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Extracting body surface dimensions from top-view images of pigs 
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Abstract: Continuous live weight and carcass traits estimation are important for the pig production and breeding industry.  It 
is widely known that top-view images of a pig’s body (excluding its head and neck) reveal surface dimension parameters, 
which are correlated with live weight and carcass traits.  However, because a pig is not constrained when an image is captured, 
the body does not always have a straight posture.  This creates a big challenge when extracting the body surface dimension 
parameters, and consequently the live weight and carcass traits estimation has a high level of uncertainty.  The primary goal of 
this study is to propose an algorithm to automatically extract pig body surface dimension parameters, with a better accuracy, 
from top-view pig images.  Firstly, the backbone line of a pig was extracted.  Secondly, lengths of line segments 
perpendicular to the backbone line were calculated, and then feature points on the pig’s contour line were extracted based on the 
lengths variation of the perpendicular line segments.  Thirdly, the head and neck of the pig were removed from the pig’s 
contour by an ellipse.  Finally, four length and one area parameters were calculated.  The proposed algorithm was 
implemented in Matlab® (R2012b) and applied to 126 depth images of pigs.  Taking the results of the manual labeling tool as 
the gold standard, the length and area parameters could be obtained by the proposed algorithm with an accuracy of 97.71% 
(SE=1.64%) and 97.06% (SE=1.82%), respectively.  These parameters can be used to improve pig live weight and carcass 
traits estimation accuracy in the future work. 
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1  Introduction  

Pig’s live weight and the value of pig carcass are both 
important for pig production and breeding industry.  The weight 
of a pig is an important indicator of its growth and health, provides 
a valuable reference for production managers in maintaining 
nutrition and environment at a suitable level for the growing 
animals[1-3].  The value of pig carcass for meat production depends 
primarily on the relative proportions of fat and lean.  The shape of 
retail cuts and thus the carcass conformation plays an increasingly 
significant role in the meat production industry[4].  Estimates of 
carcass traits and pig weight automatically and continuously during 
a pig’s lifetime are invaluable for the pig breeder.  According to 
the estimated carcass traits and weight information, breeders can 
adjust their management regime, such as breading environment, 
nutrition, specification of a performance target, genotype choice, 
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and so on. 
The concepts of relating pig body size and shape to pig weight 

and carcass traits are not new to the field of animal science[5,6].  
Five dimension parameters in pig body surface, as shown in Figure 
1, have been used to estimate the pig’s live weight and carcass 
traits.  These parameters include one area parameter (A4) and four 
length ones (L1 to L4).   

 
a. Area parameters 

 
b. Length parameters 

Figure 1  Body surface dimension parameters of a top-view pig 
image 

 

As shown in Figure 1a, A4 is the total plane area of body, 
excluding head and neck.  A4 is the sum of A1, A2, and A3.  
Where, A1 is the plane area of shoulder, cranial to line segment GH.  
A2 is the plane area of trunk, between line segment GH and CD.  
A3 is the plane area of ham, caudal to line segment CD.  As 
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shown in Figure 1b, L1 is the width of shoulder at its widest point.  
L2 is the width of trunk at its widest point.  L3 is the width of ham 
at its widest point.  L4 is the total length of body, excluding head 
and neck. 

Previous works[2,7,10-14] had estimated the live weight of a pig 
from top-view body area characters, such as A4, as shown in Figure 
1a.  Different approaches, such as spline functions[15], linear 
regression[2], artificial neural network[3], transfer functions[11], etc., 
had been used to express the relationship between A4 and the live 
weight of the pig.   

As well as live weight estimation, several digital imaging 
techniques, such as computer tomography (CT) and magnetic 
resonance imaging (MRI), general camera imaging had been used 
to estimate pig body composition and carcass traits[6,8,9].  From the 
cost perspective, carcass traits estimation based on general camera 
images has better prospects in application.  Doeschl et al.[6] 
suggested that pig body shape characters in a top-view image, such 
as L1 to L4 shown in Figure 1b, are useful in the estimation of 
muscle size, carcass conformation and composition.  And the 
relationship between L1 to L4 and pig carcass traits was established. 

The previous work mentioned above suggested that body 
dimension parameters (L1 to L4 and A4) extraction from pig 
top-view images with high accuracy is crucial to pig breeding.  
With the widespread use of information technology in precision 
livestock farming, researchers began to extract body dimension 
parameters by using image analysis, for pigs[7,16,17], cows[18,19], and 
broilers[20]. 

