  Of particular interest is the use of 
real-time measurements of DBT responses to ambient 
conditions as a feedback variable to the controller.  A 
preliminary PID-type controller was developed[7] to 
adjust ambient conditions with the goal of maintaining 
DBT below a set-point.  This controller was based 
strictly on real-time measurements of DBT and ambient 
conditions, and although the results were promising, the 
controller was unstable.  In order to improve process 
control, it is necessary to develop dynamic models that 
correlate DBT measurements with ambient conditions[8,19].  
Such models would be used to anticipate future process 
response to control actions, therefore optimizing current 
and future process behavior.  This type of controller is 
called model predictive controller (MPC) and it relies on 
empirically developed compact mathematical models 
developed through system identification[8].  The current 
study is concerned with modeling the dynamic response 
of DBT to large step changes in AT as an essential step 
towards integrating DBT into the controller.  In 
particular, the study presents an empirical approach for 
identifying the order of dynamics that govern the 
relationship between the two variables. To our knowledge, 
this study is the first of its kind to model DBT and to 
suggest that a first order dynamic model represents a 
good approximation of poultry dynamic DBT responses 
to large step changes in AT.  

2  Materials and methods 

This study is part of a larger research project aimed at 
developing a biotelemetry-based environmental controller 
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that responds directly to physiological needs of the 
chickens.  The experimental setup and preparation of 
subjects have been described in detail in a previous 
study[7] and are summarized here for completeness of this 
paper. 
2.1  Care and maintenance of the animals 

In this study, three commercial breed broilers 
acquired at 21 d of age were used.  Throughout the 
duration of the experimental period, chickens were kept 
in an environmentally controlled experimental chamber 

initially at kept 25°C-28°C, and then temperature was 

dropped to 19°C-22°C as the chickens aged.   Lights 
were controlled on a 12 h cycle.  The supplied feed mix 
was poultry crumble, with a manufacturer published 
minimum of 16% protein and 3% fat.  A 2 m long 

Ziggitty Poultry Systems (Ziggitty Poultry Systems, 
Middlebury, IN 46540, USA) nipple-drinking pipe was 

used to provide access to water ad-libitum.   Food was 
also provided ad-libitum.  During experiments, chickens 
were housed in individual wire cages.  Between 
experiments, chickens were housed together in an 
uncovered pen of approximately 3 m2. 
2.2  Biotelemetry 

The biotelemetry system was acquired from Data 
Sciences International (DSI, Data Sciences International, 

St. Paul, MN 55126, USA) and was used to monitor DBT 
of the chickens.  The system consisted of sensor 

implants (TA11CTA-F40) with a 0.1°C accuracy, a 
receiver for each implant, a data exchange matrix, and 
the data acquisition computer.  The data exchange 
matrix/data acquisition system recorded the data from 

the receivers as well as AT and filtered out noise.  At 
24 d old, the chickens were implanted with the DBT 
sensors under veterinary supervision following 
UGA-IACUC approved Animal Use Protocol (AUP 
A200210087).  The implant was inserted into the 
peritoneal cavity.   
2.3  Experiments and data collection 

Chickens were given a week to recover from surgery, 
then the following three weeks were spent evaluating the 
biotelemetry system and determining ambient conditions 
that caused a significant DBT response in the chickens.  
Beginning at 8.6 weeks of age, seven consecutive 
experiments were conducted over the span of 5 weeks 
using the three chickens initially, and then two chickens 
after one died, possibly due to low tolerance for heat 
stress.  In each experiment, chickens were heated using 

a square pulse of AT averaging approximately 10°C and 

lasting for at least 2 h.  The large size of the step was 
selected to drive the chickens out of their homeothermic 
zone.  Table 1 summarizes the test conditions for each 
experiment. DBT, AT, and relative humidity were 
monitored continuously and recorded every 2 min.  AT 
measurements were noisy and showed small fluctuations 
about AT values.  Figure 1 shows an example of such a 
pulse compared to an ideal pulse.  In order to make the 
trends in DBT more evident, data were smoothed using a 
moving average of 9 values (3% of the total data).  
Moreover, erroneous measurements were eliminated 
using an error detection algorithm.  The experiments 
have led to a total of 46 DBT/AT data sets with 23 
upward AT steps and 23 downward AT steps. 

