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Abstract: This study was carried out to analyze the spectral reflectance response of different nitrogen levels for corn crops.  
Four different nitrogen treatments of 0%, 80%, 100% and 120% BMP (best management practice) were studied.  Principal 
component analysis-loading (PCA-loading) was used to identify the effective wavelengths.  Partial least squares (PLS) and 
multiple linear regression (MLR) models were built to predict different nitrogen values.  Vegetation indices (VIs) were 
calculated and then used to build more prediction models.  Both full and selected wavelengths-based models showed similar 
prediction trends.  The overall PLS model obtained the coefficient of determination (R2) of 0.6535 with a root mean square 
error (RMSE) of 0.2681 in the prediction set.  The selected wavelengths for overall MLR model obtained the R2 of 0.6735 and 
RMSE of 0.3457 in the prediction set.  The results showed that the wavelengths in visible and near infrared region (350-  
1000 nm) performed better than the two either spectral regions (1001-1350/1425-1800 nm and 2000-2400 nm).  For each data 
set, the wavelengths around 555 nm and 730 nm were identified to be the most important to predict nitrogen rates.  The 
vogelmann red edge index 2 (VOG 2) performed the best among all VIs.  It demonstrated that spectral reflectance has the 
potential to be used for analyzing nitrogen response in corn. 
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1  Introduction  

The United States Department of Agriculture (USDA) reports 
that approximately 8.1 million acres of corn were planted in 
Minnesota in 2015.  These yields resulted in 1.43 billion bushels 
of corn grain, 9.68 million tons of corn silage, and 4.8 US billion 
dollars[1].  Nitrogen is an essential nutrient for corn production but 
is oftentimes limited even in the highly productive soils of 
Minnesota[2].  Consequently, the application of nitrogen is critical 
for optimizing crop yield and quality[3].  Applying too much 
nitrogen leads to production inefficiencies while applying too little 
can result in significant yield loss.  Regardlessly, there is a 
potential for substantial financial loss.  The balance between 
applying suitable amount of nitrogen for optimal production while 
minimizing over-application to avoid associated potential 
environment pollution is key to a long and short-term sustainability 
of corn production[4].  It is important to understand the nitrogen 
status in corn crops at different growth stages to improve nitrogen 
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application efficiency, increase financial benefits and contribute to 
a more sustainable agriculture practice[5-7].  Currently, most 
farmers apply a uniform rate of nitrogen fertilizer in the fall prior to 
planting corn.  During the period from early fall to late spring, 
there is significant risk of surface and subsurface nitrogen loss, 
especially in spring due to excess soil moisture from snow melt and 
rainfall.  To reduce nitrogen runoff, variable rate of nitrogen 
application is recommended both in time and space to replace 
single uniform nitrogen applications in the fall.  Nitrogen 
deficiencies in corn vary spatially and temporally in agricultural 
fields, leading to significant yield loss if not treated in time.  Early 
detection of these deficiencies (mid to late June) while the crop is 
actively growing can be followed by a variable rate nitrogen 
fertilizer application to prevent yield loss and avoid adverse 
environmental effects.  However, early detection of nitrogen 
deficiencies (detection of nitrogen rates) is challenging because of 
the limitations of human labor. 

The traditional single rate nitrogen application prior to corn 
planting (most often based on arbitrary yield goals) may not meet 
the needs of the crop during the growing season, ultimately 
resulting in inefficiencies and negative environmental 
consequences[4,8,9].  Obtaining in-season information on plant 
nitrogen status is essential to improve production efficiency, avoid 
nitrogen leaching, and increase economic gains[10].  Remote 
sensing techniques take advantage of the optical properties of the 
corn plant to determine corn nitrogen status.  Using this 
information will help to make better decisions[11].  Previous 
studies have focused on nitrogen status using spectral or 
hyperspectral techniques.  Vigneau et al.[3] estimated the nitrogen 
content in wheats based on the reflectance information in the 
spectral range of 400-1000 nm.  The researchers used two 
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different sets of data and achieved a good prediction result 
(R2=0.875).  Min et al.[12] predicted the nitrogen content in citrus 
trees using the spectral reflectance in 400-2500 nm. Six important 
wavelengths (448 nm, 669 nm, 719 nm, 1377 nm, 1773 nm and 
2231 nm) were identified from the whole wavebands. Based on the 
selected wavebands, the R2 for the validation set of stepwise 
multiple linear regression was 0.839.  Albayrak et al. [13] detected 
nitrogen content in Sainfoin Pasture using a portable 
spectroradiometer covering the wavelengths of 325-1150 nm.  
The prediction results (R2) of nitrogen were between 0.85 and 0.87 
for stepwise regression.  In this study, we focus on four different 
nitrogen levels (0%, 80%, 100% and 120% of the best management 
practice, BMP) prediction using spectral reflectance.  The spectral 
reflectance data were collected at different dates in order to 
produce robust and reliable results. 

