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Abstract: Precision energy management is very important for sustainability development of solar greenhouses, since huge 

energy demand for agricultural production both in quantity and quality.  A proactive energy management, according to the 

optimal energy utilization in a look-ahead period with weather prediction, is presented and tested in this research.  A 

multi-input-multi-output linear model of the energy balance of solar greenhouses based on on-line identification system can 

simulate greenhouse behavior and allow for predictive control.  The good time allocation of available solar energy can be 

achieved by intelligent use of controls, such as store/retrieve fans and ventilation windows, i.e. solar energy to warm up the air 

or to be stored in the storage elements (wall, soil, etc.) or to be exhausted to outside.  The proactive energy management can 

select an optimal trajectory of air temperature for the forecasted weather period to minimize plants’ thermal ‘cost’ defined by an 

‘expert’ in terms of set-points for the specific crop.  The selection of temperature trajectory is formulated as a generalized 

traveling salesman problem (GTSP) with precedence constraints and is solved by a genetic algorithm (GA) in this research.  

The simulation study showed good potential for energy saving and timely allocation to prevent excessive crop stress.  The 

active control elements in addition to predefining and applying, within energy constraints, optimal climate in the greenhouse, it 

also reduces the energy deficit, i.e. the working hours of the ‘heater’ in the sustained freezing weather, as well as the ventilation 

hours, that is, more energy harvest in the warm days.  This intelligent solar greenhouse management system is being migrated 

to the web for serving a ‘customer base’ in the Internet Plus era.  The capacity, of the concrete ground CAUA system (CAUA 

is an abbreviations from both China Agricultural University and Agricultural University of Athens), to implement web 

‘updates’ of criteria, open weather data and models, on which control actions are based, is what makes use of Cloud Data for 

closing the loop of an effective Internet of Things (IoT) system, based on MACQU (MAnagement and Control for QUality) 

technological platform. 
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1  Introduction

 

Worldwide competition in greenhouses and, in general, 

agricultural production, together with an improved energy footprint 
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mandate, has brought about the problem to a higher level of 

complex sustainability issues and the need for a more holistic 

approach on the energy management aspects.  However, reactive 

control strategies, updating operational decisions based only on the 

current weather condition, limits the exploitation of the long-term 

disturbance trends and the using effectively storage components[1], 

which leads at most to short horizon predictive control scheme[2-6].  

A wealth of research effort is being focused today on providing 

longer than instant time-horizon control strategies for energy 

saving and high productivity, which can average some of the 

parameters of interest in greenhouse cultivation (e.g. temperature 

integration[7,8]) and take preemptory action against the potential 

emergencies.  

Some researches, based on the estimation of energy 

consumption, have obtained optimal operation of heating systems 

in a more energy-efficient way[4-6].  However, they have not taken 

full advantages of the storage components of the solar greenhouses, 

such as the wall or the soil.  The optimal operations of energy 

storage systems in energy management of smart buildings based on 
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model predictive control for longer planning time period have been 

widely studied as a promising solution to solve the natural 

mismatch between energy generation and users’ demand[1,9,10].  

Similarly, this pro-activeness is introduced to energy management 

of solar greenhouses by integrating it with the demand of the plants 

and the utilization of storage components for better time-allocation 

of energy based on the thermal model of the solar greenhouse and 

weather prediction.  Furthermore, the crops’ yield models are 

necessary in some greenhouse management systems and 

greenhouse design[11,12], but the plants’ response referenced cost 

function set in this research overcomes the lack of explicit yield 

functions for many vegetable plants and is parametric so the ‘plant 

expert’ could easily adjust for variety sensitivity and temporal crop 

market value.  In the future, open data and information aggregates 

on the web for a specific crop may become the source for implicit 

modeling, enough for steering the energy management processes.  

Studies on solar greenhouses have been found in China[13-17] in an 

effort to improve the design for better microclimate in winters and 

further structural improving for more demanding varieties or 

cultivation methods, i.e. soilless.  Figure 1 shows an outer and an 

inner view of a solar greenhouse in China.  
 

