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Abstract: A photosynthetic rate model provides a theoretical basis for fine-grained control of light, and has become the key 

component to determine the effectiveness of light-controlled environments.  Therefore, it is critical to identify an intelligent 

algorithm that can be used to build an efficient and precise photosynthetic rate model.  Depending on the initial weights of a 

BP (Back Propagation) neural network algorithm for arbitrary random numbers, the establishment of a regressive prediction 

model can be easily trapped in a partially-flat area.  Existing photosynthetic rate models based on neural networks are facing 

problems such as a slow convergence speed and a long training time, and this study presents a photosynthetic rate model of a 

heuristic neural network for tomatoes based on a genetic algorithm to address the above problems.  The performance of the 

model can be effectively improved using a genetic algorithm to optimize the initial weights.  A multi-factor nesting 

experiment was firstly conducted to obtain 825 groups of tomato seedling photosynthesis rate test data in the foundation, and 

the photosynthetic rate model of the heuristic neural network for the tomato is established through BP network structure 

construction and data preprocessing.  The genetic algorithm was used to optimize the network weights and threshold, and the 

LM (Levenberg-Marquardt) training method for network training.  On this basis, the training performance and precision of the 

photosynthetic rate prediction models can be further compared with the genetic neural network model and the neural network 

model.  The test results have shown that the training effects and accuracy of the genetic neural network prediction model of 

the photosynthetic rate were better than those of the neural network prediction model.  The correlation coefficient between the 

model predicted data and the measured data is 0.987, and the absolute error of the photosynthetic rate is less than 

±0.5 μmol/(m2·s). 
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1  Introduction

 

Light is an indispensable factor in the process of growing 

plants[1,2].  Due to various influences such as covering materials, 

dust, the sun altitude angle, the sun dip angle and structural shading, 

lighting capacity from autumn to early spring fails to meet crop 

growth requirements.  This causes some problems such as slow 

crop growth, leaf shedding, less flower budding, abnormalities in 

flower color and shape, and low fruit production rates[3-6].  

Artificial light is an important method of environment control and 

has become a hot topic in recent research.  However, the strength 

of existing lighting technology is not sufficient for microclimate 
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conditions for influencing photosynthesis, and there may be 

excessive or insufficient fill-in light[7,8].  Thus, a method for 

modeling the photosynthetic rate should be studied under the fusion 

of multiple factors, and a model that includes multiple associated 

environmental factors should be established.  On this basis, 

fine-grained control of lighting environments has become a 

fundamental requirement in determining the performance of light 

environment regulation systems. 

A variety of photosynthetic rate models have been established, 

including a rectangular hyperbolic model, a non-orthogonal 

rectangular hyperbolic model and an exponential relation 

model[9,10].  On the basis of the above-mentioned study, the 

photosynthetic rate electron transport models[11], steady-state 

models of photosynthetic rate[12] and photosynthesis models under 

different nitrogen[13] have been proposed.  These studies provide a 

good theoretical basis for modeling the photosynthetic rate, but it is 

not easy to obtain the model input variables for the physical 

parameters of the model during the routine test and production 

process, and it is also difficult to directly apply the outputs to 

regulate the light environment of crops.  In recent years, 

researchers have studied a series of photosynthetic rate models 

using environmental parameters as variables[14], and a number of 

models have been proposed including a tomato photosynthesis rate 

influenced-model, a photosynthetic rate for chi-square model[15] 

and a nonlinear dynamic simulation model for tomato growth[16].  

These studies have adopted a multiple regression and linear fitting 

method for the photosynthetic rate, and considered the correlation 
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between different environmental factors to improve the adaptability 

and accuracy of the model.  However, they still have limitations, 

such as a low fitting level and a complex fitting formula, which 

cannot be applied to the fusion of multiple environmental factors of 

a photosynthetic rate model. 

