
September, 2018                       Int J Agric & Biol Eng      Open Access at https://www.ijabe.org                         Vol. 11 No.5   65 

 

Feasibility of terahertz spectroscopy for hybrid purity verification of  

rice seeds 

 
Yaling Yang1

, Shengling Zhou2*
, Jie Song2

, Jie Huang2
, Guanglin Li2, Shiping Zhu2 

(1. College of Physical Science and Technology, Southwest University, Chongqing 400715, China; 

2. College of Engineering and Technology, Southwest University, Chongqing 400715, China) 
 

Abstract: The purity of hybrid rice seeds reflects the typical consistency of seed varieties in characteristics.  The accuracy and 

reliability of seed purity detecting are of great significance to ensure the quality of seeds.  In this study, the feasibility of 

identifying the purity of hybrid rice seeds, Xinong 1A/89, by terahertz (THz) time-domain spectroscopy system combined with 

chemometrics was explored.  Three quantitative identification models for testing the purity of Xinong 1A/89 hybrid rice seed 

were developed and compared by THz absorption spectroscopy with extreme learning algorithm (ELM), Principal cComponent 

Regression (PCR) and Partial Least Squares Regression (PLSR).  Experimental results showed that comparing with classical 

PLSR and PCR models, ELM presents a better feasibility and stability.  For the testing set, the quantitative prediction result of 

ELM (ELoo=2.005×10-5, R2=96.75%) is significantly better than those of PCR (ELoo=7.346×10-5, R2=88.10%) and PLSR 

(ELoo=8.007×10-5, R2=87.03%).  The results highlight the feasibility of THz spectroscopy combined with ELM as an efficient 

and reliable method for verification of hybrid rice seeds. 

Keywords: purity detection, hybrid rice seeds, terahertz spectroscopy, extreme learning algorithm 

DOI: 10.25165/j.ijabe.20181105.3898 

 

Citation: Yang Y L, Zhou S L, Song J, Huang J, Li G L, Zhu S P.  Feasibility of terahertz spectroscopy for hybrid purity 

verification of rice seeds.  Int J Agric & Biol Eng, 2018; 11(5): 65–69. 

 

1  Introduction

 

The purity identification of hybrid rice seeds is the most 

important and core content in the industrial development of rice 

seeds[1].  So far, many scholars have devoted themselves to the 

research of seed purity identification technology and seed 

authenticity.  The purity testing technologies have been further 

developed.  However, the traditional detection techniques, field 

planting and DNA molecular marker identification, is confined by 

long cycle, high cost, strict requirement for technician and 

experimental conditions.  Thus, it is necessary to explore a more 

efficient, convenient, reliable and accurate hybrid rice seeds purity 

identification technology.  As efficient detection technologies, 

spectral technologies have drawn wide attention due to the on-line 

detection and efficient sample preparations.  Hyperspectral 

image[2], visible+near infrared[3,4], and near infrared[5,6] techniques 

combined with chemometric methods have shown their success in 

the purity detection of hybrid seeds.  Although many of the 

spectral technologies mentioned above have been used to 

quantitative analysis of seed purity, little attention has been paid to 

the use of terahertz (THz) spectroscopy for purity detection of 

hybrid seeds.  More importantly, many theoretical studies[7,8] 

showed that most biological molecules, such as DNA components, 

protein and amino acids exhibit fingerprint spectra in the THz 
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region.  All of these features predict its good application prospect 

in hybrid seed purity identification[9-12].  Thus, in this study we 

explored the feasibility of employing THz spectroscopy combined 

with different chemometrics for the quantitative identification of 

the purity of hybrid rice seeds.  This work is expected to become a 

beneficial supplement to the existing researches.  

2  Materials and methods 

All THz spectra of samples were collected by T-Spec 

THz-TDS (Vilnius, Lithuania) with the transmission method.  By 

scanning fast optical delay line in 10 Hz frequency, the waveform 

of electrical field of THz radiation was build.  During the test, in 

order to avoiding or reducing the influence of the water vapor in 

the air, the spectrometer main unit is enclosed in a closed box filled 

with dry nitrogen, and the relative humidity was controlled below 

5%. 

