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Abstract: The nondestructive and rapid acquisition of rice field phenotyping information is very important for the precision 
management of the rice growth process.  In this research, the phenotyping information LAI (leaf area index), leaf chlorophyll 
content (Cab), canopy water content (Cw), and dry matter content (Cdm) of rice was inversed based on the hyperspectral remote 
sensing technology of an unmanned aerial vehicle (UAV).  The improved Sobol global sensitivity analysis (GSA) method was 
used to analyze the input parameters of the PROSAIL model in the spectral band range of 400-1100 nm, which was obtained by 
hyperspectral remote sensing by the UAV.  The results show that Cab mainly affects the spectrum on 400-780 nm band, Cdm 
on 760-1000 nm band, Cw on 900-1100 nm band, and LAI on the entire band.  The hyperspectral data of the 400-1100 nm 
band of the rice canopy were acquired by using the M600 UAV remote sensing platform, and the radiance calibration was 
converted to the canopy emission rate.  In combination with the PROSAIL model, the particle swarm optimization algorithm 
was used to retrieve rice phenotyping information by constructing the cost function.  The results showed the following: (1) an 
accuracy of R2=0.833 and RMSE=0.0969, where RMSE denotes root-mean-square error, was obtained for Cab retrieval; 
R2=0.816 and RMSE=0.1012 for LAI inversion; R2=0.793 and RMSE=0.1084 for Cdm; and R2=0.665 and RMSE=0.1325 for Cw.  
The Cw inversion accuracy was not particularly high.  (2) The same band will be affected by multiple parameters at the same time.  
(3) This study adopted the rice phenotyping information inversion method to expand the rice hyperspectral information acquisition 
field of a UAV based on the phenotypic information retrieval accuracy using a high level of field spectral radiometric accuracy.  
The inversion method featured a good mechanism, high universality, and easy implementation, which can provide a reference 
for nondestructive and rapid inversion of rice biochemical parameters using UAV hyperspectral remote sensing. 
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1  Introduction  

Rice is the world’s most important staple crop for  
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human survival and development.  With a substantial 
increase in the world’s population and the demand for 
food, the modernization and accurate production of rice is 
very important[1].  Detection and acquisition of rice 
growth information is an important role in guiding the 
growth of rice and increasing yield.  The acquisition of 
traditional rice information is facilitated through the 
laboratory chemical analysis method, but field sample 
collection and determination also consume time, 
manpower, and material resources, and are not conducive 
to the timely monitoring of rice growth.  Therefore, how 
to introduce newer and modern technologies to carry out 
fast, nondestructive, large-area synchronous observation 
and accurately obtain rice growth information, and 
effectively  guide  rice  production, has become a major  
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agricultural topic both domestically in China and 
internationally.  Unmanned aerial vehicle (UAV) remote 
sensing technology is a type of detection technology that 
was a product of the development of space and computer 
technology.  The ability to apply rapid, nondestructive, 
large-area synchronous detection technology to the 
collection of rice-growing and rice-growth information, 
to obtain rice-growth status, has important significance to 
guiding the precise informatization of rice production[2,3].  
At present, UAV remote sensing technology is a hot 
research field, and it has been widely used to monitor the 
dynamic change of farmland, forestry, facilities, and other 
resources by analyzing the remote sensing data collected 
by UAVs.  A large field of rice-yield estimation by 
remote sensing, along with pest monitoring and an 
agricultural remote sensing monitoring information 
system, has been established.  The development and 
application of UAV and remote sensing technology has 
made rice production and research transition from the use 
of traditional methods to a new stage of quantitative 
precision agriculture[4]. 

A UAV platform equipped with satellite remote 
sensing can obtain more abundant agricultural remote 
sensing data, with better precision and greater 
dimensional precision than traditional satellite remote 
sensing.  However, since the micro-UAV platform is 
directly involved in the data collection process, it may 
itself have a certain impact on the data collection.  
Therefore, effectively maximizing UAV remote sensing 
data acquisition and agricultural agronomic parameter 
inversion accuracy is the key to using the micro-UAV 
remote sensing research platform for agriculture[5]. 