There are some deficiencies in the existing researches[7,16,17] on 
body dimension parameters extraction for pig images.  Firstly, 
images with ideal pig posture were required.  That is, pig back 
should be straight, without bending.  Secondly, the arc segment 
used to cut the head and neck, say the arc KNL shown in Figure 1b, 
was determined by an ellipse fitted by the pig’s whole contour, 
which could be influenced seriously by the pig’s posture.  That is, 
different posture could bring totally different arc segment, even for 
the same pig on the same day.  Furthermore, parameters 
accuracies of the existing research were affected seriously by the 
variation in light condition, which is a common problem in image 
analysis area. 

Liu et al.[21] tried to improve the accuracy of the extracted 
dimension parameters by using two line segments determined by 
the three points in the backbone line of a pig.  But even so, the 
two line segments could not represent pig’s backbone line 
accurately, and the resulting feature points, such as points A to N in 
Figure 1b, were not accurate enough.  Furthermore, Arc segment 
for pig head and neck cutting in Liu et al.[21] was represented by a 
straight line segment located on pig neck area, which could bring a 
worse accuracy of parameters, such as L4 and A4. 

Kashiha et al.[11] used an image processing software developed 
by IMIX® (2009) to extract L1 to L4 and A4.  It represented a 
pig’s principal axis by the maximum length line segment inside the 
pig contour which passed through the grave center of the pig body 
image.  Then, four feature points (points C, D, G, and H in Figure 
1b) were extracted based on the concave and convex variation of 
the pig body between shoulder and ham.  Based on the two central 
points of segment CD and GH, as shown in Figure 1, backbone line 
of a pig was determined by three line segments which are parallel 
to the principal axis.  IMIX® software (referred to as IMIX from 
here on) adopted Bezier curve to cut pig head and neck.  The 
curve was determined by the feature points I, J, and two lines 

which were parallel to pig’s principal axis and passes through I and 
J, respectively.   

Similar with the method proposed by Liu et al.[21], backbone 
line extracted by IMIX was represent by three line segments.  The 
extracted feature points may shift from their actual position, 
especially for pigs with obvious curving body posture.  At the 
same time, due to the limited information used in IMIX to 
determine the Bezier curve, there is still room for accuracy 
improvement for pig body surface dimension parameters. 

In this paper, an algorithm, named by BSDPE (Body Shape 
Dimensions Parameters Extraction algorithm), is introduced to 
extract body surface dimension parameters (L1 to L4 and A4) from 
top-view pig images, captured by a Kinect camera, automatically.  
The main object of BSDPE is to extract the dimension parameters 
with a high accuracy, even for pigs with obvious curving body 
posture.  BSDPE did not take the variation of light condition into 
account.  That is because light condition variation has little impact 
on pig body extraction for images captured by a Kinect camera. 

2  Materials and methods 

To collect image data for the algorithm, a data collection step 
was firstly carried out to collect top-view images from a group of 
pigs under commercially conditions.  The data collection set-up is 
described below. 
2.1  Pigs and housing 

Six grower pigs, 80-90 days old, Pietrain × Topigs 20, were 
randomly selected from ‘Laverdonk’, the research farm of Agrifirm 
NV (CeHaVe, Heeswijk, the Netherlands), for the data collection in 
this research.  The experiment lasted for ten days, from 24th 
March 2014 to 2nd April 2014.  Six pigs were assigned to two 
fully slatted pens (2.85 m×3.60 m), each with three pigs.  Each 
pen was equipped with a feeder and one drink nipple.  Pigs had ad 
libitum access to feed and water. 
2.2  Image system 

The image system was comprised of a KINECT camera 
(Primesense, Carmine 1.08 3D sensor), RFID ear tags, a RFID 
reader (including an antenna), and a logging computer (DELL 
T3600), as shown in Figure 2.  The KINECT camera was    
2.28 m above the pen floor.  The RFID reader, protected by a 
protection shield, was located on one of the metal side panels of the 
feeder.  The distance of the two metal side panels was 0.45 m.  A 
RFID tag was fitted on one ear of each pig.  A pig was identified 
by the RFID ear tag value when it accessed the feeder.  Once an 
ear tag value was obtained by the RFID reader, a command was 
sent to the logging computer by the RFID reader and the computer 
activated the KINECT camera to collect images of the pig.   