Artificial neural networks have been widely used as a new 

intelligent modeling method for various types of multidimensional 

modeling of complex systems[17,18].  Recently, related research has 

been presented on photosynthetic rate models.  A simulation 

model for photosynthesis in a greenhouse has been constructed 

based on a neural network model[19].  A prediction model for a net 

photosynthetic rate of tomato leaf during flowering stage has been 

established using BP neural network.  These models effectively 

improve the fit of model and explore photosynthetic rate modeling 

method using artificial neural networks [20].  However, when a BP 

neural network algorithm is used to solve multiple sample 

questions, some problems arise such as a slow convergence rate 

and a long training period.  Therefore, it is vital to study 

photosynthetic rates based on intelligent algorithms for modeling 

large data samples from multiple factors.  The genetic neural 

network has recently become a new hot spot for solving the 

problem of large data samples from multiple factors[21], and the use 

of a genetic algorithm is a global phenomenon.  The global and 

parallel optimization advantages of a genetic algorithm can be used 

to optimize the learning process of a BP neural network, and 

overcome drawbacks such as a low convergence speed or the 

possibility of falling into a partial minimum value during the neural 

network training process[22].  The algorithm has already been 

widely used with the load forecasting model of natural gas using 

complex nonlinear large data samples[23], and was shown to 

effectively improve the related coefficients and the convergence 

rate.  All the above studies have shown that  neural network with 

genetic algorithm can be adapted for the diversity of large sample 

sizes, which provides a good theoretical basis for the 

photosynthetic rate studied in this study. 

Influenced by the problem outlined above, this study explored 

a fitting method for multiple-factor large sample data sets based on 

the analysis of the internal and external factors that affect 

photosynthesis.  A type of universal significance for multiple 

factors was then proposed, based on a genetic neural network 

modeling method coupled with crop photosynthesis.  A tomato 

photosynthesis rate based on the genetic neural model was 

established.  The differences between this model and neural 

network modeling were compared and analyzed in terms of 

convergence speed and final results.  The relevance and error 

analysis of the model were also analyzed to verify the accuracy of 

the modeling method, which provides a theoretical foundation for 

optimal control of a lighting environment. 

2  Materials and methods 

2.1  Experimental materials 

A field experiment was undertaken in a greenhouse in the 

Northwest A & F University, Yangling, China.  The tomato 

seedlings that  tested was the variety of “Burr 802” which were in 

a 72-hole tray seedling nursery substrate for an agriculture-specific 

matrix that full of tomatoes after hot water treatment of the seeds.  

The nutritional content of the tomatoes is as follows: the mass 

fraction of organic matter was 50%, the mass fraction of humic 

acids was 20% and the pH was 5.5~6.5.  During fostering of the 

seedlings, sufficient fertilizer levels were maintained.  When the 

tomato seedlings had 5 leaves with 1 leaf center, they were selected 

for uniform seedling colonization with joined fertilizer in mellow 

soil, which had organic matter quality scores of 16.83 g/kg, alkali 

solution nitrogen quality scores of 121.38 mg/kg, available p 

quality scores of 145.15 mg/kg, available potassium quality scores 

of 121.61 mg/kg and a pH value of 6.5.  The sustained seedlings 

were then ready for the seedling test.  The trial period, fertilizer 

and water management were conducted as usual, and no pesticides 

or hormones were sprayed. 

2.2  Analysis of experimental parameters 

Photosynthetic rate is significantly influenced by these above 

factors, resulting in changes to a plant’s photosynthetic capacity as 

the microclimate of the facility changes.  Light is one of the 

factors that directly affect the photosynthetic rate, as it provides 

energy for photosynthesis.  Net photosynthesis will occur only 

when there is some light compensation.  The photosynthesis rate 

increases as the light intensity increases.  However, excess light 

can cause the occurrence of photo inhibition, resulting in a decline 

in the photosynthetic rate and crop damage[24].  Other 

microclimate factors, such as temperature, can have a direct or an 

indirect influence on photosynthesis and have been shown to 

influence the activity of a crop’s Rubisco activase, stomatal 

conductance and chlorophyll content[25,26].  The CO2 concentration 

can also affect the crop, including the dark reaction rate and dry 

matter accumulation[27].  The water content provides  water that 

needed for photosynthesis, and when there is seriously inadequate 

water content, the coercion phenomenon occurs.  With mild water 

content coercion, there is not an obvious drop in the photosynthesis 

rate[28].  The fertility also indirectly affects photosynthesis, as N 

and Mg are components of chlorophyll, and mineral shortages have 

a certain effect on photosynthesis[29].   Under different 

temperatures, the CO2 concentration and the soil water conditions 

are different, resulting in a different crop photosynthetic rate.  