 

Table 1  Experimental test conditions 

Chicken weights /g 
Experiment No/ 
Sum of chickens Age /weeks 

#1 #2 #3 

Ambient temperature 
step (up/down) /°C 

Step-duration up/down 
/h:min Dew point /°C

1/3 chickens 8.6 1790 2420 2110 13/11 4:02/3:08 14-22 

2/3 chickens 9.0 2458 2118 2292 10/9 5:00/2:22 17-28 

3/3 chickens 9.4 2880 2600 2670 11/10 5:10/2:40 16-30 

4/3 chickens 9.9 3240 2780 2900 13/10 5:02/3:16 12-22 

5/2 chickens 10.3 3588  3150 9/9 6:58/2:20 16-26 

6/2 chickens 10.7 3852  3266 8/8 2:00/3:02 14-22 

2nd square wave 10.7 3852  3266 8/8 2:06/3:04 14-22 

7/2 chickens 12.4 4620  3680 8/8 2:02/3:00 15-23 

2nd square wave 12.4 4620  3680 9/9 2:00/2:56 15-23 
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Figure 1  Comparison of ideal and actual air temperatures for 

typical dual-square wave pattern 

3  Results and model analysis 

Figure 2 shows the dynamic DBT responses of 
chickens to AT for the seven experiments.  The graphs 
for experiments 6 and 7 show the responses of only two 
chickens since chicken #2 died during experiment 5.  
Examination of DBT plots under the various AT test 

conditions revealed that DBT responses of each heat 
stressed chicken varied dynamically, predictably, and 
measurably as a response to AT pulses.  DBT rose 
almost immediately as the upward step was applied, and 
started decreasing almost just as quickly as the downward 
step was applied.  One thing that was strongly evident 
from the plots is that regardless of environmental 
conditions, the DBT response trends among the chickens 
were consistent.  This is in agreement with results in 
several previous studies, which have arrived at similar 
conclusions[7,9,10,13].  Scatter plots were developed to 
study the relationship between chicken responses to the 
same environmental conditions, and the results suggested 
a fairly linear relationship.   

 

 
a. Exp #1, 8.6 weeks old-Chicken DBTs  b. Exp #2, 9.0 weeks old-Chicken DBTs 

 
c. Exp #3, 9.4 weeks old-Chicken DBTs  d. Exp #4, 9.9 weeks old-Chicken DBTs 

 
e. Exp #5, 10.3 weeks old-Chicken DBTs  f. Exp #6, 10.7 weeks old-Chicken DBTs 
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g. Exp #7, 12.4 weeks old-Chicken DBTs 

Figure 2  Dynamic DBT responses of individual chickens to step changes in AT 
 

Figure 3 shows example scatter plots for two of the 
seven experiments. Pearson correlation coefficients (a 
measure of the strength of association between variables) 
were also computed for all experiments using Minitab 16 
statistical software and the average coefficient for the 
entire study was 0.84 with a p<0.0005.  This indicates a 

statistically significant positive correlation between 
individual chicken DBTs.  The individual correlations 
for the various experiments are listed in Table 2.  One 
important application of this result is that a small group of 
chickens’ DBTs could be used to estimate the response of 
the flock. 

 
a. Chicken #1 vs. Chicken #3 (both 8.6 weeks old)  b. Chicken #1 vs. chicken #2 (both 9.4 weeks old) 

 

Figure 3  Scatter plots of chickens’ DBT responses 
 

Table 2  Pearson correlations of dynamic deep body 
temperature of individual chickens to step changes in AT 

