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Abstract: Precision diagnosis of leaf nitrogen (N) content in arbuscular mycorrhizal inoculated crops under drought stress, 
using hyperspectral remote sensing technology, would be significant to evaluate the mycorrhizal effect on crop growth 
condition in the arid and semi-arid region.  In this study, soybean plants with inoculation and non-inoculation treatments were 
grown under severe drought, moderate drought and normal irrigation conditions.  Leaf spectral reflectance and several 
biochemical parameters were measured at 30 d, 45 d and 64 d after inoculation.  Correlation analyses were conducted between 
leaf N content and the original and first derivative spectral reflectance.  A series of first-order differential area indices and 
differential area ratio indices were proposed and explored.  Results indicated that arbuscular mycorrhizal fungi improved leaf 
N content under drought stresses, the spectral reflectance in visible to red edge regions of inoculated plants was lower than that 
of non-inoculated plants.  The first-order differential area index at bands of 638-648 nm achieved the best estimation and 
prediction accuracies in leaf N content inversion, with the determination coefficient of calibration of 0.72, root mean square 
error of prediction and relative error of prediction of 0.46 and 11.60%, respectively.  This study provides a new insight for the 
evaluation of mycorrhizal effect under drought stress and opens up a new field of application for hyperspectral remote sensing. 
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1  Introduction  

Drought is a problem of global concern and one of the most 
influential natural disasters affecting agricultural production in 
China[1].  Drought stress inhibits nutrient absorption of crops 
and ultimately affects the growth and yield[2,3].  Arbuscular 
mycorrhizal fungi are a group of important microbes closely 
associated with soil fertility and plant nutrients.  They can 
expand the absorption range and area of plant roots[4] and 
improve plant uptake of water and nutrients in soil (e.g. N), 
resulting in enhanced plant resistance to drought[5].  Studies 
have reported that arbuscular mycorrhizal fungi can promote the 
nodulation in leguminous plants and N fixation by N-fixating 
bacteria[6], thus improving the supply of N essential for plant 
growth.  To find a quick, simple, large scale and non-destructive 
method is becoming increasingly important for diagnosing N 
status of crops.  

In recent years, the spectral data measured from the leaf or  
canopy scale were used to analyze N content of crops, making it 
possible to monitor the growth condition and nutrient supply in a 
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large area.  Numerous studies have focused on the estimation of 
leaf N content using hyperspectral remote sensing data for many 
crops, such as wheat[7], spring maize[8], potato[9], etc.  The 
characteristics of hyperspectral curves under drought stress have 
been analyzed[10], and the relationships between canopy spectral 
reflectance and leaf N content have been used to generate different 
spectral indices, based on the inversion models for more accurate 
estimation of leaf N content in crops[11-13].  Feng et al.[7] found that 
there is a better correlation between the N content in leaf of winter 
wheat and the double-peak area of red-edge spectral parameters 
calculated by the first derivative treatment of the original spectra.  
Lehnert et al.[14] used the previously proposed spectral indices in 
visible spectrum reflectance to establish the inversion model for 
leaf N content of winter wheat, based on the partial least squares 
regression method, which can be used for real-time diagnosis of 
winter wheat N content.  There are also studies using airborne, 
and satellite-borne remote sensing to estimate leaf N content in 
large scales and monitor crop nutrition status rapidly and 
non-destructively[15-17].  

However, a limited number of studies have been carried out to 
combine hyperspectral remote sensing with mycorrhizal effect to 
qualitatively diagnose the N status and quantitatively invert leaf N 
content for arbuscular mycorrhizal inoculated leguminous plants 
under drought stress conditions.  The objectives of this study were 
1) to compare leaf N content and the response characteristics of 
inoculated and non-inoculated soybean under three drought stress 
levels; 2) to analyze the correlation between leaf N content and the 
first derivative spectral reflectance; 3) to develop new spectral 
indices for the inversion of leaf N content of inoculated and 
non-inoculated soybean. 
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2  Materials and methods 