According to Minnesota Department of Agriculture, BMP for 
nitrogen was first described in 1980s-1990s.  It is defined as 
economically sound, voluntary practices that are capable of 
minimizing nitrate-nitrogen (NO-

3-N) contamination of surface and 
ground water[14].  In this study, spectral reflectance data of corn 
crops before tasseling and after tasseling (reproductive stage) were 
utilized to evaluate different nitrogen response.  This approach 
allows the application of nitrogen fertilizer based on a 
non-destructive detection method, leading to more efficient 
nitrogen use and less contamination of surface and ground water. 

The specific objectives were to: (1) find the relationship 
between four different nitrogen levels and spectral reflectance data; 

(2) select useful wavelengths and vegetation indices (VIs); (3) 
achieve the linear equations for nitrogen values; and (4) compare 
the performance of different prediction models. 

2  Materials and methods 

2.1  Flowchart 
The main steps of this work were shown in Figure 1.  First, 

spectral reflectance was acquired from corn rows within each of the 
four nitrogen fertilizer levels on six separate dates.  Spectrum 
noise at the wavelengths intervals of 1350-1425 nm, 1800-2000 nm 
and 2400-2500 nm were deleted.  Partial least squares (PLS) 
models were built based on the remaining wavelengths.  To 
identify the wavelengths that are the most important for prediction, 
principal component analysis-loading (PCA-loading) was carried 
out to select significant wavelengths in this study.  Using the 
selected wavelengths, multiple linear regression (MLR) models 
were established.  Each model was evaluated using the values of 
coefficient of determination in calibration (Rc

2) and prediction (Rp
2) 

as well as root mean square error in calibration (RMSEC) and 
prediction (RMSEP).  Based on the regression coefficient values, 
the linear prediction equations for the relationship between spectral 
reflectance data and nitrogen level values can be acquired.  The 
performance of each selected wavelength was compared using 
calculated t-values.  Finally, the most important wavelengths were 
used for detecting different nitrogen level values.  Several VIs 
were extracted and the performance of each VI was calculated 
using Pearson’s correlation and analysis of variance (ANOVA). 

 
Figure 1  Flowchart of this study 

 

2.2  Experiment design 
Corn (DeKalb DKC 53-56RIB) were planted on April 28, 2015 

at a seeding rate of 69 188 seeds/hm2 in 76 cm rows in trial plots 
located at the Southern Research and Outreach Center in Waseca, 
Minnesota. The experiment design is a randomized complete block 
with four replications. Main plots are 24.4 m2 and composed of 
individual crops within a given cropping system.  Data were 
collected in four 6.1 m2 sub-plots within each main plot.  The 
recommended nitrogen rate was 72.8 kg/hm2 of urea for corn after 
soybean either with or without a cereal rye cover crop.  For corn 
following corn, the recommended nitrogen rate was 140 kg/hm2.  
Sub-plots within each plot contained four nitrogen levels that 
included 0%, 80%, 100%, and 120% of the recommended nitrogen 
rate according to University of Minnesota nitrogen BMP guidelines 
for the region.  All nitrogen was applied on April 18, 2015. 
2.3  Analytical Spectral Devices (ASD) and software 

The spectral reflectance data were collected using the 
FieldSpec 4 Hi-Res: high resolution spectroradiometer (Analytical 

Spectral Device Inc., Boulder, CO, USA).  The spectral range is 
from 350 nm to 2500 nm with a spectral resolution of 3 nm at  
700 nm and 8 nm at 1400/2100 nm.  The sampling interval is  
1.4 nm for the spectral region of 350-1000 nm and 1.1 nm for the 
spectral region of 1001-2500 nm.  The spectrometer has three 
separate holographic diffraction gratings with three independent 
detectors.  Each detector is covered with the appropriate order 
separation filters to eliminate the second and higher order light. 