 
Figure 1  Pictures of modernizing the traditional solar 

greenhouses 
 

Some previous researches we have done on a novel energy 

management method can be found in paper[18].  The system is 

composed of three modules: 1) identification module to update the 

estimated parameters, providing system properties to the predictive 

control; 2) the proactive energy management finds the optimal 

temperature trajectory for a planning period according to the weather 

forecast; 3) for tracking the selected trajectory in next timeslot, the 

controller computes and applies the controls on the simulation and the 

physical system of the solar greenhouse, coming up with the new 

sample for 1) and 2).  Furthermore, this work will be transformed 

to a cloud based web service as a tool for making best use of 

forecasted services, as shown in Figure 2.  This system is 

embedded in Management and Control for Quality (MACQU, 

http://www.geomations.com) and be on testing in the CAUA 

system[31] .  This system is used as an automaton local computer 

integrated management and intelligent control[19] system for 

implementing the ‘knowledge based decisions’.  Knowledge (such 

as the crops specific nutrition requirements or the temperature 

response of crops) constitutes the important aspects of precision  

horticulture[20,21], which upgrade the system more advanced in 

knowledge economy to promote to ‘smart agriculture’.  

 
Figure 2  CAUA system with Proactive Energy Management as 

web services 
 

In this research, the system is advanced by formulating the 

selection of set-points as a generalized traveling salesman problem 

(GTSP) with precedence constraints.  The GTSP has been widely 

studied, since it can be the model for many practical problems in 

industries such as flowshop scheduling and toolpath planning[22-24].  

The optimization issue can be dealed with a genetic algorithm (GA) 

combined with some powerful algorithms for local searching[25-27].  

In this simulation study, we present the pro-active energy 

management concept using a determined weather forecast. The 

management strategies were tested under different selected weather 

conditions, to verify its practicality and advantages. It is yet in 

another real application published by Li et al.[31] where the system 

is advanced to sustainable construct and operational design, under 

exclusive solar energy dependence, by implementing 

forth-weather-based risk management, accounting local weather 

extremes probabilities. The basic proving steps (shown in this 

paper) are the same in terms of the basic pro-active concepts but 

the energy management processes are very different (as shown in 

the difference of the studied cases figures). The second paper[31]  

is driven by optimal utilization of the added safety energy feature 

concept (SE is a specially designed small high density solar energy 

source) as assurance against less probable but extreme weather. It 

also serves as a supplement to the primary heat source (wall or soil), 

when weather probabilities allow, within pre-set acceptable risk figure.  

2  Materials and methods 

2.1  Model development and analysis 

The energy and mass balance of solar greenhouses (SGHs) is 

analyzed in order to examine the methods of keeping indoor air 

temperature acceptable in cold winters, by maximizing the energy 

harvest/loss ratio.  A model for predictive climatic management is 

set accordingly to maximize the temperature effectiveness on 

production value with a better scheduling for timely allocation of 

present energy reserves in the energy storage facilities of the 

greenhouse.  More details can be found in the previous work[18].  

As for the energy balance, instantly and in few days, energy 

harvest rate from solar radiation (Qin) equals to the sum of the 

energy loss (Qout) and the energy stored rates (Qstor) (positive or 

negative): 

Qin = Qout + Qstor                        (1) 
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But in long horizon, the average energy stored in the 

conventional heat storage structure (i.e. wall, soil, plants and air 

with structural elements that have some heat capacity) and the 

energy retrieved from it sum to zero, given that Qstor is a temporal 

in/out process that has a stable averaged value:  

∫Qindt = ∫Qoutdt                          (2) 

For the sake of analysis, Kgh and Agh are introduced as 

relatively the average heat transfer coefficient and the average 

lossy area of the whole solar greenhouse on time period.  Equation 

(2) can be modified as following: 

∫(aA′Irad )dt = KghAgh∫ (Ti – To)dt            (3) 

where, Ti and To are the temperature of indoor air and outdoor air 

respectively; Irad is the incident solar energy; a is the overall 

transmissivity of the solar greenhouse construction to intercepted 

solar radiation relating to the apparent reflectance of the covering 

material; and A′ is the irradiated area of the greenhouse, varying 

along days and seasons because of the changing azimuth and 

horizon angle of the sun.  Therefore: 

rad in
i o

gh gh out

( )d
( )d

aA I t E
T T t

K A P


                (4) 

where, the product of Kgh and Agh can be considered as an energy 

loss factor (Pout), J/°C; Ein is the integral of energy harvest for a 

time period, J.  