2.1  Experimental design 
The study was conducted in the microbial remediation 

greenhouse at the China University of Mining and Technology 
(Beijing), during the end of July 2013.  Soybean (cv. Zhonhuang 
35) seeds were provided by Chinese Academy of Agricultural 
Sciences and planted in the pots (24 cm (top diameter)×15 cm 
(bottom diameter)×18 cm (height)).  Arbuscular mycorrhizal 
Glomus intraradices (G.i.) was provided by Plant Nutrition and 
Resources Research Institute, Beijing Academy of Agriculture and 
Forestry Sciences and preserved in our laboratory.  The samples 
of 4.8 kg/pot of sandy soil were autoclaved, dried and irrigated to 
the maximum water holding capacity (about 25.7%).  Nutrient 
solution containing NH4NO3, KH2PO4 and KNO3 was added as 
basal fertilizer before sowing seeds.  The mass fractions of N, 
phosphorus (P), potassium (K) in the soil were 100×10-6, 10×10-6 
and 150×10-6, respectively.  The plants were thinned to 2 healthy 
and uniformed plants per pot, and subjected to drought stress at the 
fourth week of emergence.  Three drought levels were tested, i.e. 
severe drought (W1), moderate drought (W2) and normal irrigation 
(W3), with the maximum water holding capacity of 35%, 55% and 
75%, respectively.  For each drought level, the plants were 
inoculated (+M) and non-inoculated, serving as control (CK).  
Each treatment was repeated four times and harvested three times, 
with a total of 72 pots.  For +M treatment, 100 g of G.i was added 
to each pot, while CK was added with an equal amount of sandy 
soil to ensure equal matrix mass.  All treatments were randomly 
arranged in the greenhouse and supplemented with an appropriate 
amount of water to compensate evaporated water by weighing the 
pots.  
2.2  Data acquisition and preprocessing 

Spectral reflectance and relevant biochemical parameters of 
leaves were measured at Day 30 (the tenth day after drought stress), 
Day 45 and Day 64 after the inoculation.  66 sets of data were 
obtained after removing the data with gross errors. 
2.2.1  Spectral measurement 

A FieldSpec3 spectrometer (Analytical Spectral Devices, 
USA) was used to measure the spectral reflectance of leaves.  
The instrument was fitted with a 25° field of view fiber optics, 
recording reflectance between 350 nm and 1050 nm with a 
sampling interval of 1.40 nm and a resolution of 3 nm, and 
reflectance between 1000-2500 nm with a sampling interval of    
2 nm and a resolution of 10 nm.  Each spectral measurement 
was preceded by an optimization measurement, and a white 
reference measurement was taken every 15 min using a white 
Spectralon® (Labsphere, Inc. New Hampshire, USA) reference 
panel.  For each pot, two leaves were selected at top, middle and 
low positions, and each leaf was measured from four angles 
mutually rotated for 90° to reduce the measurement error caused 
by leaf curl.  Ten scans were performed at each angle, yielding a 
set of 40 scans, which were averaged and used as the spectral 
reflectance data for the leaf.  For each pot, six averaged leaf 
spectra were generated to represent the reflectance spectra of the 
soybean plants.  
2.2.2  Spectral data preprocessing 

The method of nine-point weighted moving average[18] was 
used to preprocess the spectral data.  It can effectively eliminate 
the random errors and is capable of retaining the original spectral 
characteristics.  The spectral reflectance was calculated as follows:  
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where, R′i is the reflectance value after weighting by the reflectance 
of nine-point; Ri is the original reflectance at wavelength of i nm; 
Ri–4, Ri-3, Ri–2, Ri–1, Ri+1, Ri+2, Ri+3, Ri+4 are the original reflectance at 
4 wavelengths that before and after the wavelength i nm, 
respectively. 
2.2.3  Measurement of leaf biochemical parameters 