Age /weeks Chickens 1-2 Chickens 1-3 Chickens 2-3 

8.6 0.91 0.95 0.94 
9.0 0.90 0.86 0.90 
9.4 0.96 0.93 0.94 
9.9 0.83 0.75 0.84 

10.3  0.95  

10.7  0.74  

12.4  0.60  

Test Average 0.90 0.83 0.91 

Experiment Average  0.88  
 

Further examination of the plots in Figure 2 revealed 
that chickens’ responses to upward and downward AT 
steps followed a first order model as follows:  

T(t) = T∞ + (Ti – T∞)e–t/τ

            
(1) 

where, T(t) is the DBT at time t; T∞ is the steady-state 
DBT; Ti is the initial DBT, and τ is the time constant of 
the chicken’s DBT rise.  Time domain curve fitting and 
numerical methods to determine the parameters of an 
assumed model and minimize error between an actual and 
an estimated response is common in the literature[20,21].  
In particular, the authors of these studies performed 
process identification by curve fitting step responses.  In 
this study, the time constant, initial temperature, and final 
temperature constants in the assumed first order model 
were determined to best fit the experimental data.  For 
days when air temperature went through two pulses, Ti, 
T∞ and τ were kept constant in the model.  Similarly, the 
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parameters were kept constant for upward and downward 
step responses.  All three parameters varied from one 
experiment to the next and as the birds aged.   

Figure 4 shows average DBT responses for each 
experiment overlaid with theoretical responses using the 
first order exponential model.  The average response 

was obtained by averaging the responses of the three (or 
in some cases two) chickens for that particular 
experiment.  The τ found to best fit the data varied from 
1.2 h to 2.0 h and was different for each experiment.  
The τ for each experiment is reflected in Figure 4.  The 
average τ was 1.6 h. 

 
a. Exp #1, 8.6 weeks old-group average DBT vs model, 

group average model tau (rising and falling)=1.7 h 
 b. Exp #2, 9.0 weeks old-group average DBT vs model, 

group average model tau (rising and falling)=1.8 h 

 
c. Exp #3, 9.4 weeks old-group average DBT vs model, 

group average model tau (rising and falling)=1.8 h 
 d. Exp #4, 9.9 weeks old-group average DBT vs model, 

group average model tau (rising and falling)=2.0 h 

 
e. Exp #5, 10.3 weeks old-group average DBT vs model, 

group average model tau (rising and falling)=1.2 h 
 f. Exp #6, 10.7 weeks old-group average DBT vs model, 

group average model tau (rising and falling)=1.2 h 

 
g. Exp #7, 12.4 weeks old-group average DBT vs model, group average model tau (rising and falling)=1.5 h 

Figure 4  Comparison of average and first-order model DBTs 
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The Pearson correlation test calculated an average 
correlation of 0.88 between model data and experimental 
data for all tests.  Table 3 shows the individual 
correlations. The corresponding p-value was less than 
0.0005, indicating statistical significance. 

 

Table 3  Correlation between group average DBT and model 
DBT 

Experiment/Age Correlation between Group Average DBT and 
Model DBT 

Experiment1/8.6 weeks 0.94 

Experiment2/9.0 weeks 0.93 

Experiment3/9.4 weeks 0.94 

Experiment4/9.9 weeks 0.91 

Experiment5/10.3 weeks 0.94 

Experiment6/10.7 weeks 0.89 

Experiment7/12.4 weeks 0.60 

Overall Average 0.88 
 

It is difficult to compare our results to other studies in 
the literature since to date, chicken DBT responses to step 
changes in ambient temperature have been measured but 
almost never modeled, with the exception of one study by 
Hamrita et al.[22] in which the authors predicted DBT 
responses to stressful step changes in AT using neural 
networks.  No studies could be found in the literature 
that quantify the order of the dynamics of DBT responses 
to AT.  However, studies conducted by Aerts et al. 
modeling heat production using a first order model[8,15] 
are the only studies of their kind found in the literature, 
and they provide very useful results and observations that 
assist in the analysis of our own results.  Close 
examination of the figures and related results reveals the 
following observations: 

1) Although chickens are very complex living 
creatures with a complex cooling system, and although 
intuitively, a first-order differential equation does not 
seem likely to be a good model of poultry DBT responses 
to step changes in AT, Figure 4 and the correlation 
analysis seem to indicate that it is a decent approximation.  
This is not unlike the study conducted by Aerts et al.[8] in 
which the authors approximated the poultry heat 
production model using first order dynamics.  