Obviously, in order to keep Ti in cold period, the Ein/Pout ratio 

should be maximized.  In particular, Ein can be maximized by 

better design of the shape factors according to the sun azimuth.  

Pout can be reduced by improving the construction of the solar 

greenhouses, i.e. installing thermal insulation material in most 

effective heat loss routes, and optimal operation of ventilation 

windows and night curtain.  Figure 3 illustrates some solar 

greenhouses with different constructure design and management 

methods, and their performance in winters. 

 
Figure 3  Solar greenhouses gain on winter temperature with 

better design and management 
 

In addition, a wiser operation of the heat storage components 

can lead to a better, plants’ diurnal response referenced and energy 

balance.  The energy storage or retrieval procedure will be 

actively changed when the heat exchange rate has been changed 

between the heat storage structure and the air in the greenhouse. 

The heat exchange rate between two objects should be described 

by: 

Q = KAΔT                    (5) 

where, K is the coefficient of heat transfer; A is the contact area;  

ΔT is the difference of temperature between these two objects.  

The efficiency of heat exchange between the air inside and the wall 

on the north should be raised by black plastic tubes installed in the 

north wall, which could increase the contact area, and active 

control of the store or retrieve fans to raise the energy transfer 

coefficient. Under the energy exchange process controlled, surplus 

heat can be stockpiled in the north wall when harvested energy is 

more than the plants’ requirement and retrieved back to warm the 

air in the opposite situation.  Smartness refers to when K is 

modulated by fan to allocate the energy with a final target of best 

plants productivity while cold stress safety is guaranteed.  

In details, the energy flow in the solar greenhouse equipped 

with thermal insulation, the ventilation windows, the curtain, wall 

tubes and energy storage/retrieval fans for active wall storage, and 

the SE (tank, solar collector and pipes under substrate), is depicted 

in Figure 4.  

 
Note: Qrad - energy supply rate from solar radiation; QradSE - energy harvest rate 

of solar collector (SE); QSE-i - energy supply rate by SE; Qloss - the rate of heat 

loss through the cover; Qsoi-i - heat transfer rate to the soil; Qw-i - heat transfer 

rate to the wall; Qv - heat transfer rate due to ventilation; Qsoi-o - heat loss rate via 

the soil with insulation; Qw-o - heat loss rate via the wall with insulation. 

Figure 4  Energy flows and balance of the solar greenhouse 
 

In our system, the average temperature of the air in greenhouse 

(Ti), of the north wall (Tw) and of the soil (Tsoi) is measured and 

regarded as the objects being analyzed and controlled.  Climatic 

conditions including the air temperature outside (To), the wind 

speed (Vwd) and solar radiation (Irad) are the inputs out of control 

and becoming disturbance variables.  Some control variables are: 

uf is the control input (Pulse Width Modulation) for the store or 

retrieve fan; uv is the control input for the ventilation windows 

representing the open state (angle); uc is the control bit for the 

curtain indicating its location (uc=0 if the curtain rises completely; 

uc=1 if the curtain fell completely).  The curtain effects Qrad by 

blocking the sun and Qloss by changing the heat transfer 

coefficient of the cover.  As a result, uc is calculated by 

maximizing (Qrad, Qloss). 

The model for control purpose needs to be quasistatically linear, 

simple and complete, while the environmental factors must be 

considered together in a coupled system.  Therefore, a 

Multi-Input-Multi-Output (MIMO) model with variables defined 

above is set for predictive control, which can be found by on-line 

system identification: 
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    (6) 

where, Irad(k)′=Irad(k)[1–uc(k)] indicating the energy from solar 

radiation through the plastic cover,  it may be zero if the curtain 

was totally down which could block the sun light (uc=1).  In order 

to identify the system as a linear model, some inputs need to be 

preprocessed and the parameters are estimated by recursive 

weighted least squares estimate (WLSE) algorithm[28], as studied in 

the previous work[18]. 
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2.2  Proactive energy management 

2.2.1  Active energy management 

To manage the time-allocation of energy at appropriated rate, 

active energy storage/retrieval process is achieved by managing the 

heat transfer rate between the inside air and the north wall while 

active energy discharge is realized by ventilation.  An example of 

better time-allocation of energy is shown in Figure 5.  More 

energy harvest is possible with the active solar greenhouse and 

better time-allocation of energy and high night Ti, compared to 

passive solar greenhouse.  With the energy retrieval/storage fan, 

the redundant energy in the air can be stored into the wall for spare, 

which reduces the heat stress in the meantime.  This stored excess 

heat can be retrieved later to improve the thermal environment for 

the plants. 