After the spectral measurement, the leaves were used for 
biochemical parameter determination.  Leaf N content was 
determined by the Kjeldahl method.  The leaves were grinded, 
sieved and weighed 0.2 g (be accurate to 0.0001 g), after drying the 
samples in an oven at 80°C for 48 h.  Then they were digested 
with H2SO4-H2O2 before being used for N determination.  Leaf 
chlorophyll content was measured using a handheld chlorophyll 
meter (SPAD-502, Minola Osaka Company, Ltd., Japan).  10-20 
spots on a leaf were randomly selected and measured.  Their 
average value was used to represent the leaf chlorophyll content of 
this leaf.  Mycorrhizal infection rate was determined using the 
Phillips and Hayman method[19] and hyphal density was determined 
by the grid intersection method[5]. 
2.3  Construction of differential area indices and statistical 
analysis 

A series of first-order differential area indices (DAI) and 
differential area ratio indices (DARI) were established in this study.  
They are areas surrounded by the curve of the first derivative 
spectra and x axis in the N-related sensitive spectral regions, which 
were implemented using Matlab 8.3 (The MathWorks, Inc., Nat-ick, 
MA, USA).  They are formulated as: 
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where, DAIλ1–λ2 indicates the first-order differential area from λ1  
to λ2 nm, wavelength λ1–λ2 nm are the N-related sensitive spectral 
regions, DARI is the ratio of two different DAIλ1–λ2 indices. 

Linear, logarithmic, second-order polynomial, power and 
exponential regressions were used to model the relationship 
between leaf N content and spectral indices.  The stability and 
reliability of the models were assessed by comparing the 
determination coefficient of calibration (Rc

2), the F value, and 
root mean square error of calibration (RMSEc).  The prediction 
ability of models was evaluated by the determination coefficient 
of prediction (Rp

2), root mean square error of prediction (RMSEp) 
and relative error of prediction (REp).  From 66 samples, 46 
samples were randomly selected for building the inversion models, 
and the remaining 20 independent samples were used for the 
validation. 

3  Results and discussion 

3.1  Changes of leaf N content in soybean after inoculation 
under drought stresses 

Infection rate is a measurement of association between the 
arbuscular mycorrhizal fungi and plants[20], and hyphal density can 
indicate the ability of the mycorrhiza in promoting plant growth and 
nutrient absorption.  Longer mycelium is better for the plant roots 
to absorb and transport water and nutrients[5].  As shown in Table 1, 
under different drought stress levels, the infection rates of roots were 
different, and the hyphal density increased with the decreasing of 
drought stress levels.  At 64 d after inoculation, the hyphal density 
was up to 1.99 m/g for normally irrigated soybean.   
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Table 1  Mycorrhizal infection rate and hyphal density of soybean plant roots under different drought stress levels 

30 d after inoculation 45 d after inoculation 64 d after inoculation 
Drought stress level 

Infection rate/% Hyphal density/m·g-1 Infection rate/% Hyphal density/m·g-1 Infection rate/% Hyphal density/m·g-1

+M 46.67±3.97 0.44±0.04 66.67±12.1 0.66±0.04 88.30±1.67 1.16±0.05 
W1 

CK 0 0 0 0 0 0 

+M 60.83±9.56 0.96±0.03 91.67±3.47 1.19±0.03 96.00±4.98 1.48±0.06 
W2 

CK 0 0 0 0 0 0 

+M 75.00±5.18 1.09±0.07 100.00±0 1.31±0.05 100.00±0 1.99±0.03 
W3 

CK 0 0 0 0 0 0 
 

The dynamic changes of leaf N content of inoculated (+M) and 
non-inoculated (CK) mycorrhizal treatments after 30 d, 45 d and  
64 d under different drought stresses are presented in Figure 1.  At 
45 d and 64 d after inoculation, leaf N content in +M and CK 
soybean plants decreased with the increasing of drought stress 
levels.  At 64 d, between two drought stresses of severe drought 
(W1) and normal irrigation (W3), there were significant differences 
in leaf N content in +M plants, and in CK plants as well.  
Furthermore, under the same drought stress level, leaf N content at 
these two dates was significantly higher in +M plants than that in 
CK plants.  However, 30 d after the inoculation, the difference in N 
content between +M and CK treatments was not significant under 
moderate drought stress level (W2) at 30 d.  This is probably 
because the plants had been subjected to drought stress only for 9 d, 
with a low mycorrhizal infection rate and a low hyphal density.  
Nevertheless, at the other two dates after inoculation, the plants had 
gained benefits through the symbiotic association formed with the 
fungi, resulting in the improved capability in the N uptake, and 
consequently, leading to a higher N content.  Therefore, leaf N 
content can be used as an indicator to evaluate the effect of 
mycorrhiza under drought stress conditions.  