The hybrid rice seed Xinong 1A/89, provided by the Rice 

Research Center of Southwest University, was chosen as the 

research object.  By mixing with their female parent seeds, a set of 

9 rice seed samples with the purity of 60%, 65%, 70%, 75%, 80%, 

85%, 90%, 95% and 100% were prepared.  Considering that the 

THz beam spot size with a diameter of 2 mm is very small 

compared to the seed size, the difference of detection site and 

individual character may lead to various results and subsequently 

reduce the generalization ability and stability of the prediction 

model.  To eliminate the effects of these unfavorable factors[13-15], 

the mixed rice seeds were dried, crushed, ground and then pressed 

into 13 mm diameter tablets in 1.0 mm thickness.  Each tablet 

with the purity between 60% and 100% at intervals of 5% was 

prepared by compressing the powders in a pellet press, and 

applying a pressure of 10 t for 2 min.  This series of pretreatment 

ensure uniform mixing of hybrid rice seeds and their parent seeds 

and distribution, which may guarantee accuracy reliability of 

analyzes results.  When measuring, firstly we measured THz 
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reference signal er(t) without placing a sample, which provided the 

spectral characteristics of the noise level of the system.  It allows 

determining the dynamic range of the system as the difference (in 

dB) between the maximum signal available and the noise level.  

For T-Spec system, the peak dynamic range (in power) is around 

40 dB.  And then under the same experimental conditions, each 

tablet sample was placed in a custom-designed sample holder on an 

x-y scanning harness to ensure that the THz wave was normal to the 

tablet surfaces.  By the controlling of step motor the tablet sample 

was moved in a 3×3 grid to acquire 9 separate sample signals es(t) 

across the tablet.  Transfer functions H(ω) for all the investigated 

samples were calculated by taking the Fourier transform after 

de-convolving measured time-domain signals with the reference 

signal, according to Equation (1):   
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where, H(ω) is the sample transmission function; | H(ω)|
 

is 

amplitude spectrum and φ(ω) is phase spectrum; d=1.0 mm is the 

sample thickness; n0 
is the refractive index of nitrogen (The default 

is 1), ns(ω) and α(ω) are the refractive index and absorption 

coefficient of the sample separately.  The refractive index and the 

absorption coefficient can be deduced according to Equations (2) 

and (3).  THz absorption spectrum curve was calculated for hybrid 

rice Xinong 1A/89 with different purity, as shown in Figure 1. 

 
Figure 1  Mean THz absorption spectrum for different purity 

hybrid rice seeds of Xinong 1A/89 
 

 

In the following analysis, all 81 THz spectra obtained from 9 

tablet samples with various purities were divided into the training 

set and predicting set with a ratio of 2:1.  For every tablet sample 

with different purity, the absorption spectra corresponding to 6 

sample points were chose randomly to make up the training set, 

while the rest 3 absorption spectrums form the predicting set.   

Figure 1 shows that the hybrid rice seeds have complex 

components, and the absorption spectra of each component overlap 

and interfere with others.  Thus there was no obvious absorption 

peak observed in the absorption spectra.  What’s more, 

component of hybrid rice seeds is very close to their female parent 

seeds, and spectral absorptions of seed samples with various 

purities are very similar.  It is impossible to discriminate one from 

others directly by absorption spectrum.  Hence, mathematical 

methods such as chemometric and pattern recognition are needed to 

process the absorption spectra and establish regression models to 

predict seed purity of hybrid rice.  The challenge for any THz 

regression modeling is to find the appropriate modeling algorithm 

and explore the optimum operating parameters as these factors 

determine the prediction accuracy of the model and become the key 

problem to be solved in the modeling process.  For the sake of 

tackling this problem, three different quantities modeling 

algorithms, ELM, PLSR and PCR, were used and compared for the 

regression analysis of THz spectra.  In order to obtain a good 

generalization performance Leave-one-out (LOO) cross-validation 

procedure was used to select the optimum parameters for each 

model and the parameter that produced the least mean squared error 

of prediction (MSEP) was selected as optimum value when training 

the model.   

3  Establishment and verification of regression model 

3.1  Extreme learning machine algorithm 

ELM as a simple and fast learning algorithm for machine 

learning was originally proposed by Professor Huang of 

Singapore[16].  Its salient feature is that the input weights and bias 

of hidden nodes can be randomly generated instead of being 

exhaustively tuned, by which only the output weights need to be 

calculated using the Moore-Penrose generalized pseudoinverse.   

Consider a regression task where we have a training set S with 

N samples, S={(xj, tj)| j=1,2,…,N}.  Here xj =[xj1,xj2,…,xjd]
T∈Rd

 
is 

the input terahertz feature vector of the sample, and tj∈R is real 

purity value of the sample that xj
 
belongs to.  The ELM with L 

hidden nodes and activation function G(a,b,x) can be expressed  

as: 
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, and ai=[ai1,ai2,…aid] is 

the input weights that connects the ith hidden node with input nodes 

respectively. bi 
is the bias of the ith hidden node. βi =[βi1, βi2,…βim]T 

is output weight of between the hidden layer and the output layer, 

yj
 
is the actual output corresponding to input xj.  For the training 

set S, Equation (4) can be overwritten as: 

Y=Hβ                    (5) 
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where, β=[β1, β2,…, βL]T, Y=[y1,y2,…,yN]T. 

The components of hybrid rice seeds are complex and diverse.  