 
Figure 5  Better energy harvest and store/retrieve with active 

energy capture 
 

A flow chart of the proactive energy management is shown in 

Figure 6.  The control signals are calculated according to the 

set-points as the target values for Ti of different operations, 

including the set-point of energy retrieval/storage (Tir/Tis) and of 

ventilation (Tiv).  Obviously, only when Ti > Tw, the heat can be 

transferred and stored from the air into the north wall.  In this 

situation, the fan can be turned on for energy storage if Ti > Tis.  

Similarly, if Ti < Tw, the energy retrieval could happen. Based on  

the same argument, the energy is retrieved from the north wall 

when Ti < Tir,  to maintain Ti until Tw decreases down to Ti by the 

working fan which means the energy stored in the wall is used up.  

In order to deal with the hot stress, when Ti > Tiv, the window is 

opened for ventilation. 

 
Figure 6  Flow chart of the proactive energy management and 

conditions-actions 

2.2.2  Cost function 

For set-points selection, a cost function is needed to evaluate 

the crop stress over a finite horizon.  In order to define a suitable 

cost function, some plants sensitivity points about plants 

production function temperature sensitivity must be supported by 

the expert experience and rules.   Alternatively, it will be 

determined by the online service from the website inspecting the 

solar greenhouse management.  These plants sensitivity points are 

exemplified here and illustrated by Figure 7.   

 
Note: Tcmin-Big crop loss, the crop low failure temperature point; Tclow-Cold yield 

loss, the crop minimum appropriate temperature point; Tchigh-Hot yield loss, the 

crop maximum appropriate temperature point; Tcmax-Big crop loss, the crop high 

failure temperature point, between Tclow and Tchigh, no loss.  

Figure 7  Segmented temperature range and the crop plants’ 

sensitivity points 
 

Although in this research, the temperature between Tclow and 

Tchigh seemed to have similar effect on the growth of the plants, the 

gap between [Tclow, Tchigh] is something that also allows us a 

freedom for a better energy saving and may be decided according 

to the plants’ sensitivities and crop value[31].  If the yield and 

value is given by the model of production and market, the 

Pontryagin’s maximum principle can be used[30] for self-guided 

decision making system rather than expert advice assessed which is 

preferred here.  Further prosperity of the cost function can put the 

humidity within consideration, which will also need a complete 

greenhouse climate model. 

In the proactive energy management, the cost value in a finite 

prediction horizon N is optimized, but only the control signals of 

current timeslot is implemented, so if anything in the weather 

prediction is changed, the system can reevaluate and adjust in time 

for the next step.  N can be several days depending on local 

weather variability index.  With the air temperature (TiPrd) and the 

wall temperature (TwPrd) predicted with weather forecast and 

parameters from system identification, the cost value to minimize 

can be assessed by: 

2 2
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   (7)  

where, function []+ = max(,0),  all the weights are non-negative 

variables.  Whl is the weight for high temperature plant suffer loss, 

disease risk and heat stress when TiPrd(n) > Tchigh.  Wcl is the 

weight for low temperature plant suffer loss, disease risk and cold 

stress when TiPrd(n) < Tclow. J dramatically rises when TiPrd drops 

near TcTL which leads to total crop loss, weighted by WTL, so it is 

meaningless if J shows the continuous growth when TiPrd(n) < TcTL.  

α is a small value preventing denominator to be zero.  TwPrd(N) is 

the temperature of the north wall at last sample in the predictive 

horizon.  Wws, the weight of the north wall storage, is the energy 

value normalizing factor which could be inversely affected by the 

weather inside, the heat insulation affection and the different stages 

of the plant in greenhouse.  Higher Wws speeds the system to be 

more conservative, showing that the values of energy stored are 

more important relative to the output damaging. In conclusion, the 

stress of crops is diminished while more spare energy is stored in 

the wall for the following days with the best optimum set-points 

(Tbr, Tbs and Tbv) found by minimizing J.  A surface of cost values 

(after normalization) is in Figure 8.  