Calderón et al.[6] used Ciganda and other near-infrared 
reflectance spectroscopy techniques to establish the 
relationship between the maize leaf and canopy, and 
thereby the chlorophyll content of maize leaves was 
retrieved.  By obtaining the canopy spectral information 
of wheat, Atzberge was able to obtain a better model 
accuracy (R2=0.82) using partial least-squares regression 
(PLS) to establish the NDVI and canopy chlorophyll 
models[7,8].  Swain[9] used UAV remote sensing 
inversion to determine rice yield and total biomass.  
NDVI has been used for regression analysis in the young 

panicle differentiation stage to estimate rice yield and 
total biomass, and in the fitting the R2 accuracy of the 
model was 0.728 and 0.760, respectively.  These results 
show that using high-resolution remote sensing data 
acquired by a micro-UAV remote sensing system to 
determine the yield and biomass inversion of a 
rice-growing area over a good range is viable, and, 
moreover, reduces the level of error introduced by 
satellite remote sensing.  In some studies, some scholars 
have used the GNDVI vegetation index to retrieve the 
LAI, and the accuracy of the inversion model (R2=0.65) 
can also be used to detect the LAI via UAV remote 
sensing.  A UAV equipped with a variety of 
spectrometers for remote sensing monitoring of rice, can 
obtain spectral information of a series of corresponding 
crop, agronomic parameter inversion, but including some 
crop spectral analysis strains with high, plant type, 
internal temperature information is not the optimal 
way[10-13]. 

In the research described in this paper, a UAV 
equipped with a hyperspectral imaging camera was used 
to gather rice canopy spectral information.  The sensitive 
band of PROSAIL input parameters was obtained by 
global sensitivity analysis (GSA), using the particle 
swarm optimization (PSO) algorithm of the PROSAIL 
model, the PROSAIL simulation model of rice canopy 
spectral information, and the actual measured canopy 
spectral information in order to obtain the smallest 
difference in rice the chlorophyll concentration (Cab), the 
equivalent water thickness (Cw), the dry matter content 
(Cdm), and the leaf area index (LAI), comprising the four 
parameters for determining the growth response of rice. 

2  Materials and methods 

2.1  Testing site 
The experiment was conducted in the rice-breeding 

field at Shenyang Agricultural University (41°49'N, 
123°33'E; altitude 65 m) in Shenyang, Liaoning Province, 
China.  The Japonica rice (Shendao-529) cultivar was 

transplanted on May 29, 2016.  Shendao-529 is suitable 
for cultivation in East and North Liaoning Province, 

where the growth period is 148-150 d.  The rice 
experiment field is shown in Figure 1. 
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Figure 1  Test site: Japonica rice experiment field at Shenyang 

Agricultural University, 2016 
 

2.2  Instruments and equipment 
A hyperspectral imaging camera (Gaiasky-mini) 

equipped with an incident light sensor (Dualix Spectral 
Imaging, Inc., China) is used to collect the remote sensing 
images of the Japonica rice canopy (Figure 2).  There 
are 256 channels in the hyperspectral camera.  The 
spectral range of the hyperspectral imager is 400-   
1100 nm and its spectral resolution is 3.5 nm.  The 
imaging method of the spectrometer is built-in push 
broom.  The images were acquired with 16-bit 
radiometric resolution[14]. 

 
Figure 2  UAV-M600 and Gaiasky-mini hyperspectral imaging 

camera 
 

The platform for hyperspectral image acquisition is a 
six-rotor UAV (M600, DJI, China).  The UAV can lift  
6.5 kg and has a flight time of approximately 20 min.  In 
order to eliminate the effects of vibration in the spectral 
image acquisition process, the UAV was equipped with a 
RONIN-MX attitude control system. 
2.3  Hyperspectral image and rice sample collection 

Hyperspectral images of Japonica rice were collected 
by the airborne acquisition system between 11:30 and 
13:30 on July 28, 2016.  The scene of the experiment is 

shown in Figure 3.  The UAV flew at an altitude of 50 m 
above the rice canopy.  After hyperspectral image 
collection, 36 Japonica rice leaves were collected from 
the canopy in an area measuring 1 m2 of each 
experimental plot and stored immediately in refrigerated 
containers for biophysical parameter analysis (Cab, Cw, 
Cdm, and LAI). 

 
Figure 3  Scene of experiment 

 

2.4  Japonica rice biophysical parameter collection 
2.4.1  Cw and Cdm measurement of rice leaves 

In the laboratory, the fresh weight and area of rice 
leaves were measured. Rice leaf samples were cleaned 
and immediately placed into a 105ºC oven for 30 min to 
inactivate enzymes.  The rice leaf samples were then 
dried at 65°C for 72 h or more until the quality of rice 
leaves was consistent[15-17].  The quality criterion was 
Cdm.  The EWT Equation is: 

CW =(LFWC−LDWC)/LA          (1) 
where, LFWC represents the quality of fresh leaves of 
Japonica rice and LDWC and LA the quality of dried 
leaves of Japonica rice and the total area of Japonica rice 
samples, respectively. 
2.4.2  Cab measurement of rice leaves 