2) The same first order model used to fit the measured 
responses of the chickens for both upward and downward 
AT steps led to a closer approximation when the steps 
were going upward.  Figure 4 shows that measured 

downward DBT responses were, almost in every case, 
faster to go down than the model response.  This implies 
that the actual τ in the measurements is smaller than the 
one in the assumed model.  These results lead us to 
believe that the dynamic DBT response to step changes in 
AT is faster when DBT decreases (AT temperature 
decreases) and it is slower when DBT increases (AT 
temperature increases).  Therefore, the DBT dynamic 
response to upward and downward steps in AT is 
asymmetrical.  This type of behavior was observed in 
the study conducted by Aerts et al.[8] to model heat 
production responses to step changes in ambient 
temperature using a first order model.  Their study 
revealed a similar asymmetry in the responses wherein 
responses to downward steps (increased heat production) 
were faster than those to upward steps (decreased heat 
production). 

3) Close examination of the variations in τ as the 
chickens aged did not show a strong relationship between 
this model parameter and the chickens’ age.  Since the 
chickens were acclimating to heat-stress as they grew 
older, it is not possible, based on the limited set of 
experiments conducted for this study, to draw any 
conclusions regarding the relationship between the DBT 
response and age or acclamation.  Similar conclusions 
were reached in the study conducted by Aerts et al.[8] to 
model heat production.   

4) Similarly, no strong relationship could be found 
between the gain of the model and age or acclamation.  
Although it is evident in Figure 4 that the response was 
generally dampened as time progressed (as is clearly 
apparent in the 12.4 weeks response), it is not possible 
with the limited set of experiments to make definitive 
statements about this point.  Note looking at the 
responses of chickens at 9.4 weeks, the amplitude of the 
responses seemed to get un-proportionally higher than 
those obtained in other experiments, suggesting a higher 
gain in the model.  Similarly, note the un-proportionally 
high response of chicken number 2 at 10.3 weeks of age. 

5) It seems reasonable that model parameters may 
vary nonlinearly with age and acclamation, but further 
studies are necessary to better understand and model this 
complex relationship.  Using the model in real time, 
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model parameters would have to be estimated in real-time 
as well.  As a most basic approach, initial DBT, Ti, and 
steady-state DBT, T∞, could be estimated from the initial 
and final ambient air temperatures, Ti,air and T∞,air.  
Figure 5 shows an initial analysis of the data indicating a 
positive correlation of 0.69 between ln(T∞ – Ti) and   
T∞,air –Ti,air, with a p-value of 0.086.  A least squares 
regression has led to the relationship ln(T∞ – Ti) = 
0.19(T∞,air  – Ti,air) – 1.64 with R2

 = 0.47.  This obviously is 
not a reliable relationship, and follow up research is 
needed for improvement. 

 
Figure 5  Comparison of logarithmic model and actual data of 
DBT model temperature difference vs. actual air temperature 

difference 
 

6) Looking at Figure 2, it is easy to note that 
responses to downward AT steps followed a first order 
dynamic more closely than responses to upward steps.  
For instance, looking at experiments conducted at 8.6 
weeks, it is evident in Figure 6 that chicken 2’s internal 
thermoregulation mechanism was working to lower the 
chicken’ DBT and that first order dynamics do not reflect 
these dynamics accurately.  This may suggest that there 
is a highly nonlinear relationship between upward AT 
steps and resulting DBT in certain temperature ranges.  
Sophisticated real-time data analysis would have to be 
applied alongside a model-based controller to keep up 
with data trends that would suggest time varying, higher 
order or nonlinear dynamics.  