The visible/near infrared (Vis/NIR) detector (350-1000 nm) is 
a 512 element silicon array, the short-wave infrared spectroscopy 
(SWIR) 1 detector (1001-1800 nm) has a graded index InGaAs 
photodiode exhibiting a two-stage TE cooler, and the SWIR 2 
detector (1801-2500 nm) contains a graded index InGaAs 
photodiode also exhibiting a two-stage TE cooler.  IBM SPSS 
Statistics V22 (IBM, Armonk, NY, USA) and Unscrambler X10.1 
(CAMO Process As, Oslo, Norway) were used for analyzing the 
data, identifying useful wavelengths and building regression 
models. 
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2.4  Data collection 
Spectral reflectance data were collected on six dates (6/29, 

7/13, 7/29, 8/11, 8/25 and 9/14) during the 2015 growing season.  
This study was a part of the Long-Term Agricultural Research 
Network (LTARN) trial at the University of Minnesota’s Southern 
Research and Outreach Center (Waseca, Minnesota, USA).  Data 
acquisition occurred on cloudless days between the times of   
1000 hr and 1400 hr using the FieldSpec 4 Hi-Res 
spectroradiometer.  The instrument was warmed up for twenty 
minutes to allow internal detectors to reach their equivalent 
temperatures.  The fiber optic sensor of the spectroradiometer 
with a 25° field of view was placed in a nadir position above the 
corn canopy.  Before tasseling (6/29/2015 and 7/13/2015), the 
sensor was 1 meter above the center of the crop canopy.  As the 
crop grew, a jumper cable was needed to reach the higher position 
above the corn rows.  The maximum height achievable after 
tasseling in this configuration was 0.75 meters above the flag leaf 
of the crop canopy.  The scan average was increased by 20% 
(from 10 to 12) to help mitigate the decrease in signal to noise ratio 
of the longer fiber optic.  Optimization and white reference were 
taken before each plot to account for changes in solar angle.  Ten 
measurements were taken by walking down the fourth row of each 
plot at a working pace of 1 m/s.  Row ends were excluded from 
measurements to eliminate end row effects.  After spectrum 
collection, all data were divided into calibration and prediction sets 
with a ratio of 2:1.  The samples in the calibration set were used 
for establishing the model, while those in the prediction set were 
applied to validate the model. 
2.5  Prediction models and evaluation 

In this study, PLS model was established to predict different 
levels of nitrogen within the crops.  This method has been used in 
previous studies[15-18] and is effective when applied to predicting 
collinear variables.  A set of orthogonal factors which contain 
most of the significant information can be extracted to produce the 
prediction results[19].  The procedure was finished by removing 
one sample and building a PLS model with the remaining samples.  
The same calculation was repeated for each sample to achieve 
acceptable results.  MLR is another effective regression method 
that combines a set of X variables in linear combinations.  It 
correlates with best fit to the corresponding Y variables.  This 
model can be written as Y=b0+b1X1+…bnXn+e, in which the 
response values are approximated by a linear combination of values 
for the predictors and b0, b1…bn 

are regression coefficients[20].The 
model performance was evaluated by the values of Rc

2, Rp
2, 

RMSEC and RMSEP.  High values of Rc
2 and Rp

2, low values of 
RMSEC and RMSEP and a small difference between Rc

2 and Rp
2 

indicate that the performance is excellent[21]. 
2.6  Wavelengths selection 

The original full wavelengths are characterized with redundant 
information.  This information contains too many variables and 
cannot be used for real applications.  Effective wavelengths 
selection is a significant step in spectral analysis.  Usually, the 
selected wavelengths can simplify the model and produce 
equivalent or improved models compared with full spectral 
wavelengths[22,23].  PCA-loading was carried out to select the most 
useful wavelengths in this study.  The aim of this method was to 
identify a small subset of spectral features to replace the whole 
wavelengths.  In each PCA-loading plot, the highest positive and 
lowest negative peaks represent that the wavelengths contain the 
most useful information.  This is an indication that these 
wavelengths could produce good performance for evaluating 

nitrogen levels in corn[24].  Each plot shows the relationship 
between the Y-variables and corresponding X-variables. 
2.7  Vegetation indices 