 Japonica rice samples were taken from a 
homogenized triturate prepared from 36 experimental 
plots for each analysis, depending on the randomness of 
the sampling.  Pigment extraction was performed with 
N-dimethylformamide, and the chlorophyll fraction was 
purified and the lipid compounds and carotenes removed 
by liquid-liquid extraction using hexane.  All analyses 
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were performed in triplicate under a green light.  The 
pigments were separated by reverse-phase HPLC using a 
Hewlett-Packard HP 1100 liquid chromatograph. 
Separation was performed using an elution gradient with 
the mobile phases: water/ion pair reagent/methanol (1/1/8, 
v/v/v) and methanol/acetone (1/1, v/v).  The ion pair 
reagent was 0.05 M tetrabutylammonium and 1 M 
ammonium acetate in water[18-20].  Sequential detection 
was performed with a photodiode array detector at    
410 nm, 430 nm, 450 nm and 666 nm, respectively.  
Data were collected and processed with a LC HP 
ChemStation (Rev.A.05.04).  Pigments were identified 
by co-chromatography with authentic samples and from 
their spectral characteristics. 
2.4.3  LAI measurement of rice leaves 

LAI measurement of rice leaves was performed using 
a pair of LAI-2200C sensors.  Accurate measurement of 
rice canopy transmission requires simultaneous 
measurements of sky brightness to be taken above (A 
readings) and below (B readings) the canopy, while 
viewing the same region of sky[21].  The height of the 
canopy in our study required all of the A readings to be 
obtained using a sensor located in one of the identified 
clearings.  The sensors were matched using the 
recommended method and synchronized to GPS time at 
the start of every time period.  The reference sensor was 
placed on a leveled 2.7 m high tripod and set to obtain A 
readings every 30 s.  All clearings provided 
unobstructed views of the sky, but 180° view caps were 
fitted to both sensors to exclude the sun and operator 
from view. 
2.5  PROSAIL models 

The PROSAIL model, coupled with the PROSPECT 
and SAIL models, is one of the most widely used 
radiative transfer models, and it is often used to invert 
biochemical parameters[22].  The PROSPECT model is 
based on leaf scale, and can be used to simulate the 
reflectivity and transmittance of leaf blades.  The SAIL 
model uses the vegetation canopy as the scale.  It takes 
the output of the PROSPECT model as its input variable, 
along with leaf distribution function, solar zenith angle, 
soil background and other factors.  Therefore, the 
PROSAIL model can be used to establish the relationship 

between the plant canopy spectrum and the LAI, the 
concentration of biochemical substances in leaves, and 
the quantitative relationship between soils.  The main 
input variables are shown in Table 1. 

 

Table 1  Partial input parameters of PROSAIL model 
Model Parameter Meaning Range of values

N leaf structure parameter 1-4 

Cab /ug·cm-2 chlorophyll concentration 20-80 

Car/ug·cm-2 carotenoid concentration 4-17 

Cm /g·cm-2 dry matter content 0.002-2.00 

PROSPECT

Cw /cm equivalent water thickness 0.0005-0.04 

LAI leaf area index 1-5 

ALA/(º) average leaf angle 20-50 

SL hot spot 0.01-1 

Skyl sky diffuse reflection ratio 0.01-0.4 

tto/(º) observed zenith angle −50-50 

SAIL 

tts/(º) solar zenith angle −50-50 
 

2.6  Global sensitivity analysis 
PROSAIL models vary in design, complexity, number 

of input variables, and processing speed.  Not all 
PROSAIL input variables play an equally important role; 
they are also spectrally dependent.  For the larger 
majority of remote sensing applications there is no need 
to vary all of the variables.  Global sensitivity analysis 
(GSA) techniques, which quantify the relative importance 
of each input parameter to PROSAIL outputs, can help 
set safe default values for those less influential input 
parameters.  GSA can greatly simplify model calibration 
by enabling the most influential parameters to be targeted 
for data acquisition and refinement[23]. 