7) The study conducted in this paper relies on the 
responses to large AT steps.  For the sake of generating 
the model, the steps were chosen high enough to push the 
chickens out of their homeothermal zone and to produce a 
very noticeable measurable response.  In real conditions, 
it would be very rare for temperature to rise by such a 
large step in such a short period of time.  Further studies 

are needed to investigate the responses of chickens under 
a continuum of step temperature changes that more 
closely mimic real conditions.  Moreover, other factors 
such as humidity and air velocity would have to be taken 
into consideration.  Finally, the experiments conducted 
for this study involved a small number of chickens.  In 
order for the developed model to be useful in real 
conditions, experiments involving larger groups of birds 
would have to be conducted to estimate model 
parameters.  

 
Figure 6  Higher order dynamics of DBT responses to step 

changes in AT 

4  Conclusions 

Results of the study summarized in this paper suggest 
that chickens subjected to large step changes in ambient 
temperature (AT) respond with dynamic deep body (DBT) 
temperature changes that are measurable, predictable and 
consistent with one another.  Moreover, first order 
dynamics are a good approximation of these dynamics.   

Based on 46 data sets obtained using three chickens, 
we determined that the time constant of broiler chickens’ 
(ages 8.6 weeks-12.4 weeks) DBT responses to large 
upward and downward steps in AT had an average of  
1.6 h.  The response was asymmetrical in that downward 
steps produced a faster response (smaller time constant) 
than upward steps (bigger time constant).  Time varying, 
higher order, and nonlinear dynamics were also observed 
under certain conditions suggesting that more 
sophisticated real-time data analysis is required to 
identify and account for these dynamics.  Further studies 
are needed to validate the model using a larger number of 
chickens under more realistic conditions involving a 
continuum of temperature step changes.  The 
development of this model represents an important 
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stepping stone towards better understanding of the 
relationship between DBT of poultry and AT, therefore 
providing an invaluable tool for predicting behavior to 
environmental stimuli and informing management and 
risk assessment decisions.  Overall, these results lay a 
foundation for the development of model-based poultry 
management practices that integrate physiological 
responses of the chickens in order to improve their 
wellbeing.  

 
[References] 

[1] Wathes C M, Kristensen H H, Aerts J M, Berckmans D.  Is 
precision livestock farming an engineer’s daydream or 
nightmare, an animal’s friend or foe, and a farmer’s panacea 
or pitfall?  Computers and Electronics in Agriculture, 2008; 
64(1): 2–10.  

[2] Hamrita T K, Mitchell B.  Poultry environment and 
production control and optimization. A summary of where we 
are and where we want to go.  Transaction of the ASAE, 
1999; 42: 479–483. 

[3] Fournel S, Rousseau A N.  Research opportunities in 
environment control of confined animal housing systems 
through precision livestock farming. CSBE/SCGAB Annual 
Conference, Halifax, Nova Scotia, Canada, 2016.  

[4] Fournel S, Rousseau A N, Laberge B.  Rethinking 
environment control strategy of confined animal housing 
systems through precision livestock farming.  Biosystems 
Engineering, 2017; 155: 96–123. 

[5] Hamrita T K, Paulishen M.  Advances in management of 
poultry production using biotelemetry.  In Modern 
Telemetry, Ondrej Krejcar, ed. InTech, 2011; pp.165–182.  

[6] Sellier N, Guettier E, Staub C.  A review of methods to 
measure animal body temperature in precision farming. 
American Journal of Agricultural Science and Technology, 
2014; 2(2): 74–99. 

[7] Hamrita T K, Hoffacker E C.  Closed-loop control of 
poultry deep body temperature using variable air velocity: A 
feasibility study.  Transactions of the ASABE, 2008; 51(2): 
1–12.  