 
Figure 1  Changes of leaf N content after 30 d, 45 d and 64 d of 

inoculation under different drought stresses 
 

Differences in the N content at the same inoculation date 
between the treatments were tested by the least significant 
difference (LSD) method.  Bars labelled with different letters 
indicate significant difference (p<0.05); W1, W2 and W3 indicate 
severe drought, moderate drought and normal irrigation, 
respectively; +M and CK indicate inoculation and non-inoculation 
treatments, respectively.  W1CK indicates treatment with severe 
drought and non-inoculation, W1+M indicates treatment with 
severe drought and inoculation, etc. 
3.2  Correlation between leaf N content and SPAD values 

N is a constituent of chlorophyll, while SPAD value is a direct 
indicator of chlorophyll[21].  Figure 2 shows the correlation 
between leaf N content and SPAD values under different drought 
stress levels.  Leaf N content was significantly correlated to the 

SPAD values in +M and CK soybean plants, with a correlation 
coefficient of 0.80 (p<0.01).  As shown in Figure 2, leaf N content 
increased with the increasing of SPAD values, which is consistent 
with the findings of many studies[22-24].  This result may present 
convincing evidence that extraction and analysis of the spectral 
information on chlorophyll absorption bands can be used to 
diagnose N status in soybean leaves with inoculated and 
non-inoculated under different drought stresses.  Most importantly, 
this would provide a new method for the evaluation of mycorrhizal 
effect.  

 
Figure 2  Correlation between leaf N content and SPAD values 

 

3.3  Response characteristics of spectral reflectance of 
inoculated and non-inoculated soybean under drought stresses 

Leaf spectral reflectance is the result of several intricately 
coupled parameters, i.e. pigment content, nutritional content and 
morphological characteristics, etc.[9]  In the visible to red edge 
bands (400-740 nm), it is dominated by the absorption of leaf 
chlorophyll content.  Considering the correlation between leaf N 
and SPAD values (section 3.2), the spectral features in visible to 
red-edge bands would be used to indirectly reflect leaf N content.  
The spectral reflectance measured at 45 d after inoculation was 
used as an example to illustrate the response characteristics of the 
soybean reflectance spectrum under different experimental 
treatments.  As shown in Figure 3, the reflectance of both +M 
and CK plants in the visible to red edge regions increased with the 
increasing of drought stress levels.  This is mainly due to the 
damaged chloroplast and reduced synthesis of chlorophyll caused 
by the water deficit, and then resulting in the reduction of 
chlorophyll content.  In the meanwhile, the leaves became yellow, 
which led to less light absorption and higher reflectance.  
However, under the three drought stress conditions, the 
reflectance of +M plants was all lower than that of the 
corresponding CK plants, indicating that the former had more 
chlorophyll content than the latter.  Thus we could primarily and 
qualitatively infer the N status in the inoculated and 
non-inoculated soybean under the three drought stresses. 
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Note: W1, W2 and W3 represent severe, moderate drought and normal irrigation, 
respectively; +M and CK represent inoculation and non-inoculation, respectively.  
W1CK indicates the treatment with severe drought and non-inoculation, W1+M 
indicates the treatment with severe drought and inoculation, etc. 
Figure 3  Spectral reflectance of soybean under different drought 

stress conditions 
 

3.4  Correlation between leaf N content and the first 
derivative spectral reflectance 

The correlations between leaf N content and reflectance of the 
original spectra and the first derivative spectra were analyzed, the 
results are showed in Figure 4.  Compared to the original spectral 
reflectance, the correlation coefficient relation to leaf N content 
was higher after the first derivative processing, which indicates that 

the derivate spectra improved the quantitative accuracy.  The 
result is also confirmed by other relative literatures[7,8].  This is 
because first derivative transformation can enhance the subtle 
changes in the slope of spectral curves and minimize the spectral 
noise[25].  