Sobol is the most popular variance-based method for 
GSA. This modification has been demonstrated to be 
effective in identifying the so-called Sobol sensitivity 
indices.  These indices quantify both the main sensitivity 
effects (first-order effects) (the contribution to the 
variance of the PROSAIL output by each input variable) 
and total sensitivity effects (the first-order effect plus 
interactions with other input variables) of the input 
variables.  Formally, given a model Y = f(X), where Y is 
the model output, X = (X1, X2,…, Xk) is the input 
parameter vector.  A variance decomposition of f 
suggested by Sobol is: 

1,...,
1 1 1

( ) ...
k k k

i ij k
i i j i

V Y V V v
= = = +

= + +∑ ∑ ∑       (2) 

where, X is rescaled to a k-dimensional unit hypercube Ωk,  
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Ωk
 = |X|0 ≤ Xi ≤ 1, i = 1,…,k}; V(Y) is the total unconditional 

variance; Vi is the partial variance or “main effect” of Xi 
on Y and is given by Vi = V[E(Y|Xi)]; and Vij is the joint 
impact of Xi and Xj on the total variance minus their 
first-order effects.  Here, the first-order sensitivity index 
Si and total effect sensitivity index STi are: 
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2.7  Modeling and model evaluation 
2.7.1  Hyperspectral data assimilation 

In this study, the PSO algorithm was used to optimize 
the differences between the hyperspectral observations of 
the rice canopy and the PROSAIL simulation, and to 
minimize the difference between the simulated and 
observed values[24].  The PSO algorithm is simple and 
easy to apply and, using it, the solution of the problem to 
be optimized is represented by the position coordinates of 
the particle, and the current optimal solution (the optimal 
value) and the current optimal solution of the entire 
particle population are tracked by the particle[25]. 
2.7.2  Model evaluation 

The model’s performance was mainly evaluated by 
the following indices: the correlation coefficients of the 
calibration (R2) and the root-mean-square error (RMSE).  
The best model should have a maximum value of R2 and 
a minimum value of the RMSE. 

3  Results and discussion 

3.1  GSA reflectance results 
Five thousand subsamples were used for the GSA. 

Since its efficiency is relatively slow, it takes 1258 s to 
analyze the four input parameters (LAI, Cw, Cab and Cdm) 
of the PROSAIL model.  The Sobol total order 
sensitivity index (STi) results for the PROSAIL model 
across the 400-1100 nm region are shown in Figure 4.  
Despite the large number of PROSAIL input variables, 
some variables can be obtained directly.  Hence, the 
majority of variables related to micrometeorology and 
plant physiology have no impact on reflectance.  
Variables that can be measured directly include hotspot, 
soil reflectance and leaf structural parameters. 

 
Figure 4  GSA total sensitivity index (STi) for PROSAIL 

reflectance 

 
Figure 5  GSA first-order sensitivity index (Si) for PROSAIL 

reflectance 
 

As can be seen from Figures 4 and 5, the total 
sensitivity of the main parameters is different in different 
wave bands.  The canopy reflectance at 400-750 nm was 
mainly affected by the chlorophyll content, and the total 
sensitivity of the chlorophyll content to the canopy 
reflectance was approximately 80%.  Almost all of the 
vegetation indices related to chlorophyll retrieval are 
within this range.  The Cw only affects the spectral band 
over 800 nm.  In the near-infrared (NIR) band of 800- 
1100 nm, Cw, Cdm, and LAI are the three most important 
parameters affecting the canopy reflectance, and the total 
sensitivity of the three parameters is approximately 95%.  
For the LAI and Cdm, the spectrum is affected within the 
range of 400-1100 nm. 

3.2  Japonica rice biophysical variable retrieval 
Figure 6 shows the average R2 performance of the 

PSO methods over 10 runs against validation data.  The 
dashed line represents the R2 accuracy of the full 
reference training data set containing 36 samples.  Table 
2 shows the accuracy of the four parameters of the 
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PROSAIL model. 
 

Table 2  Accuracy of the four PROSAIL model parameters 

Biophysical variable R2 RMSE 

LAI 0.816 0.1012 

Cw 0.665 0.1325 

Cdm 0.793 0.1084 

Cab 0.833 0.0969 
 

From the Table 2, it is seen that the accuracy of 
chlorophyll is the best (R2=0.833, RMSE=0.0969), which 
is mainly because the main chlorophyll sensitive band is 
between 450-750 nm, and the boundary noise of the 
hyperspectral image of the band in the range 400-   
1100 nm between the two bands is relatively large, and 

has a low signal-to-noise (SNR) ratio, which affects the 
accuracy of data inversion.  When the chlorophyll 
sensitive band is in the central part of the entire band, the 
SNR of the hyperspectral remote sensing data is better.  
The accuracy of Cw is the worst because the sensitive 
band of water is below 800 nm, and the SNR of the 
hyperspectral information of the rice canopy at 800-  
1100 nm is low, which affected the assimilation effect of 
Cw.  The change of LAI and Cdm affects the whole band 
in the range 400-1100 nm, and there is no obvious 
characteristic band, so the accuracy of inversion effect is 
greatly affected by other parameters. 