In this study, a total of 12 VIs were used to evaluate nitrogen 
levels.  VIs can be obtained from the surface spectral reflectance 
at two or more wavelengths using mathematical calculations.  The 
errors caused by atmospheric effects, solar illumination, soil 
background and sensor viewing geometry can usually be reduced 
by VIs[25].  The description for each VI can be seen in Table 1.  
Ri is the spectral reflectance value at wavelength i.  For example, 
RNIR stands for the spectral reflectance value at 800 nm, RRed means 
the spectral reflectance value at 680 nm, and RBlue is corresponding 
to the spectral reflectance value at 450 nm. 

 

Table 1  Description of the VIs[26] 
Vegetation indices Description 

NIR R ed

NIR R ed

NDVI
R R
R R

=
−
+

 
Represents green vegetation or 
biomass with values closer to 1 
representing healthy plants. 

NIR

Red

SRI
R
R

=  Saturates in dense vegetation. 

NIR R ed

NIR R ed Blue

EVI 2.5 ( )
6 7.5 1

R R
R R R× ×

−
= ×

+ − +
 Accounts for soil background and 

atmospheric aerosol effects. 

NIR R ed Blue

NIR R ed Blue

ARVI
(2 )
(2 )

R R R
R R R

=
− −
+ −

 
Resistant to atmospheric factors.  
The reflectance in blue can 
correct the reflectance in red for 
atmospheric scattering. 

SGI (Sum Green Index) Can be used to detect changes of 
vegetation greenness. 

750 705
705

750 705

NDVI
R R
R R

=
−
+

 Modified NDVI using reflectance 
along the red edge. 

750 445
705

705 445

mSR
R R
R R

=
−
+

 Modified SRI with correction of 
leaf specular reflection. 

750 705
705

750 705 445

mNDVI
2

R R
R R R

=
−

+ −
 Modified Red Edge NDVI which 

can consider for scattered light. 

740

720

VOG1 R
R

=

 

Sensitive to the effects of 
chlorophyll concentration, leaf 
area and water content. 

734 747

715 726

VOG 2 R R
R R

=
−
+

 

Sensitive to the effects of 
chlorophyll concentration, leaf 
area and water content. 

734 747

715 720

VOG 3 R R
R R

=
−
+

 

Sensitive to the effects of 
chlorophyll concentration, leaf 
area and water content. 

1510 1680

1510 1680

log(1 / ) log(1 / )NDN I
log(1 / ) log(1 / )

R R
R R

=
−
+

 

Measures the relative amounts of 
nitrogen within vegetation 
canopies. 

3  Results and discussion 

3.1  Spectral features 
The spectral reflectance curves covering the whole 

wavelengths were shown in Figure 2a.  Too much spectrum noise 
was detected at the wavelengths of 1350-1425 nm, 1800-2000 nm 
and 2400-2500 nm for the original spectral curves.  To obtain 
more useful information and reduce redundant information, the 
wavelengths containing noise were abandoned.  Because there are 
three different sensors with unique ranges for the entire spectral 
range (350-1000 nm, 1001-1800 nm and 1801-2500 nm), we 
narrowed the spectral ranges to 350-1350 nm, 1425-1800 nm and 
2000-2400 nm for further analysis.  Thus, 1778 spectral 
wavebands including band 1-1001, band 1076-1451 and band 
1651-2051 were treated as X variables.  Different nitrogen values 
were treated as Y variables.  By establishing multiple regression 
models, we were able to predict nitrogen values. 
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Figure 2b shows the average spectral reflectance curves of 
different dates.  The wavelength at 555 nm is the nitrogen 
absorption band which correlates to absorbed light by nitrogen 
within the crop tissue[27].  It shows that spectral reflectance values 
at 555 nm generally increased with time.  The lowest spectral 
reflectance value at 555 nm occurred on 7/13/2015, indicating that 
nitrogen content in leaf tissue was the highest at this stage.  The 
wavelengths at 970 nm and 1450 nm are water absorption bands or 
areas in which water absorbs incoming light[15,28].  The low 
spectral reflectance at wavelengths 400-700 nm is caused by strong 
absorption of photoactive pigments, such as chlorophylls, 
anthocyanins and carotenoids.  The high reflectance from 700 nm 
to 1200 nm is due to multiple scattering of leaf cells.  At 1200- 
1350 nm, 1425-1800 nm and 2000-2400 nm, the spectral reflectance 
decreased again due to the absorption of water and proteins[29]. 