 
Figure 2  Schematic diagram of the image system used in  

this study 
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2.3  Manual labelling tool 
Using the pig body surface dimension results extracted by 

manual labelling tool as the gold standard, the parameters accuracy 
of IMIX and BSDPE are compared.  Manual labelling is 
accomplished by using a Matlab software which is developed by 
M3-BIORES (a research group focus on measure, model & manage 
bioresponses in KU Leuven).  Top-view pig images are loaded 
into the software one by one.  For each image, an experienced pig 
body shape analyst select feature points and pig contour without 
head by using a mouse.  Then the software calculates dimension 
parameters (L1 to L4 and A4) automatically.  A technique flow of 
the manual labelling tool is briefly introduced in Appendix 1. 
2.4  Proposed algorithm- BSDPE 

BSDPE comprises four steps: depth image pre-processing, 
pig’s backbone line extraction, feature points extraction, and body 
surface dimension parameters calculation. 

2.4.1  Image pre-processing 
The input of BSDPE is a depth image captured by a KINECT 

camera, as shown in Figure 3b.  Different color in a depth image 
corresponds to different distance between an object and the 
KINECT camera.  The original RGB image and the grayscale 
processing result of Figure 3b are shown in Figure 3a and Figure 
3c, respectively.  After a binary processing by using Otsu’s 
method[22], besides the pig, part of the feeder and body of other 
pigs are extracted as the foreground objects, as shown in   
Figure 3d. 

A binary image with the pig only, as shown in Figure 3e, is 
acquired by extracting the largest connected region of Figure 3d.  
Then, morphological processing is carried out to remove holes and 
spindly parts in the binary image.  The morphological processing 
and edge detection results of Figure 3e are shown in Figures 3f and 
3g, respectively. 

 

 
a. Original RGB image b. Depth image c. Grayscale image d. Binary image 

   
e. The largest connected region extraction f. Morphological processing g. Edge extraction 

 

Figure 3  Image pre-processing 
 

2.4.2  Pig’s backbone line extraction 
The extraction of the 2D backbone line consists of four steps.  

Firstly, skeleton extraction, in which, a skeleton is extracted from a 
pig’s body contour.  Secondly, a skeleton reduction is carried out, 
in which, branches with end points are removed from the skeleton.  
Thirdly, two binary trees are constructed for skeleton branch points.  
Finally, skeleton segments choice, in which, the skeleton branches 
that needed to be reserved is selected based on the branch points 
binary tree and Delaunay triangulated network. 

(1) Skeleton extraction 
An iterative thinning algorithm[23] is used to extract the 

skeleton from a pig’s body contour.  The resulting skeleton of the 
pig’s body contour in Figure 3g is shown in Figure 4a. 
 

 
a. Skeleton extracted from the pig 

contour in Figure 3g 
b. Reduction operation result of the 

skeleton in Figure 4a 
 

Figure 4  Skeleton extraction and reduction 
 

(2) Skeleton reduction 
Points in a skeleton, as shown in Figure 4a, are divided into 3 

categories: end points, branch points, and general points.  The first 
and second ones are represented with star and circle points in 
Figure 4a, respectively.  All other points in a skeleton, except for 
end points and branch points, are general points.  A skeleton 
branch, started and ended with an end point or branch point, 
consists of points of the three categories mentioned above.  A 
skeleton is reduced by removing branches with end points.  The 
resulting skeleton of Figure 4a after the skeleton reduction 
operation is shown in Figure 4b, in which, all branches are started 
and ended with a branch point. 

(3) Branch points binary tree construction 
The two endpoints, denoted by sta_p and end_p respectively, 

of the longest branch in a reduced skeleton are extracted after the 
step 2.4.2.2.  Two binary trees, rooted by sta_p and end_p, are 
constructed according to the neighbour relationship among branch 
points.  Trees for branch points going to the direction of pig head 
and tail are denoted by T_h and T_t, respectively.  Binary trees of 
the reduced skeleton branch points in Figures 4b, 5d and 5e are 
shown in Figures 5a-5c, respectively.  

(4) Skeleton branches choice 
A backbone line is part of the corresponding skeleton.  It has 

the following character: except for the starting point and the 
finishing point, which has only one neighbor point, every other 
point in a backbone line has only two neighbor points.  The 
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starting point and the finishing point, denoted by backbone_start 
and backnone_end, respectively, of a backbone line are chosen 

based on the T_h, T_t, and the Delaunay triangulated network of 
the corresponding pig body contour. 