Therefore, crop photosynthesis and microclimate factors needs to 

be explored in more detail using multiple environment factors in 

models to adjust light parameters.   

There is only weak variability in the fertility and moisture 

factors that affect photosynthesis with smaller dynamic changes, 

and this variability can be generally avoided by using water and 

fertilizer for daily cultivation management[30].  The three factors 

of light, carbon dioxide and temperature are affected by external 

conditions and other causes including internal shade, ventilation, 

and equipment operation such as a wet curtain.  Variability in 

these factors can result in strong dynamic changes, and these 

changes will lead to significant photosynthetic rate changes[31].  

Therefore, this study sets the environmental variables, including the 

photon flux density, the air temperature and the CO2 concentration 

environmental factors.  

2.3  Experimental methods 

Randomly selected 75 robust tomato seedlings were used as 

test samples after 7 days of transplant seedling.  In order to avoid 

influence of midday depression of photosynthesis, the tests were 

performed at 9:00-11:30 and 14:00-17:30.  Leaf net 

photosynthetic rate (Pn) were assayed using a LI - 6400xt portable 

photosynthesis system (LI-COR, USA) , which can regulate 

micro-environment parameters such as dioxide concentration, 

temperature and photon flux density under different modules.  The 

following environmental variables were set: the carbon dioxide 

concentration gradient was set at 300, 600, 900, 1200, and    

1500 μmol/mol; the temperature gradient was set at 16°C, 20°C, 
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24°C, 28°C, and 32°C; and the photon flux density gradient was  

set at 0, 20, 50, 100, 200, 300, 500, 700, 1000, 1200, and        

1500 μmol/(m2·s).  25 sets of tests were carried out at different 

combination of temperature and carbon dioxide concentration 

conditions.  In each set, 3 seedlings were randomly selected to 

obtain net photosynthetic rate under 11 different gradients of 

photon flux density.  Thus, a total of 825 sets of data were 

obtained from experiments for the model building and validation. 

2.4  Model building 

Experimental sample set and BP network structure were 

established during pretreatment process.  The network weights 

and threshold optimization were then portrayed based on the 

genetic algorithm.  Finally, the photosynthetic rate model was 

completed using genetic neural network, which is based on the 

network training of the LM training method.  The overall process 

is shown in Figure 1. 

 
Figure 1  Flow chart of the construction of the photosynthetic rate model based on a Genetic Neural Network 

 

2.4.1  Modeling pretreatment 

The coarse error analysis and filtering were conducted using 

the Dixon criterion, and each experiment output a value for Pn 
of 

each sample, with parameters such as photon flux density, CO2 

concentration, temperature and air as the inputs X=(x1, x2, x3)
T.  

The multiple-factor large sample data set used for the input and 
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output was managed using normalization processing, to create a 

data sample set for photos ynthetic rate modeling of normalized 

multi-factor coupling (X′, P′n).  The optimum number of hidden 

layer nodes was simultaneously determined using a trial and error 

method, and it was discovered that the network performance meets 

design requirements when there are eleven hidden layers.  Thus, a 

single hidden layer network was designed as 3-11-1 in order to 

establish the network structure of the photosynthetic rate model.  

The S tangent function Tansig was adopted for the neuron transfer 

function of the network hidden layer; and the linear function 

Purelin was adopted for the transfer function of the output layer. 