From Figure 4, in the wavebands of 543-547 nm, 597-613 nm, 
638-648 nm and 678-696 nm, the correlation coefficients between 
the first derivative spectral reflectance and leaf total N content 
reached higher than 0.75.  Therefore, these bands were regarded 
as the sensitive spectral regions for diagnosis of N content under 
drought stress conditions.  The established spectral indices and the 
correlations with leaf N are summarized in Table 2.  Significant 
correlations (p<0.01) were observed for several spectral indices, i.e. 
DAI543-547, AI597-613, DAI638-648, DAI678-696, DAI597-613/DAI638-648 
and DAI638-648/DAI678-696.  Therefore, these indices can be used to 
invert the leaf N content in soybean.   

 
Figure 4  Correlations between leaf N content and reflectance of 

the original spectra and the first derivative spectra 
 

Table 2  Correlations between leaf N content and spectral indices 

Spectral index Description Correlation coefficient 

DAI543-547 The first-order differential area from 543 to 547 nm  –0.75** 

DAI597–613 The first-order differential area from 597 to 613 nm  –0.76** 

DAI638-648 The first-order differential area from 638 to 648 nm  –0.80** 

DAI678-696 The first-order differential area from 678 to 696 nm  –0.77** 

DAI543-547/DAI597-613 Ratio of the first-order differential area from 543 to 547 nm and the area from 597 to 613 nm  –0.38 

DAI543-547/DAI638-648 Ratio of the first-order differential area from 543 to 547 nm to the area from 638 to 648 nm  0.07 

DAI543-547/DAI678-696 Ratio of the first-order differential area from 543 to 547 nm to the area from 678 to 696 nm  –0.17 

DAI597-613/DAI638-648 Ratio of first-order differential area from 597 to 613 nm to the area from 638 to 648 nm  0.71** 

DAI597-613/DAI678-696 Ratio of first-order differential area from 597 to 613 nm to the area from 678 to 696 nm  0.48 

DAI638-648/DAI678-696 Ratio of first-order differential area from 638 to 648 nm to the area from 678 to 696 nm  –0.57** 

Note: ** denotes significance at 0.01 level. 
 

3.5  Inversion models for leaf N content and model validation 
It should be noted that five spectral indices including DAI543-547, 

DAI597-613, DAI638-648, DAI678-696, DAI597-613/DAI638-648, with 
correlation coefficients of greater than 0.7, were selected from Table 
2, and then analyzed to establish the inversion models for leaf N 
content using linear, logarithmic, quadratic, power function and 
exponential regression methods, respectively.  The results are 
shown in Table 3.   

According to Table 3, for the DAI638-648, the optimal inversion 
model was a power function with the maximum Rc

2 and F value 
(Rc

2=0.72, F=110.97), and the minimum RMSEc (RMSEc=0.48).  
For the other indices, the optimal inversion models were all 
exponential models.  The scatterplots of the optimal models based 
on the five spectral indices are shown in Figure 5.  The DAI638-648 
model based on power function has the greatest Rc

2 and F value and 

smallest RMSEc, indicating that it is the most stable model with the 
highest accuracy, followed by the DAI597-613 model based on the 
exponential function. 