78   January, 2018                         Int J Agric & Biol Eng      Open Access at https://www.ijabe.org                         Vol. 11 No.1 

 
Figure 8  Normalized cost function surface for seeking 

optimal set-points 
 

J can be improved to be better weighted to local weather 

behavior as well as possible disease preferences epidemics.  The 

different parameters lead to different selections of the set-points 

which may match better some plants’ preference and tolerance to 

the temperature conditions.  Some tests are conducted under the 

same weather condition but with different parameters (see Table 1).  

As shown in the comparison between Test 1 and Test 2, the larger 

Whl decreases Tbv, which can protect the plants sensitive to high 

temperature.  The comparison between Tests 2 and 3 shows that if 

plants suffer high risk with low temperature, parameter WTL should 

be larger for shooting the case near TcTL, which leads to a smaller 

Tbr.  It’s because that lower Tbr can utilize the limited energy from 

the wall more slowly to maintain Ti in the suboptimal range for a 

longer time. 
 

Table 1  Comparison of chosen set-points with different 

parameter in cost function 

Items 

Parameter setting Chosen set-points 

TcTL/°C Whl Wcl WTL Wws Tbr/°C Tbs/°C Tbv/°C 

Test 1 4 0.05 0.01 1 0.1 17.2 16 24.5 

Test 2 4 0.01 0.01 1 0.1 18 16 26 

Test 3 4 0.01 0.01 10 0.1 17.2 16 26 
 

2.2.3  Problem formulated as a generalized traveling salesman 

problem 

The available energy, including the harvested energy from 

solar radiation and the actively stored energy, is used according to 

the set-points to meet the plants’ thermal demand against the 

outside temperature.  As the ratio of the available energy to the 

required energy is varying with the changing weather, the situation 

that the stored energy is far beyond the needed energy in a sunny 

day and hardly enough in a cloudy day can happen in two days of 

the planning period.  Therefore, the set-point found for the whole 

planning period (several days) may not be a precise and the 

optimum solution addressing the situation in the next timeslot, 

especially for the fluctuated weather. 

In order to solve this problem, the optimization has been 

improved by dividing the planning period into segments to 

independently find different set-points for each energy 

management process.  The set-points are selected based on each 

segment respectively, called segment-variant set-points (SV), 

compared to the segment-invariant set-points (SI) as a constant 

value taking care of the whole planning period in the previous 

work[18].  

The selection of optimal set-points is formulated as a GTSP.  

The travelling salesman problem is to find the shortest possible 

route that visits each city exactly once and returns to the origin city, 

given a list of cities and the distances between each pair of cities.  

In a GTSP, cities are grouped into several mutually disjoint 

districts, and the traveling salesman has to visit one city in each 

district following the shortest route.  As for the selection of the 

optimal set-points in the proactive management, the weather 

forecast period is divided into non-overlapping and successive time 

segments which can be considered as the districts.  It can be done 

according to the sunrise indicating new energy supply available or 

the comparison between the required and available energy 

determining whether energy storage or retrieval is needed in this 

time segment.  

Let the segment-variant set-points (Tis.SV, Tir.SV, Tiv.SV) to be set 

into a vector Tsp.  ,

sp

c dT  is the cth candidate set-points vector in the 

segment d, which can be considered as the cth city in the district d 

(c = 1, 2, …, C;  d = 1, 2, …, D; where C is the total number of 

the set-points vectors in the searching space and D is the total 

number of segments in the planning period).  ,

iPrd

c dT  is the predictive 

temperature with the operations according to set-points ,

sp

c dT .  The 

last sample of the predictive air temperature in the previous 

segment ( , 1

iPrd

c dT
  ) is needed as the initial state to predict ,

iPrd

c dT .  A 

cost value, calculated according to ,

iPrd

c dT , can be considered as one 

possible distance from the c’th city in district d-1 to the cth city in 

district d.  As the iteration for segments goes on, the minimum 

cost in the whole planning period can be achieved by minimizing 

the total distance traveling along districts.  Therefore, the 

optimization of set-points is like a GTSP but with two important 

differences: since the segments in the planning period need to be in 

time order, the salesman has to visit one city (set-points) in each 

district (time segment) while obeying the precedence constraints 

among the districts without returning back to the starting point.  