2.4.2  Weight optimization based on genetic algorithm 

In this step, the weight and threshold matrix was optimized 

based on the genetic algorithm used in the modeling method, using 

the network structure described above.  This algorithm firstly 

adopted a binary coding scheme to complete the encoding of 

network weight.  The fitness function was then established with 

the minimum error function, as shown in Equation (1): 

1

( ' ' )
P

p p

d o

i

F abs Pn Pn


                 (1) 

where, 'p

dPn
 

is the true value of the sample’s photosynthetic rate; 

'p

oPn  is the value of the network output of the sample’s 

photosynthetic rate; P is the total of the sample. 

Based on a randomly-generated initial population, the 

matching value was calculated using the fitness function shown in 

Equation (1) in order to complete the population evaluation.  

When the population evaluation was not satisfied by the stop 

condition, the operation in the following paragraph was triggered. 

Firstly, in the selection process, individuals with the greatest 

fitness were automatically upgraded to the next generation.  The 

probability was calculated by the fitness, and the selection of the 

best individuals in the old population was achieved by selecting the 

probability of Ps, so as to constitute a new population.  The 

probability of being selected of the individual i is Ps(i), as shown in 

Equation (2): 

1

( ) i
S N

i

i

F
P i

F





                   (2) 

where, Fi is the fitness value of the individual i; N is the number of 

individuals in the population; 
1

N

i

i

F



 

is the sum of the fitness of all 

individuals. 

The individuals in the new population obtained by selection 

were then paired using the crossover operation.  According to the 

crossover probability, partial chromosomes were exchanged to 

form the new individuals.  The crossover operation for the jth gene 

of the kth chromosome ak and the ith chromosome ai is shown in 

Equation (3): 
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where, b is a random number in the interval [0, 1].  

When the generated random number conforms to b≤Pc, the 

operation is conducted according to Equation (3), where, Pc is the 

crossover probability that is set as 0.7. 

Finally, one of the new individuals was randomly selected to 

conduct a mutation operation, to generate a better individual.  The 

mutation operation for the jth gene of the ith individual aij is shown 

in Equation (4): 
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     (4) 

where, amax is the upper bound of aij; amin is the lower bound of aij; 

g is the number of iterations; Gmax is the maximum number of 

evolutions; r is a random number in the interval [0, 1]. 

When the generated random number conforms to 
Mr P , the 

operation is conducted according to Equation (4), where PM is the 

probability that is set as 0.01. 

After the mutation operation, fitness evaluation and genetic 

iteration were conducted on the weight vector v and weight vector 

w until the network initial weight optimization was completed, in 

order to generate the optimal weight vectors v and w.  Weight 

vector v is the vector of the corresponding input layer to the hidden 

layer of each individual in the new population, and the weight 

vector w is the vector of the hidden layer to the input layer. 

2.4.3  Establishment of the neural network model 

At the start of the neural network training, the initial weights of 

the BP neural network were assigned using the optimal weight 

vector v and the optimal weight vector w.  The components were 

output from the input layer and the hidden layer based on the input 

of a set of processed samples.  The procedure described in the 

following paragraph was then triggered, and network training was 

performed. 

The error signals of the output layer and the hidden layer were 

firstly calculated based on the true value and the network output 

value of the photosynthetic rate of the samples, using Equations (5) 

and (6) under single-output conditions: 

( ' ' ) ' (1 ' )o p p p p

d o o oPn Pn Pn Pn              (5) 

( ) (1 )y o

j j j jw y y                  (6) 

where, o  is the error signal of the output layer; y

j  is the error 

signal of the jth neuron of the hidden layer; wj is the weight of the jth 

neuron of the hidden layer to the output layer; yj is the output value 

of the jth neuron of the hidden layer. 