The results of model validation are presented in Table 3 as well.  
For each spectral index, only the corresponding best inversion 
model was validated.  Rp

2 values for the five inversion models are 
more than 0.5 with RMSEp and REp of less than 0.6 and 14%, 
respectively.  However, the model based on DAI638-648 index has 
the largest Rp

2 value of 0.71, and smallest RMSEp and REp of 0.46 
and 11.60%, respectively, indicating that it has the best prediction 
ability among all models tested.  Obviously, it is the best model for 
the assessment of leaf N content, and can be used to diagnose N 
status for the inoculated and non-inoculated soybean under drought 
stress conditions. 
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Table 3  Leaf N content inversion and validation, and error analysis 
Modelling parameter (n=46) Validation parameter (n=20) 

Spectral index Model 
Rc

2 F RMSEc Rp
2 RMSEp REp/% 

y = 5.39–882.28x 0.58 58.34 0.54    

y =–3.26–1.10lnx 0.54 50.61 0.56    

y = 5.29–730.29x–46905.15x2 0.57 28.60 0.55    

y = 0.64x–0.28 0.53 49.39 0.58    

DAI543-547 

y = 5.60e–226.46x 0.61 65.82 0.54 0.58 0.55 12.68 

y = 6.51–217.86x 0.63 70.05 0.50    

y = –7.26–2.51lnx 0.61 68.68 0.51    

y = 6.63–238.44x+829.01x2 0.63 36.18 0.50    

y = 0.21x–0.65 0.68 86.93 0.53    

DAI597-613 

y = 7.60e–57.53x 0.70 101.99 0.49 0.62 0.53 13.54 

y = 5.21–130.25x 0.58 60.40 0.53    

y = –3.11–1.48lnx 0.65 78.76 0.49    

y = 6.24–340.91x+8132.95x2 0.64 38.53 0.49    

y = 0.60x–0.39 0.72 110.97 0.48 0.71 0.46 11.60 

DAI638-648 

y = 5.43e–35.20x 0.68 91.56 0.51    

y = 5.78–29.61x 0.59 62.55 0.52    

y = –1.09–1.77lnx 0.57 57.27 0.54    

y = 5.93–34.78x+38.47x2 0.59 30.61 0.53    

y = 1.04x–0.46 0.61 70.58 0.56    

DAI678-696 

y = 6.29e–7.88x 0.66 83.33 0.53 0.61 0.53 13.10 

y = 0.99+2.18x 0.51 44.65 0.59    

y = 3.22+2.61lnx 0.49 42.76 0.60    

y = 1.86+0.70x+0.59x2 0.51 22.01 0.57    

y = 3.17x0.70 0.55 57.61 0.58    

DAI597-613/DAI638-648 

y = 1.75e0.58x 0.57 58.21 0.58 0.64 0.51 12.10 

Note: x indicates the spectral index and y indicates leaf N content.  The best inversion model for each spectral index is in bold. 

 
Figure 5  Scatterplots of the optimal inversion models based on the spectral indices (n=46) 

 

4  Conclusions 
This study showed that it is feasible to estimate leaf N content 

of inoculated soybean using hyperspectral remote sensing 

technology.  Leaf N content in both inoculated and non-inoculated 
soybean decreased as drought stresses increased at 45 d and 64 d 
after inoculation.  Under the same drought stress condition, the N 
content in inoculated plants was significantly higher than that in 
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non-inoculated plants, indicating that mycorrhizal inoculation 
increases the leaf N content.  The spectral features in visible to red 
edge bands sensitive to the chlorophyll content can be used to 
indirectly and qualitatively diagnose N status in inoculated and 
non-inoculated soybean under drought stress, due to a significant 
(positive) correlation between N content and SPAD values.  The 
visible bands of 543-547 nm, 597-613 nm, 638-648 nm and 678- 
696 nm are sensitive to leaf N content.  We found that the 
first-order differential area index with bands from 638-648 nm 
(DAI638-648) is the best spectral index for leaf N inversion.  The 
inversion models developed in this study were based on the dataset 
obtained from the pot experiment in the greenhouse.  However, it 
is more meaningful to diagnose the N status of inoculated crops in 
the field and evaluate the effect of mycorrhiza using remote sensing 
technology.  Future validation is needed to test the applicability of 
the models on the field or regional scale, and to assess the 
performance of the differential area indices in leaf N estimation for 
other crops. 
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