 
a. Spectral reflectance acquired on 6/29/2015 

 
b. Average spectral reflectance acquired at different dates 

Figure 2  Spectral reflectance and average spectral reflectance 
acquired without noise 

 

3.2  Prediction results 
PLS models were first established based on all spectral 

wavelengths.  General prediction results were high except for the 
last data acquisition date (9/14/2015) (Table 2).  This may be 
because the corn reached maturity on 9/14/2015 when nitrogen had 
been allocated to grain from leaf tissues.  Consequently, the 
relationship between spectral reflectance data and nitrogen was not 
significant on this date.  However, the data acquired on 6/29/2015, 
7/29/2015 and 8/11/2015 obtained high Rp

2 values of 0.7472, 
0.7447 and 0.7710, and the overall data showed Rp

2 of 0.6535 and 

RMSEP of 0.2681, indicating that PLS models were excellent for 
predicting the nitrogen level values. 
 

Table 2  Prediction results of different PLS models for the 
combination of wavelengths at 350-1350 nm, 1425-1800 nm and 

2000-2400 nm 
Date Parameters Calibration Prediction 

R2 0.7778 0.7472 
6/29/2015 

RMSE 0.2148 0.2290 

R2 0.7404 0.6359 
7/13/2015 

RMSE 0.2321 0.2749 

R2 0.7667 0.7447 
7/29/2015 

RMSE 0.2200 0.2302 

R2 0.7200 0.7710 
8/11/2015 

RMSE 0.2410 0.2180 

R2 0.7120 0.7180 
8/25/2015 

RMSE 0.2452 0.2419 

R2 0.4889 0.2079 
9/14/2015 

RMSE 0.3257 0.4054 

R2 0.6642 0.6535 
Overall 

RMSE 0.2640 0.2681 
 

Since the spectrometer is configured to have three separate 
holographic diffraction gratings with three separate detectors 
(350-1000 nm, 1001-1800 nm and 1801-2500 nm), each spectral 
region was used to establish regression models.  Considering 
noise covers the whole spectral wavelengths, the three spectral 
regions were divided into 350-1000 nm, 1001-1350/1425-1800 nm 
and 2000-2400 nm.  The results for each region can be seen in 
Table 3, in which wavelengths 350-1000 nm performed the best 
among the three different spectral regions.  This is because the 
spectrum information at wavebands 350-1000 nm is related to 
chlorophyll[29], indicating that the sensitive wavelengths for 
nitrogen (chlorophyll) are located in this spectral range.  The 
wavelengths 1001-1350/1425-1800 nm performed the second best 
for prediction, and 2000-2400 nm performed the worst.  Thus, 
further study should be carried out using the spectral wavelength 
from 350 nm to 1000 nm. 

 

Table 3  Prediction results of PLS models at different 
wavelength regions 

Date Wavelength/nm Parameters Calibration Prediction

R2 0.8176 0.7479 
350-1000 

RMSE 0.1946 0.2287 

R2 0.7974 0.5252 
1001-1350/1425-1800 

RMSE 0.2051 0.3139 

R2 0.3584 0.1342 

6/29/2015

2000-2400 
RMSE 0.3649 0.4751 

R2 0.7350 0.6164 
350-1000 

RMSE 0.2345 0.2821 

R2 0.8703 0.3298 
1001-1350/1425-1800 

RMSE 0.1640 0.5020 

R2 0.2840 0.0966 

7/13/2015

2000-2400 
RMSE 0.3854 0.4330 

R2 0.7526 0.7365 
350-1000 

RMSE 0.2266 0.2338 

R2 0.8024 0.6137 
1001-1350/1425-1800 

RMSE 0.2025 0.2831 

R2 0.3794 0.0863 

7/29/2015

2000-2400 
RMSE 0.3589 0.4354 
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Date Wavelength/nm Parameters Calibration Prediction