Based on the error signal and the input signal of each layer, the 

weight of each layer was then adjusted using Equations (7) and (8) 

by the LM training method: 
y

ij ij j iv v x                    (7) 

1( )T T

j jw w J J I J e                  (8) 

where, vij is the weight of the ith neuron of the input layer to the jth 

neuron of the hidden layer; xi is the ith neuron of the input layer;   

η is the learning rate; e is the output error under single-output 

conditions; μ is the ratio coefficient, which is a constant that is 

greater than 0; I is a unit matrix; J is the Jacobian matrix of the 

output error e, which is shown in Equation (9): 

1 2 7

e e e
J

w w w
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The above process is repeated again to complete the rotating 

training for all samples in order to obtain the correction of the 

weight matrices for all samples.  Based on this result, the network 

training error ERME was calculated using Equation (10) after the 

rotating training was completed: 

2

1

1
( ' ' )

P
p p

d oME

p

RE Pn Pn
P 

                 (10) 

The final step was to judge the error.  If the training error was 

still greater than an error threshold, a new round of iteration was 

conducted until the error is below the threshold or a defined 
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number of training steps is achieved.  The training will then be 

declared complete and the network is preserved.  

Anti-normalization was then conducted for the photosynthetic rate 

model, as shown in Equation (11): 

1 2 3( ) ( , , )Pn net X net x x x                 (11) 

3  Results and analysis 

A model was designed to verify the validity of the genetic 

neural network algorithm modeling.  This study used the same 

training set and validation set to establish a prediction model for 

the photosynthetic rate of the tomatoes using the neural network 

and the genetic neural network.  By comparing the results of the 

model training performance and the model validation, the modeling 

results were analyzed and compared. 

3.1  Results and analysis of model training performance 

Considering the randomness of the neural network training 

results, the model was built by adopting a multiple training method 

in order to select the training parameters with the optimal 

convergence effect for modeling.  Finally, a prediction model for 

the photosynthetic rate of the tomatoes was established based on 

the neural network and the genetic neural network.  The genetic 

neural network model used the system error as the fitness function, 

and the initial weight and threshold matrix were optimized through 

the genetic algorithm.  The evolution curve is shown in Figure 2. 

 
Figure 2  Evolution process of the error 

 

Figure 2 indicates that the fitness value of an evolutionary 

individual is small at the initial stages of evolution.  After 

selection, crossover and mutation treatment, the fitness value of an 

individual in the population constantly increases while the 

photosynthetic rate prediction error obtained based on the weight 

matrix gradually reduces.  As the evolutional generations increase 

and each new individual generated by the genetic algorithm is 

approximated to the most targeted neighborhood, its fitness value 

will remain constant to complete the optimization for the initial 

weight and the threshold.  Since the algorithm has no oscillation 

during its evolution process, it is consistent with the genetic 

algorithm characteristic that the optimal individual’s fitness value 

tends to be stable.  This indicates that the parameter setting of the 

genetic algorithm is reasonable and has good convergence.  Thus, 

it can be used for optimization of similar multiple factor nonlinear 

problems. 

On this basis, an optimized initial weight matrix was adopted 

based on the genetic algorithm and a randomly generated weight 

matrix to conduct the training for the prediction model of the neural 

network.  The neural network curve based on genetic optimization 

is shown in Figure 3, while the training curve of the prediction 

model based on the BP neural network is shown in Figure 4. 

 
Figure 3  Genetic optimization neural network model training 

curve 

 
Figure 4  Training curve based on the neural network model 

 

From Figures 3 and 4, it can be seen that there is a clearly 

improved training effect using the genetic optimization model, and 

the convergence of the model was also clearly improved.  As 

shown in Figure 3, the network training of the neural network 

algorithm of genetic optimization achieved the goal of optimal 

training in only 17 steps.  Furthermore, the number of training 

steps required is often less than 20 steps.  In Figure 4, it can be 

seen that the mean square error of the training from the 20th step is 

0.0031013 in the model training process, and the maximum 

training limit of 0.00005 and 50 steps is not reached during the 

model setting training target error training.  However, from this 

point, the six-time error curve no longer decreases and the neural 

network has reached its minimum error and should stop training.  

It can be seen that the LM method is likely to converge to a local 

optimal solution after the initial weight threshold is stochastically 

determined.  But for functional model fitting with a large local flat 

region, a local flat region may not be created from the model.  

High-precision fitting can not be achieved, and the prediction 

accuracy and generalization ability are affected.  Therefore, it is 

obvious that the traditional anti-propagation neural network is built 

for multi-dimension models with local flat areas, and the model 

will become trapped in these local flat areas due to the problem 

randomly produced by the weight matrix of the neural network.  