[8] Aerts, J M, Buyse J, Decuypere E, Berckmans D.  Order 
identification of the dynamic heat production response of 
broiler chickens to step changes in temperature and light 
intensity.  Transactions of the ASAE, 2003; 46(2): 467–473. 

[9] Lacey B, Hamrita T K, Lacy M P, van Wicklen G L, Czarick 
M.  Monitoring deep body temperature responses of broilers 
to changes in ambient temperature and relative humidity 
using biotelemetry.  Applied Poultry Research, 2000; 9(1): 
6–12. 

[10] Lacey B, Hamrita T K, Lacy M P, van Wicklen G L.  
Assessment of poultry deep body temperature responses to 
ambient temperature and relative humidity using an on-line 

telemetry system.  Transaction of the ASAE, 2000; 43(3): 
717–721. 

[11] Aengwanich W.  Effects of high environmental temperature 
on the body temperature of Thai indigenous, Thai indigenous 
crossbred and broiler chickens.  Asian Journal of Poultry 
Science, 2008; 2: 48–52. 

[12] Yang H H, Bae Y H, Min W.  Implantable wireless sensor 
network to monitor the deep body temperature of broilers, 
Software Engineering Research, Management & Applications, 
2007. SERA 2007. 5th ACIS International Conference on. 
IEEE, 2007; pp.513–517. 

[13] Hamrita T K, van Wicken G, Czarick M, Lacy M.  
Monitoring poultry deep body temperature using 
biotelemetry.  Appl. Eng. Agr., 1998; 14(3): 227–231. 

[14] Aerts, J M, Berckmans D, Wathes C M, Berckmans D. 
Dynamic data-based modelling of heat production and 
growth of broiler chickens: Development of an integrated 
management system.  Biosystems Engineering, 2003; 84(3): 
257–266. 

[15] Aerts J M, Berckmans D, Saevels P, Decuypere E, Buyse J.  
Dynamic and static responses of total heat production of 
broiler chickens to step changes in temperature and light 
intensity.  Transaction of the ASAE, 2000; 43(6): 1835–1841. 

[16] Marchant-Forde J, von-Borell E, Langbein J, Després G, 
Hansen S, Marchant-Forde R, et al.  Heart rate variability as 
a measure of autonomic regulation of cardiac activity for 
assessing stress and welfare in farm animals: A review.  
Physiology & Behavior, 2007; 92: 293–316. 

[17] Blanchard S M, Degernes L A, de Wolf Jr D K, Garlich J D.  
Intermittent biotelemetric monitoring of electrocardiograms 
and temperature in male broilers at risk for sudden death 
syndrome.  Poultry Science, 2002; 81:887–891. 

[18] Nascimento S T, Oliveira I J, da Silva A, Campos S, Castro 
M C, Vieira F M C.  Mean surface temperature prediction 
models for broiler chickens—a study of sensible heat flow.  
International Journal of Biometeorology, 2014; 58(2): 
195–201. 

[19] Clark D W, Mohtadi C, Tuffs P S.  Generalized predictive 
control – Part 1.  The basic algorithm.  Automatica, 1987; 
23(2):137–148. 

[20] Zhu Y Q, Rangaiah G P, Lakshminarayanan S.  
Identification of a second order plus dead time and zero 
model for single-input single-output processes using step 
response and curve fitting.  Journal of the Institution of 
Engineers, 2003; 42: 14–20. 

[21] Rohit R, Lakshminarayanan S, Rangaiah G P.  Process 
identification using open-loop and closed-loop step responses.  
Journal of the Institution of Engineers, 2005; 45(6): 1–13. 

[22] Lacey B, Hamrita T K, McClendon R.  Feasibility of using 
neural networks for real-time prediction of poultry deep body 
temperature responses to stressful changes in ambient 
temperature.  Applied Engineering in Agriculture, 2000; 
16(3): 303–308. 