R2 0.7797 0.6930 
350-1000 

RMSE 0.2138 0.2524 

R2 0.8630 0.3476 
1001-1350/1425-1800 

RMSE 0.1686 0.3679 

R2 0.6658 0.0704 

8/11/2015 

2000-2400 
RMSE 0.2634 0.5136 

R2 0.6861 0.7091 
350-1000 

RMSE 0.2552 0.2457 

R2 0.6574 0.6717 
1001-1350/1425-1800 

RMSE 0.2666 0.2610 

R2 0.0125 0.0017 

8/25/2015 

2000-2400 
RMSE 0.4527 0.4620 

R2 0.4612 0.2248 
350-1000 

RMSE 0.3344 0.4011 

R2 0.5023 0.2037 
1001-1350/1425-1800 

RMSE 0.3214 0.4065 

R2 0.0052 0.0131 

9/14/2015 

2000-2400 
RMSE 0.4543 0.4525 

R2 0.6427 0.6498 
350-1000 

RMSE 0.2723 0.2696 

R2 0.4681 0.3598 
1001-1350/1425-1800 

RMSE 0.3322 0.3645 

R2 0.1440 0.0402 

Overall 

2000-2400 
RMSE 0.4215 0.4728 

 

3.3  Effective wavelengths selected by PCA-loading 
Larger absolute PCA-loading values indicate wavelengths at 

these points contain more effective information.  Most of these 
values occurred at spectral peaks or valleys.  For each set of data, 
the PCA-loading recommended the first seven principal 
components (PCs) (Figure 3).  In Figure 3, the horizontal-axis is 
corresponding to the spectral wavelengths, and the vertical-axis is 
corresponding to the PCA-loading values.  It can be found large 
absolute values were identified as the useful wavelengths.  The 
number of selected wavelengths for each data set only account for 
0.39%, 0.22%, 0.22%, 0.22%, 0.22%, 0.22% and 0.28% of the full 
wavebands, which simplified the model and improved the 
efficiency.  Most of the selected wavelengths for nitrogen levels 
were found in the first region (350-1000 nm), indicating that this 
region contains wavelengths that are sensitive to this response.  
This explains why 350-1000 nm obtained better prediction result 
than the other two spectral regions (1001-1350/1425-1800 nm and 
2000-2400 nm).  Only a few selected wavelengths (1042 nm, 
1124 nm and 1125 nm) were found in the spectral ranges of 
1001-1350/1425-1800 nm and no wavelengths were found to be 
significant within the 2000-2400 nm range.  This explains why 
wavelengths within the ranges of 1001-1350/1425-1800 nm 
performed the second best for prediction and 2000-2400 nm 
performed the worst.  For each set of data, the selected 
wavelengths are mainly around the green peak, chlorophyll 
absorption, red edge and near infrared regions, which is because the 
nitrogen content is directly related to greenness, chlorophyll 
content and leaf area index[30]. 

 
a. 6/29/2015  b. 7/13/2015 

 
c. 7/29/2015  d. 8/11/2015 
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e. 8/25/2015  f. 9/14/2015 

 
g. Overall data 

Figure 3  PCA-loading plots of the first seven PCs for wavelengths selection 
 

3.4  MLR prediction results based on selected wavelengths 
MLR models were then carried out to evaluate the performance 

of the selected wavelengths, and the corresponding results can be 
seen in Table 4.  It was also the three data sets (6/29/2015, 
7/29/2015 and 8/11/2015) that obtained good prediction results, 
while the data acquired on 9/14/2015 performed the worst.  
Compared with PLS models based on full wavelengths, most of the 
results in MLR models increased (except 7/13/2015).  It may be 
because the full wavelengths contain much redundant information,  

 