Therefore, by the improvement of the partial network using the 

training method, the training goal can be achieved in some cases.  

For other cases that the training goal can't be achieved, the network 

convergence speed and training time are significantly higher than 

neural network without genetic optimization.  Therefore, the 

photosynthetic rate model of tomatoes built by adopting a neural 

network of genetic optimization effectively improves the 

performance of the model training, which is applicable to these 

types of problems. 
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3.2  Model validation 

In order to verify the prediction accuracy and generalization 

ability of the model, a verification test was conducted using 

different verification criteria.  In this experiment, 60 groups of 

samples were used as the training set, account for 5% of the 

experimental samples used for the multiple factors test set.  The 

photosynthetic rate models of the genetic neural network and the 

neural network were both verified to obtain a correlation analysis 

between the measured value and the predicted value of the two 

models, which is shown in Figures 5a and 5b. 

 
a. Photosynthetic rate model of the genetic neural network 

 
b. Neural network model of the photosynthetic rate 

Figure 5  Correlation analysis between the simulation values and 

the measured values of the photosynthetic rate 
 

From Figure 5, it can be seen in Figure 5a that the 

determination coefficient of the correlation analysis between the 

measured value and predicted value of the optimized neural 

network model of photosynthetic rate is 0.989, and the straight 

slope is 0.989 with an intercept of –0.0131.  In Figure 5b, the 

determination coefficient of the correlation analysis between the 

measured value and the predicted value of the non-optimized 

neural network is 0.9067, and the straight slope is 0.910 with an 

intercept of 0.874.  This result indicated that although both 

models achieve the target error of 0.0001, the optimized neural 

network model of the photosynthetic rate had significantly higher 

degree of linearity, and it also has a better fitting degree.  Through 

further calculation of the model error, it can be found that the 

prediction model error of the non-optimized neural network is 

generally between 0.3-1.1 μmol/(m2·s), while the prediction model 

error of the optimized neural network that is optimized by the 

genetic algorithm is generally between 0.1-0.4 μmol/(m2·s).  This 

indicates that the genetic neural network model established in this 

study has high prediction accuracy, can achieve precise prediction 

of the photosynthetic rate under conditions of different temperature, 

light and CO2. 

4  Conclusions 

In this study, the concept of a model for the photosynthetic rate 

that is established through adopting a genetic neural network has 

been proposed, based on the analysis of the characteristics and 

issues of the neural network algorithm and the genetic algorithm.  

A model for the photosynthetic rate of tomatoes based on a genetic 

neural network has been established using a multiple-factor nesting 

experiment to obtain the data sample set.  It has been found that 

no oscillation and rapid convergence was discovered during the 

overall model building process.  The optimal individual’s fitness 

value tends to be stable while the evolutionary process is occurring, 

which indicates that the genetic algorithm designed in this study 

can be used for optimization of the weight matrix with good 

convergence.  Neural networks have been compared with a 

randomly generated weight matrix.  The neural network built on 

this basis has shown a clear improvement in handling local flat 

areas and a better convergence property, which can achieve the 

training goal within 17 steps.  Repeated oscillation has not been 

seen across the overall process and the process converges quickly.  

The determination coefficient of the correlation analysis between 

the measured value and the predicted value of the neural network 

model is 0.989, and the straight slope is 0.989 with an intercept of 

–0.0131.  The error is generally between 0.1-0.4 μmol/(m2·s), 

which is significantly better than that of a non-optimized neural 

network model.  This indicates that the genetic neural network 

model has a higher prediction accuracy, and it is an important 

method that can be useful to solve this type of photosynthetic rate 

modeling, achieving precise prediction of the photosynthetic rate 

under different temperatures, light and CO2 conditions.  This 

model can provide theoretical support for light environmental 

control of tomatoes. 

 

Acknowledgments 

This research is financial support by the research grants from 

National Natural Science Foundation of China (31501224 and 

31671587) and Shaanxi Province, Agricultural Science and 

Technology Innovation and Research Projects of 

China(2016NY-125). 