The metaphor is depicted in Figure 9. 

 
Figure 9  Instance of the GTSP 

 

Genetic algorithms (GAs), widely used amongst modern 

heuristics for optimization problems, can be effective solution 

methods to solve this problem.  The principles of GAs are well 

known: it begins with a population of randomly generated solutions  

which is picked out according to the fitness and evolved toward 

better solving process by mutation and cross over; the generation 

process will reach the termination qualification when the fittest 

individual is as the solution to the optimization problem. In this 

case, various combinations of the set-points for the weather 

forecast period are considered as the individuals with different 

chromosomes; and the fitness is negatively correlated with the cost 

value.  Furthermore, two termination criteria, if fixed number of 

generations is reached or several successive iterations no longer 

produce better results, are combined as the terminating condition.  

The flowchart of the optimization problem solved by a GA is in 

Figure 10. 
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Figure 10  Flowchart of the optimization problem solved by a GA 

 

An example of the improved performance is shown in Figure 11 

with the comparison between the optimal set-points for energy 

retrieval (Tbr) found by the two policies and the resultant predictive 

temperature (TiPrd).  The weather forecast indicates that the 

temperature and the solar radiation will experience a sudden rise in the 

third day. 

 
Figure 11  Predictive trajectories comparison under fluctuated 

weather 
 

Tbr.SV indicates the trajectory of segment-variant set-point 

independently found to take care of each separated energy retrieval 

process, while Tbr.SI is the optimal segment-invariant set-point 

sustained in a constant value for the whole planning period.  For the 

optimization of Tbr.SI, the cost value of the whole period can be 

minimized by decreasing the set-point to take care of the shortage 

of stored energy in the first two segments or by increasing the 

set-point to use a greater amount of the redundant stored energy in 

the Segment III.  In this case, increasing Tbr.SI is a more effective 

way according to the weather forecast.  However, both of the 

solutions can be applied with the Tbr.SV, which reduces the 

predictive cost from 163.45 to 159.15 compared to the 

performance of Tbr.SI.  This indicates that Tbr.SI, found as a 

constant value for the whole predictive period, may not be the 

optimal set-points of the next timeslot, especially with dramatic 

change of weather.  Only the first segment of the trajectory is 

implemented by the controllers as the trajectory will be 

recomputed with the next data sample. 

3  Results and discussion 

3.1  Performance of GA 

The convergence rates and performance are shown in Figure 

12 by the cost values in the iteration process (negatively correlated 

with the fitness in the GA).  The total population of a generation is 

300, and 35 inferior individuals are replaced by better ones in the 

equal number. 

 
Figure 12  Performance of GA 

 

3.2  Performance of the controllers 

The parameters in the tests are set as follows: the N is the 

weather forecast period, which is set to be 3 days. The sampling 

interval is set to be 10 min.  The parameters in cost functions for 

the proactive energy management are:   Whl = 0.02; Wcl = 0.01; 

WTL = 50; Wws = 2.  Figure 13 shows the performance of the 

controllers.  

 
Figure 13  Performance of the control strategies 

 

The fan controlled by the machine using the PID algorithm, 

which is trying to keep Ti at Tbr or Tbs.  However, Ti cannot stay at 

Tbs in the processing of the energy storage, because the huge energy 

income from adequate solar radiation and the tiny energy exchange 

between the air indoor and the wall of the north; Ti declines with Tw 

in the heat retrieval process owning to the limited energy in the 

north wall. 

3.3  Simulation studies under different weather 

For testing, the needed heating time, indicating the duration 
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that Ti is lower than the low failure temperature point (Tcmin), is an 

important factor to evaluate the performance of different energy 

management methods.  Besides, as regards the crops’ productive 

environment, a capability of climate quality function g(t) is defined.  

g(t), is the area (°C·h), related to the essential safety energy, 

inclosed by the temperature curve Ti and the line of y=Tcmin, it 

defined in the following Equation (8): 

end

stt

( )

i c min i c min1 ( )
( ) [ ( ) ]d   ( ( )) )

t mm M

m t m
g t T t T t T t T




        (8) 

where, M is the whole number of the pieces of cycle time, which Ti 

should be smaller than Tcmin, also tstt(m) and tend(m) are the starting 

and end point of the time slice m respectively.  g(t) as defined 

above should prevent  damaging effects on crops productivity or 

the first level cold stress (below Tcmin).  