The differences of the detection sites and individual characters will 

affect the stability of the identification results of the model.  Thus, 

The ELM regression model for hybrid rice should meet the high 

steady-state precision while also ensuring generalization ability.  

According to Bartlett theory[17,18], for the same training set, the 

smaller the output weight norm ||β||
 
is, the better the generalization 

performance of the model.  In order to obtain the best compromise 

between generalization performance and training accuracy, a 

penalty coefficient λ is introduced.  Therefore, the optimization 

objective of the ELM algorithm aiming to reach the best training 

performance but also the smallest norm of output weights can be 

rewritten as: 
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The solution of Equation (7) can be obtained as: 
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where, I is the identity matrices.   

3.2  Optimization and realization of the extreme learning 

machine model 

Aim to minimum train error and improve the robustness and 

generalization performance of the model penalty factor λ is 

introduced to the ELM scheme.  However, this brings a new 

problem how to seek the optimal parameters λ and L for a specific 

task. 

To address this question, the Leave-One-Out (LOO) cross 

validation approach is adopted for parameter optimization.  

MSEP is used to assess the performance of regressions.   
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The smaller the MSEP is, the better the prediction accuracy is.  

To simplify the computation of the LOO algorithm, we adapt the 

linear regression theory during the model training process, which 

improve the efficiency in computing MSEP of LOO approach and 

free from repeated training.  For the training set S with N samples, 

the calculation of MSEP can be rewritten as below: 
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where, HATjj denotes the diagonal pixel of the jth row and the jth 

column in HAT matrix, which defined as HAT=H(HTH)-1HT. 

In order to achieve high steady-state precision and well 

generalization performance, the penalty factor λ and the number of 

hidden nodes L of ELM need to be selected appropriately.  In this 

paper, a wide range of λ and L (81 different values of L, 

L∈[20:1:100], and 81 different values of λ, 

λ∈[e-6.0,e-5.9,…,e1.9,e2.0]) are tried for the purity regression model 

of hybrid rice seeds based on THz spectra.   

Figure 2 shows the performance of ELM with sigmoid kernel 

corresponds to various combinations of λ and L.  As can be seen 

from this figure, the performance of ELM is not sensitive to the 

number of hidden nodes L, and it can achieve high precision and 

well generalization performance as long as L is large enough.  In 

other words, only one parameters λ need to be specified by users.  

Figure 3 depicts the recognition error and training time via different 

number of hidden nodes and optimal λ with using the LOO 

cross-validation approach.  

From Figure 3, it can be clearly seen that the ELoo of the ELM 

model about the training set and predicting set rapidly decreases 

with the increasing of L when L∈[20,70].  But when L>70, the 

ELoo for the training set and predicting set tends to be stable.  

While, the training time of the model monotonically increases with 

L.  Finally, considering the balance of training efficiency, 

recognition accuracy and generalization ability of ELM model, 

Lopt=70, λopt=e-5.7 are chosen for purity prediction of hybrid rice 

seed Xinong 1A/89, and in this condition, the ELoo for the training 

data and the predicting data are 51.951 10 ,train

LooE  
 

52.062 10test

LooE   , respectively, and the corresponding training 

time is 0.0042 s. 

 
Figure 2  Performance of ELM respect to combinations of λ and L 

 

 
Figure 3  Recognition performance and training time under 

different L in ELM 
 

3.3  Optimization and realization of PLSR and PCR model 

To further explore the feasibility of terahertz spectroscopy for 

hybrid purity verification of race seed combined with different 

chemometric tools, two other powerful and widely used 

multivariate calibration method, PLSR and PCR, were also 

employed.  Both PCR and PLSR methods have been applied 

diffusely and successfully in the quantitative analysis of THz 

spectroscopy data because of their ability to overcome problems 

common to this data such as collinearity, band overlaps and 

interactions and ease of their implementation.  However, different 

from the ELM method, which build the model with whole spectral 

range, PCR and PLSR reduce the dimension of the spectroscopy 

data and compresses the information into a few new variables 

called principal components.   

In principle, the number of principal component often affects 

the prediction accuracy also degrade accuracy of PCR and PLSR.  

If the number of principal components used in modeling is too 

small, the insufficient fitting may occur, that is, the selected 

principal components do not adequately reflect the special 

information which made the hybrid rice different from others and 

the model prediction accuracy will be reduced.  Conversely if the 

number of components used in modeling is too large, some factors 

that represent the interference factors, non-modeled interferences, 

background variations and interactions may be introduced into the 

model, which may also degrade model performance.   

Therefore, in order to build well-fitted model and avoid 

non-modeled interferences with the training set, MSEP combined 

with LOO cross-validation, ELoo, was also be used herein for 

choosing the optimal number of principle components in PLSR and 
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PCR.  As shown in Figure 4, the prediction errors ELoo of PLSR 

model and PCR model reach the minimum value when the 5 and 8 

principal components were selected respectively. 