 
Red line: PSO Simulation of the spectral curve.  Blue line: The actual measured spectral curve. 

Figure 6  Simulated and actual spectral curves after assimilation by PSO algorithm 
 

4  Discussion 

Low-altitude hyperspectral remote sensing of 
Japonica rice by a UAV has the advantages of high 
efficiency, high image resolution, low cost, and the 
ability to obtain multiscale and temporal ground remote 
sensing data.  It provides us with a more efficient 
technique for real-time monitoring of the rice field.  
Rice is the most important food crop in the world and the 
leaves in its canopy are more complex.  The different 
distribution, different angles, and different nutrition of 

rice leaves will affect the canopy spectral information.  
In this study, a multirotor UAV was used to obtain 
hyperspectral information on the rice canopy, and a DN 
value of 400-1100 nm was converted to the reflectivity by 
radiometric calibration.  However, due to the fact that 
the environment of the test field is more complex, 
especially due to changes in light, wind and other factors, 
calibration errors will occur, which will affect the 
subsequent data inversion.  In this study, black and 
white cloth was used for radiometric calibration in the 
field. In order to maximize the consistency of the data, a 
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radiometric calibration was performed every 5 min. 
The hyperspectral remote sensing data collected by 

the UAV was mainly used for accurate retrieval of the 
input biophysical parameters of the PROSAIL model.  
Since the PROSAIL model is complex, a model 
parameter sensitivity analysis was performed to 
quantitatively evaluate the influence of each input 
parameter on the output results.  Determining the main 
effect of different band parameters is the goal of an 
effective application.  In this study, we used GSA to 
analyze the input parameters of the PROSAIL model.  
Sensitivity analysis methods can be divided into local and 
global types.  Local sensitivity analysis was carried out 
within the range of single parameter variation, and the 
effect of coupling between parameters is neglected, which 
is difficult to apply in the study of a complex nonlinear 
model.  GSA is used to analyze the changes over the 
entire range of parameters, and considering the influence 
of the coupling between different parameters on the 
output of the model, GSA is very suitable for a complex 
nonlinear model, and is thus widely used.  The 
PROSAIL model showed that images in the range 
400-1100 nm were affected by multiple factors at the 
same time.  The process of this research, through 
sensitivity analysis, showed that any one band is affected 
by many variables, so pathological inversion is carried 
out; that is, different parameters corresponding to the 
same spectral curve are combined.  The data 
assimilation method was used in this research, and 
although it was relatively easy to achieve, to reduce the 
problem of pathological inversion, traditional knowledge 
from agricultural experience was needed as well. 

In this experiment, a manually selected region of 
interest was used from the remote sensing image in ENVI, 
which had a negative effect on obtaining better prediction 
accuracy and fast extraction of spectral information.  
This is a key issue that needs to be addressed in future 
studies. 

5  Conclusions 

Our studies demonstrated that using UAV hyperspectral 
remote sensing technology combined with the PROSAIL 
model was able to retrieve the physiological parameters 

of rice.  The rice canopy hyperspectral data in the range 
400-1100 nm were acquired using the M600 UAV remote 
sensing platform, and the radiance calibration was 
converted to the canopy emission rate.  In combination 
with the PROSAIL model, the PSO algorithm was used to 
retrieve rice phenotyping information by constructing the 
cost function.  The results showed the following: 

(1) The Cab retrieval accuracy was R2=0.833 and 
RMSE=0.0969, the LAI inversion accuracy was R2=0.816 
and RMSE=0.1012, the Cdm inversion accuracy of was 
R2=0.793 and RMSE=0.1084, and the Cw inversion 
accuracy was R2=0.665 and RMSE=0.1325.  As the 
hyperspectral band in this study used 1000 nm or larger 
noise, the Cw inversion accuracy was not particularly 
high. 

(2) Because the same band is affected by multiple 
parameters at the same time, the problem of inversion of 
phenotyping information occurs when using this method. 

(3) This study adopted a rice phenotyping information 
inversion method to acquire rice hyperspectral 
information by a UAV based on the phenotypic 
information retrieval accuracy achieved owing to the high 
field spectral radiometric accuracy.  In this study, UAV 
remote sensing and the PROSAIL model were combined 
to invert the phenotyping information of a rice field, 
which comprised a good mechanism, high universality, 
and easy implementation.  This study provides a 
theoretical basis for nondestructive and rapid inversion of 
rice biochemical parameters using UAV hyperspectral 
remote sensing. 
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