Lots of experiments with different control policies were 

implemented based on some special conditions, like warm and cold 

weather.  The different control policies are set as follows: all the 

experiments are conducted based on the same situation of the 

curtain operation according to the heat balance by the coverage; as 

for the ventilation and wall storage management, experiment 

identifiers ‘P’, ‘F’, and ‘N’ representing ‘ventilation and wall 

storage operation with proactive energy management’, ‘both 

operated with fixed set-points’ and ‘inoperative ventilation and 

energy retrieval/storage fan’ respectively.  The settled set-points 

are: Tis = Tir=Tclow = 16°C, Tir = Tiv = Tchigh = 24°C. 

Example the winter days (from Day-1, Day-2 to Day-3) were 

picked out to show for each situation how the control policies have 

a profound effect on the thermal condition inside the solar 

greenhouse.  For the purpose of analysis, the optimal set-points 

would be replaced in this experiment every day, instead of every 

timeslot.  The temperature data of weather and the selected 

set-points from the proactive energy management of 3 d are shown 

in the Table 2.  Figure 14 shows the test results and Table 3 

presents some detailed statistics. 

 

Table 2  Temperature of the weather and selected set-points 

by proactive policy  

Items Day-1 Day-2 Day-3 

Average To /°C –5.0 –13.0 –20.0 

Maximum Irad /W·m
-2

 350 350 260 

Set-points /°C 

Tbr.P Tbr.P (1) = 18.4 Tbr.P (2) = 18.0 Tbr.P (3) = 12.8 

Tbs.P Tbs.P (1) = 14.0 Tbs.P (2) = 9.0 Tbs.P (3) = 8.0 

Tbv.P Tbv.P (1) = 26.5 Tbv.P (2) = 30.0 Tbv.P (3) = 30.0 

 
a. Indoor air temperature 

 
b. Wall temperature 

Figure 14  Simulation of air and wall with different control 

policies 
 

Table 3  Summary of the simulation results 

Tests Highest Ti /°C Lowest Ti /°C Average Ti /°C Vent hours/h Needed heating time/h g(t)/°C·h Cost alue 

No vent and active wall (N) 35.47 6.74 18.28 0.00 4.33 3.03 225.88 

Fixed set-point policy (F) 26.56 7.11 17.05 13.00 2.67 1.07 106.96 

Proactive management (P) 29.11 8.87 18.19 5.50 0.00 0.00 85.36 

 

Figure 14 shows that Ti.N is the worst performance owing to 

without ventilation and proactive heat storage on the wall.  As in 

Table 3, the installation of ventilation windows, energy 

retrieval/storage fan and the tubes in the north wall can realize a 

better thermal surrounding inside for the plants growing, which 

reduces the cost value from 225.88 to 106.96; and the proactive 

energy management further improves the cost to 85.36 by the better 

time- distribution of the heat. 

In the simulation test, Day-1 represents a warm and sunny day 

in winters, so the key consideration is the crop yield stress caused 

by high temperature.  The ventilation is verified to decrease the 

heat stress more effectively by reducing the highest Ti in Day-1 

from 35.47°C to around 27°C.  

There is sufficient solar radiation in Day-2, and it’s important 

to keep more stored energy since the coming bad weather.  

Therefore, proactive energy management choses the Tbv.P(2) to be 

30.0, higher than the fixed set-point (Tiv.F=24°C), which leads to 

less energy loss from ventilation and thus more spare heat stored in 

the north wall indicated by the fact that Tw.P is higher than Tw.F.  

The comparison of the proactive set-points in Day-1 and Day-2 

shows that the proactive energy management optimizes the thermal 

environment while taking the potential emergencies into 

consideration.  The proactive set-point of wall energy storage is 

decreased from 14°C in Day-1 to 9°C in Day-2 to allow more 

energy saved in the wall; and the proactive set-point of ventilation 

is increased from 26.5°C in Day-1 to 30°C in Day-2 to keep more 

energy inside the greenhouse for the coming cold days.  