 

[References] 
[1] Zhu J X.  Influence of artificial supplement of light on plant growth and 

development.  Crop Research, 2012; 26(1): 74–78.  

[2] Liu J G, Mahoney K J, Sikkema P H, Swanton C J.  The importance of 

light quality in crop–weed competition.  Weed Research, 2009; 49(2): 

217–224. 

[3] Xu Z H, Song Z M, Wang D F, Meng X X, Long Q X, Ding Z L, et al.  

Determination of light transmittance in different tilt angle of different 

transparent material Southwest China Journal of Agricultural Sciences, 

2012; 25(3): 1090–1096. 

[4] Onuf C P.  Seagrass responses to long-term light reduction by brown tide 

in upper Laguna Madre.  Texas: distribution and biomass patterns. Marine 

Ecology Progress, 1996; 138: 219–231 

[5] Charvet S, Vincent W F, Lovejoy C.  Effects of light and prey availability 

on Arctic freshwater protist communities examined by high-throughput 

DNA and RNA sequencing.  FEMS Microbiology Ecology, 2014; 88(3): 



January, 2019           Hu J, et al.  A model for tomato photosynthetic rate based on neural network with genetic algorithm             Vol. 12 No.1   185 

550–564. (in Chinese) 

[6] Du C F, Li C H, Liu T X, Zhao Y L.  Response of anatomical structure 

and photosynthetic characteristics to low light stress in leaves of different 

maize genotypes.  Acta Ecologica Sinica, 2011; 31(21): 6633–6640 

[7] Novickovas A, Brazaityte A, Duchovskis P, Jankauskiene J, Samuoliene G, 

Virsile A, et al.  Solid-state lamps (LEDs) for the short-wavelength 

supplementary lighting in greenhouses: experimental results with cucumber. 

Acta Horticulturae, 2012; 927(1): 723–730. 

[8] Murakami K, Matsuda R, Fujiwara K.  Effects of supplemental lighting to 

a lower leaf using light-emitting diodes with different spectra on the leaf 

photosynthetic rate in sweet pepper.  Journal of Agricultural Meteorology, 

2013; 69(2): 55–63. 

[9] Ye Z P, Kang H J, Tao Y L, Wang L X.  Comparative analysis on the 

fitting effect of different models of Koelreuteria bipinnata var 

integrifoliola rapid light curves.  Chinese Journal of Ecology, 2011; 30(8): 

1662–1667. 

[10] Yan X H, Yin J H, Duan S H, Zhou B, Hu W H, Liu S.  Photosynthesis 

light response curves of four rice varieties and model fitting.  Chinese 

Journal of Ecology, 2013; 32(3): 604－610. (in Chinese) 

[11] Ye Z P, Hu W H, Xiao Y, Fan D Y, Yin J H, Duan S H, et al.  A 

mechanistic model of light-response of photosynthetic electron flow and its 

application. Chinese Journal of Plant Ecology, 2014; 38(11): 1241–1249. 

[12] Caemmerer S V.  Steady-state models of photosynthesis.  Plant Cell & 

Environment, 2013; 36(9): 1617–1630. 

[13] Xu J Z, Yu Y M, Peng S Z, Yang S H, Liao L X.  A modified 

nonrectangular hyperbola equation for photosynthetic light-response curves 

of leaves with different nitrogen status.  Photosynthetica, 2014; 52(1): 

117–123. 

[14] Kai W, Jing Z, Hao C.  Simulation of the canopy photosynthesis model of 

greenhouse tomato.  Journal of Shanxi Agricultural University, 2011; 

16(1): 632–639. (in Chinese) 

[15] Li P P, Wang J Z, Chen X, Liu W H.  Studies on photosynthesis 

model of mini-cucumber leaf in greenhouse.  Crop Modeling and 

Decision Support, Springer Berlin Heidelberg, 2009; pp.24–29. 

[16] Hou J L Wang Y M, Xu Y, Jun Y.  Simulation model of tomato growth.  