Table 4  Prediction results of MLR models based on selected 
wavelengths by PCA-loading 

Date Parameters Calibration Prediction 

R2 0.8061 0.7526 
6/29/2015 

RMSE 0.2006 0.2357 

R2 0.7549 0.5591 
7/13/2015 

RMSE 0.2255 0.7477 

R2 0.7097 0.8251 
7/29/2015 

RMSE 0.2454 0.1951 

R2 0.6820 0.8102 
8/11/2015 

RMSE 0.2569 0.2125 

R2 0.7151 0.7195 
8/25/2015 

RMSE 0.2431 0.2423 

R2 0.3158 0.5354 
9/14/2015 

RMSE 0.3768 0.3233 

R2 0.6830 0.6735 
Overall 

RMSE 0.2565 0.3457 

which affected the prediction ability.  However, the result of 
overall data increased by 20.92%.  Moreover, the number of input 
variables for overall data decreased from 1778 to 5, which reduced 
the calculation time and improved the prediction efficiency.  The 
comparison of full and selected wavelengths can be seen in Figure 
4.  Most of the results in MLR models (selected wavelengths) 
were found to be better than those in PLS models (full 
wavelengths), proving again that selected wavelengths can even 
produce better results than full wavelengths. 

 
Figure 4  Comparison of full (PLS models) and selected 

wavelengths (MLR models) 
 

3.5  Linear regression equations 
In order to find the quantitative relationship between the 
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spectral reflectance and nitrogen values, the regression coefficients 
of each MLR model were calculated, leading to linear equations 
shown as follows.  Based on these equations, BMP values can be 
calculated easily only by the reflectance values at the selected 
wavelengths.  Also, a simple nitrogen detection sensor with 
several wavebands can be developed using the selected 
wavelengths. 

Y = 0.5429 – 14.3399λ553nm – 8.7948λ726nm – 13.2973λ744nm –  

15.6054λ935nm+43.8853λ989nm – 3.4306λ1042nm – 3.6092λ1125nm   (1) 
Y = 1.7532 – 21.6462λ730nm + 13.8506λ744nm – 13.6027λ936nm +  

12.0023λ1125nm                                       (2) 
Y = 0.8136 + 22.6827λ712nm – 28.9841λ726nm – 4.7104λ936nm +  

12.9273λ1124nm                                       (3) 
Y = 0.9879 + 1.0522λ696nm – 12.5083λ729nm – 0.2530λ934nm +  

6.7959λ1124nm                                       (4) 
Y = 0.8579 + 20.924λ685nm – 17.1243λ723nm + 13.5725λ937nm –  

7.1521λ1125nm                                       (5) 
Y = 0.5672 – 6.2825λ560nm + 7.869λ688nm – 16.2471λ716nm +  

9.4966λ938nm                                        (6) 
Y = 1.5652 + 0.2149λ555nm – 49.8716λ724nm + 34.0727λ731nm –  

17.2452λ935nm + 17.4004λ1124nm                          (7) 

where, λinm is the spectral reflectance value of wavelength i; Y is the 
BMP value. 

Equations (1-7) are corresponding to the PCA-loading-MLR 
models for 6/29/2015, 7/13/2015, 7/29/2015, 8/11/2015, 8/25/2015, 
9/14/2015 and overall data, respectively. 
3.6  T-values of each selected wavelengths 

The coefficient values in MLR models do not stand for the 
significance of the wavelength variables since the sizes of the 
coefficients are decided by the range of variation of these 
variables, indicating that small coefficient values do not mean the 
variables are unimportant and large values do not indicate the 
variables are significant.  Thus, the performance of each 
selected wavelength was evaluated using t-values.  The t-value 
is the ratio of deviation and standard error of the mean.  The 
large absolute t-value mean the wavelength is more significant.  
The t-value of each variable at different dates can be seen in 
Figure 5.  It can be found that different wavelengths performed 
variously in MLR models, and the wavelengths around 555 nm 
and 730 nm played the most significant roles in the prediction.  
Generally, the wavelength around 730 nm performed the best in 
most of the models. 