Furthermore, since the proactive energy management allows no 

ventilation in Day-2, we can notice from the comparison between 

Ti.P and Ti.N that the hot stress can also be reduced by the wall 

energy storage process.  

In Day-3, the weather is critical cold and obviously the solar 

radiation is not adequate.  Ti.P and Ti.F compare with one another 

and show that the proactive energy management is more effectively 

by using the north wall storage, i.e. increasing the lowest 

temperature from 7.11°C to 8.87°C.  It is attributed to the more 

spare energy stored in Day-2 and a wiser utilization of the available 

energy with a lower Tbr.P(3) as 12.8°C.  Although the higher fixed 

set-point (Tir.F=16°C) controls the fan to retrieve the heat earlier to 

keep Ti.F nearby to the optimal temperature at the beginning of the 
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test, Ti.F drops down to a lower point more quickly because the wall 

storage is short and limited, but Ti.P can be insisted for a longer 

time on the suboptimal span. 

4  Conclusions 

An utility energy management method is developed for long 

term solar energy utilization. It also minimized the potential plant 

stress efficiently by choosing an optimal trajectory for the 

forecasted weather condition according to the web customer 

support service. It is tested currently on CAUA system (a SCADA 

system) to promote the energy sustainability of the Solar 

Greenhouses.  

The simulation study shows that with analog control on 

ventilation and active energy storage/retrieval by a fan, the 

proactive energy management can gain on climate cost, and reduce 

the crop stress caused by high and low temperature.  In an 

example with warm weather and sufficient solar radiation, the 

proactive management can set the air temperature inside the 

greenhouse within a best favorable range for the plants.  As for an 

extreme cold condition, it was proved that the proactive 

management, compared to conventional automation, increases the 

minimum temperature from 6.74°C to 8.87°C, which in other 

marginal conditions can save the whole crop.  Therefore, it is an 

effective and economical energy management mechanism for 

saving energy and improving productivity with only additional 

active storage capacity (a small fan and wall tubing to actively 

store and retrieve energy from wall storage) and a small 

constructive investment.  Furthermore, the model predictive 

control, optimizing the trajectory in a finite prediction horizon, can 

take preemptory actions against the potential emergencies, by 

updating control signals with every data sample which allows 

timely utilization of a more recent forecast for regularly optimized 

control pro-actions.  The introduction of the generalized traveling 

salesman problem solved by a genetic algorithm fits the 

optimization problem with a more efficient method and a broader 

searching space, and therefore brings a better tuned instant 

operation and a higher tolerance to fluctuating weather.  

The study is ready to transfer the control policies to a web 

service for managers of solar greenhouses, and also to be open for 

receiving other web services or open data, e.g. market value 

predictions or micro-scale weather forecasts.  It is a realization of 

the real advantage of the IoT modern approaches for a web 

hypermarket that can provide practical benefits to farmers and 

consumers.  Future ground works focus on improving the system 

for its value of sustainability, investment cost and farmer economy 

by introducing safety energy as a special storage to meet the energy 

needs under extreme non-probable weather while taking the 

weather-related risk into account. 
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Nomenclature 

Disturbance variables 

To Outdoor air temperature, °C 

Irad Solar radiation, W·m-2 

Vwd Outdoor wind speed, m·s-1 

Other symbols 

T Temperature, °C 

W Weight in cost function 

Q Energy exchange rate, W 

State Variables 

Ti Indoor air temperature, °C 

Tw Wall temperature, °C 

Tsoi Soil temperature, °C 

Subscript 

c Crops 

i Indoor air 

o Outdoor air 

soi Soil 

r Energy retrieval 

s Energy storage 

v Ventilation 

f Energy retrieval/storage fan 

Prd Predicted with expected weather 

ws Wall storage 

hl Crop hot loss 

cl Crop cold loss 

TL Crop total loss due to extreme cold 

SV The segment-variant set-points 

SI The segment-invariant set-points 

Control inputs 

uc Control signal for curtain 

uf Control signal of storage/retrieval fan 

uv Control signal of ventilation window 

Energy management set-points 

Tir Wall energy retrieval set-point, °C 

Tis Wall energy storage set-point, °C 

Tiv Ventilation set-point, °C 

Tbr Best Tir chosen by energy management 

Tbs Best Tis chosen by energy management 

Tbv Best Tiv chosen by energy management 
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