 
Figure 4  Estimated ELoo using PLSR and PCR for the purity of 

training set under different number of principle components 

4  Results and analysis 

4.1  Experimental results 

Figure 5 shows the predicted purity and the desired purity for 

the training set and testing set with PCR, PLSR and ELM model 

under the selected parameters.  The results of PLSR and PCR are 

offset horizontally for clarity.  The vertical ordinate represents the 

predicted results and the horizontal ordinate represents the real 

purity of the seed samples.  The corresponding ELoo and R2 

obtained for the training and testing set are summarized in Table 1.   

 
a. Training set                     b. Testing set 

Figure 5  Purity prediction results of the PLSR, PCR and ELM 

model for the training set and testing set 
 

Table 1  Statistical quantities, ELOO and R2, for the ELM, PCR 

and PLS-based training and testing set 

Method 
Training set Testing set 

train

LooE  R
2
 

test

LooE  R
2
 

ELM 1.906×10
-5 

0.9989 2.005×10
-5

 0.9675 

PLSR 2.097×10
-5

 0.9987 7.346×10
-5

 0.8810 

PCR 1.978×10
-5

 0.9988 8.007×10
-5

 0.8703 
 

Here, R2 represents coefficient of determination, which 

provides a measure of how well observed outcomes are replicated 

by the model, based on the proportion of total variation of 

outcomes explained by the model.  It is defined as: 
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The larger R2 is, and the smaller the standard error is, the 

higher the precision of the model is assumed to be. 

4.2  Discussion 

Figure 5 and Table 1 show the regression results and the 

statistical quantities of models for the training set and testing set 

under the selected modeling parameter respectively.  As it can be 

observed that, with the selected modeling parameters, all the 

models can achieve a similar good performance for the training set.  

All 
train

LooE
 

according to LOO cross-validation are about 2.0×10-5, 

and the R2 are about 99.9% for ELM, PLSR and PCR.  However, 

when these calibrated models were used for the quantization of 

purity of hybrid rice seeds in testing set that did not have 

contribution in the model training steps, the performance of PLSR 

and PCR are obviously worse than that in the training set.  The R2 

and 
test

LooE
 

obtained by PLSR from the analysis of selected 5 

principle components are just 88.10% and 7.346×10-5 where those 

of PCR are only 87.03% and 8.007×10-5, respectively.  This 

deviation might be caused by many factors, such as limitation of 

the PLSR and PCR in complex and small sample calibration 

system, random noise, and so on, which made the conventional 

approaches more difficult to finish such task.  While for ELM, the 

test

LooE
 

and decision coefficient R2 of the testing set are 2.005 ×10-5 

and 96.75%, which are no significant differences with the testing 

set, indicating that the ELM model had a certain feasibility and 

stability.   

Besides, from the Figure 5, we should also note that when the 

purity is in 60%-90% the prediction error of the ELM model is less 

than 0.5%, and the 
test

LooE
 

is only about 6.3×10-6.  However, when 

the purity of the seed reach above 90%, the 
test

LooE
 

is about 

3.22×10-5, and the prediction error of the ELM model reach up to 

2.3%, which is slightly below national standards. 

5  Conclusions 

Combined with three chemometric methods, ELM, PLSR and 

PCR, this paper explores the purity detection of hybrid rice seeds 

by using the new spectral detection method-terahertz time-domain 

spectroscopy.  In order to build well-fitted model and avoid 

non-modeled interferences with the training set, MSEP combined 

with LOO cross-validation was be used for choosing the optimal 

parameters when training the models.  Compared with classical 

PLSR and PCR models, ELM presents a better feasibility and 

stability.  The quantitative prediction result of ELM 

(ELoo=2.005×10-5, R2=96.75%) is significantly better than PCR 

(ELoo=7.346×10-5, R2=88.10%) and PLSR (ELoo=8.007×10-5, 

R2=87.03%).  This result highlight the feasibility of THz 

spectroscopy combined with ELM as an efficient and reliable 

method for verification of hybrid rice seeds. 

It is worth to point out that we use the mass ratio instead of 

quantity ratio to estimate the purity of the hybrid rice seeds, thus 

when the purity of seed reaches above 90%, the prediction 

accuracy of the model decreases slightly below national standards.  

However, as an important supplement of infrared spectroscopy, the 

THz spectrum technology makes up for the shortcomings of the 

traditional methods for detecting the purity of hybrid rice seeds and 

laid a foundation for the rapid detection of the purity of hybrid rice 

seeds.  As a whole, THz spectroscopy is a very promising method 

which should be verified using various kinds of rice seeds before 

recommending its use in operational practice. 
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