 
a. 6/29/2015  b. 7/13/2015 

 
c. 7/29/2015  d. 8/11/2015 

 
e. 8/25/2015  f. 9/14/2015 

 
g. Overall data 

Figure 5  The t-values of MLR models for each selected wavelength at different dates 
 

3.7  Performance of vegetation indices 
PLS and MLR models were finally established using VIs, and 

the results can be seen in Table 5.  Compared with PLS results 
based on spectral reflectance, the results in VIs-based PLS models 
increased on 7/13/2015, 7/29/2015, 8/11/2015, 8/25/2015 and 
9/14/2015.  For MLR models, most of the results decreased.  The 
overall results demonstrated that the spectral reflectance is more 
effective than VIs.  This is because spectral reflectance contains 

more useful information than VI. 
The Pearson correlation and significance as well as F value 

and significance were used to identify the performance of each VI.  
The results were shown in Table 6, in which most of the VIs had 
good correlation with nitrogen level values (high correlation 
values and low significance values), demonstrating that VIs can 
be used to evaluate the nitrogen stress as well.  Among all VIs, 
VOG 2 performed the best with the highest values of correlation 
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(0.425) and F (27.401) as well as the lowest value of significance 
(0.000). 

 

Table 5  Prediction results of PLS and MLR models using VIs 

PLS MLR 
Date Parameters 

Calibration Prediction Calibration Prediction

R2 0.6713 0.6222 0.7991 0.8097 
6/29/2015 

RMSE 0.2612 0.2800 0.2042 0.2030 

R2 0.7493 0.6602 0.8093 0.5981 
7/13/2015 

RMSE 0.2281 0.2655 0.1989 0.2931 

R2 0.6806 0.7781 0.7748 0.6577 
7/29/2015 

RMSE 0.2574 0.2146 0.2162 0.3230 

R2 0.6718 0.7806 0.7651 0.6925 
8/11/2015 

RMSE 0.2610 0.2133 0.2208 0.2683 

R2 0.6723 0.7257 0.7747 0.7684 
8/25/2015 

RMSE 0.2608 0.2386 0.2162 0.2281 

R2 0.5075 0.2983 0.6255 0.4114 
9/14/2015 

RMSE 0.3197 0.3816 0.2788 0.4014 

R2 0.5953 0.5655 0.6211 0.5549 
Overall 

RMSE 0.2898 0.3033 0.2804 0.3071 
 

 

Table 6  Correlation and analysis of variance (ANOVA) of VIs 

Correlation analysis Analysis of variance (ANOVA)Vegetation 
indices Correlation Significance F value Significance

NDVI 0.510 0.323 0.345 0.793 

SRI 0.184 0.000 4.417 0.005 

EVI 0.155 0.003 3.042 0.029 

ARVI 0.051 0.321 0.346 0.792 

SGI -0.269 0.000 9.700 0.000 

NDVI705 0.225 0.000 6.695 0.000 

mSR705 0.284 0.000 10.856 0.000 

mNDVI705 0.234 0.000 7.293 0.000 

VOG 1 0.363 0.000 18.860 0.000 

VOG 2 0.425 0.000 27.401 0.000 

VOG 3 0.421 0.000 26.749 0.000 

NDNI 0.034 0.514 0.142 0.934 

Note: p=0.01 

4  Conclusions 

The relationship between spectral reflectance and different 
nitrogen level values was studied in this work.  The full 
wavelengths of each date obtained a good result with Rp

2 higher 
than 0.6359 in the prediction set (except 9/14/2015).  For the three 
different sets of wavebands, 350-1000 nm performed the best.  
This is because most of the sensitive wavelengths of nitrogen were 
in this spectral region, which was also corresponding to the 
selected wavelengths by PCA-loading.  The selected wavelengths- 
based MLR models even got better prediction results than PLS 
models (full wavelengths), indicating that PCA-loading was 
effective for wavelengths selection.  The two significant 
wavelengths (555 nm and 730 nm) have the potential to be used for 
designing a simple detection sensor for nitrogen management.  
The wavelength 730 nm performed the best according to t-values.  
Among VIs, VOG 2 performed the best.  The overall results 
demonstrated that spectral reflectance collected by 
spectroradiometer could be an ideal tool for nitrogen fertilization 
management in field grown corn. 
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