Transactions of the CSAM, 2006; 37(3): 80–83. (in Chinese) 

[17] Liu X B, Yu X L, Guo Y R, Xiang Z F, Zhao K, Ren F.  Influence of 

allele frequency on predicting animal phenotype using back-propagation 

artificial neural networks.  Wuhan University Journal of Natural Sciences, 

2011; 16(2): 101–105. (in Chinese) 

[18] Rakhtala S M, Ghaderi R, Noei A R.  Proton exchange membrane fuel 

cell voltage-tracking using artificial neural networks.  Journal of Zhejiang 

University Science C (Computers and Electronics), 2011; 12(4): 338–344. 

[19] Kmet T, Kmetova M.  Adaptive critic design and Hopfield neural 

network based simulation of time delayed photosynthetic production 

and prey–predator model.  Information Sciences, 2015; 294:586–599. 

[20] Wang W Z, Zhang M, Jiang Y, S S, Li M Z.  Photosynthetic rate 

prediction of tomato plants based on wireless sensor network in greenhouse.  

Transactions of the CSAM, 2013; 44(Supp2): 192–197. (in Chinese) 

[21] Wang Z B, Kong Y N, Liu Y C, Zhang Q.  Prediction of junction 

temperature for high power LED by optimizing BP neural network based 

on genetic algorithm.  Journal of Optoelectronics Laser, 2014; 25(7): 

1303–1309. (in Chinese) 

[22] Zhang X L, Jun H U, Zhao T Y.  Geometric parameters optimization of 

dump slope based on BP neural network-genetic algorithm.  Mining & 

Metallurgical Engineering, 2017; 37(2): 16–19. (in Chinese) 

[23] Yu F, Xu X.  A short-term load forecasting model of natural gas based on 

optimized genetic algorithm and improved BP neural network.  Applied 

Energy, 2014; 134(134): 102–113.  

[24] Mohamed S J, Jellings A J, Fuller M P.  Positive effects of elevated CO2 

and its interaction with nitrogen on safflower physiology and growth.  

Agronomy for Sustainable Development, 2013; 33(3): 497–505. 

[25] Xue W, Xiang Y L, Lin L S, Wang Y J, Lei A L.  Effects of short time 

heat stress on photosystem Ⅱ, Rubisco activities and oxidative radicals in 

Alhagi sparsifolia.  Chinese Journal of Plant Ecology, 2011; 35(4): 

441–451. (in Chinese) 

[26] Zhang J, Jiang X D, Li T L, Cao X J.  Photosynthesis and ultrastructure of 

photosynthetic apparatus in tomato leaves under elevated temperature.  

Photosynthetica, 2014; 52(3): 430–436. 

[27] Zhang X C, Yu X F, Ma Y F, Shangguan Z P.  The responses of 

photosynthetic energy use in wheat flag leaves to nitrogen application rates 

and light density under elevated atmospheric CO2 concentration.  Acta 

Ecologica Sinica, 2011; 31(4): 1046–1057. 

[28] Peri P L, Arena M, Pastur G M, Lencinas M V.  Photosynthetic response 

to different light intensities, water status and leaf age of two Berberis, 

species (Berberidaceae) of Patagonian steppe, Argentina.  Journal of Arid 

Environments, 2011; 75(11): 1218–1222. 

[29] Zhao H, Si L.  Effects of topdressing with nitrogen fertilizer on wheat 

yield, and nitrogen uptake and utilization efficiency on the Loess Plateau.  

Acta Agriculturæ Scandinavica, 2015; 65(8): 1–7. 

[30] Li J M, Pan T H, Wang L H, Du Q J, Chang Y B, Zhang D L.  Effects of 

water-fertilizer coupling on tomato photosynthesis, yield and water use 

efficiency.  Transactions of the CSAE, 2014; 30(10): 82–90. (in Chinese) 

[31] Jeonghwan H, Changsun S, Hyun Y.  A wireless sensor network-based 

ubiquitous paprika growth management system.  Sensors, 2010; 10(12): 

11566–115689. 

 