 

 
a. Branch points binary tree of skeleton in 

Figure 4b 
b. Branch points binary tree of skeleton in Figure 5d

 
c. Branch points binary tree of skeleton in Figure 5e 

 
 

 

 

 
d. Corresponding skeleton of branch points tree in Figure 5b e. Corresponding skeleton of branch points tree in Figure 5c 

 

Figure 5  Binary trees of skeleton branch points 
 

For most of T_hs, ear contours of the corresponding pig 
images are complete and symmetric.  A branch point with three 
skeleton branches will appear in neck part.  As the tree node 
number 5 in Figure 5a and tree node number 4 in Figure 5c, both of 
which have two children nodes.  For this kind of T_hs, all branch 
points corresponding to tree nodes from the root to the node with 
two children are reserved.  The branch point corresponding to the 
tree node with two children is set as the backbone_start.  However, 
there are some other pig images, the ears contours of which are 
asymmetric.  No branch point with three skeleton branches 
appears in these images.  For example, tree node number 3 in 
Figure 5b has only one child.  For this kind of T_hs, the leaf node 
(the children nodes are both NULL) is set as the backbone_start.  
Backbone_start is acquired from a T_h by using pseudo code 1. 
Pseudo code 1 
temp1=root_T_h; 
while (!(temp1.left==null && temp1.right==null) ){ 

if (temp1.left!=null && temp.left!=null) 
    break; 
else if (temp1.left!=null){ 
        temp2=temp1.left;    temp1=temp2;} 
else if (temp1.right!=null){ 
           temp2=temp1.right;     temp1=temp2; }} 

backbone_start=temp1; 

where, root_T_h is the root of the T_h. 
All branch points in a T_t have only one child node after the 

operation of skeleton reduction.  However, it does not mean that 
all branch points in the T_t should be reserved.  Actually, there 
exist some skeleton branches, such as that located between branch 
point numbers 1 and 2 in Figure 5e, deviate from pig’s backbone 
line greatly.  These branches, which could bring false feature 
points, should be removed.   

The Delaunay triangulated network is introduced to remove 
branches which deviate from pig’s backbone line greatly.  The 
spatial location relationship between the skeleton in Figure 5e and 
the corresponding Delaunay triangulated network is shown in 

Figure 6a.  Triangles in Figure 6a are a subset of triangles in 
Figure 6b, in which, triangles with an area less than ten pixels and 
triangles outside a pig contour are removed. 

 

  
a. Spatial location relationship between 

skeleton in Figure 5e and the 
corresponding triangulated network 

b. Original triangulated network of 
a pig contour 

 
Figure 6  Triangulated network of the pig contour shown in  

Figure 3g 
 

Segments deviating from pig’s backbone line greatly are 
removed and the backbone_end is then obtained by processing a 
T_t with pseudo code 2. 
Pseudo code 2 
temp1=root_T_t; 
while (!(temp1.left==NULL && temp1.right==NULL) ){ 

choose the maximum area triangle from those located between pig center 
of gravity and pig tail; 

extract intersections of backbone line and the maximum area triangle; 
if (number of intersections==1){ 

     temp1=intersection;    break;} 
else if (number of intersections==2){ 

    temp1=the intersection whose distance to backbone_start is smaller;
break;} 

     else { 
       if (temp1.left!=NULL)  Temp1=temp1.left; 
       else temp1=temp1.right;}} 

backbone_end=temp1; 
 

where, root_T_t is the root of the T_t. 
Pixel points located between backbone_start and 

backbone_end in a backbone line are stored in an array named 
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points_backbone.  The extracted backbone line for the skeleton in 
Figures 4b, 5d, and 5e are shown in Figures 7a-7c, respectively.  

In Figure7, the red lined triangle is the one with the maximum area 
of triangles located between pig’s gravity center and pig tail. 

 

   
a. Backbone line of the skeleton in Figure 4b b. Backbone line of the skeleton in Figure 5d c. Backbone line of the skeleton in Figure 5e 

 

Figure 7  Backbone line extraction 
 

2.4.3  Feature points extraction for pig contour 
Based on the backbone line extracted in section 2.4.2, lengths 

variation of line segments which are perpendicular to a backbone 
line are used to extract feature points on a pig contour.  It can be 
achieved by the following steps.  Firstly, a curve, denoted by 
cur_fit_backbone, is fitted for a backbone line.  Secondly, line 
segments which are perpendicular to cur_fit_backbone are 
extracted.  Finally, lengths of perpendicular line segments are 
calculated and feature points are extracted based on the lengths 
variation of the perpendicular line segments. 

(1) Curve fitting for backbone line 
Firstly, a curve is fitted by pixel points in a point_backbone 

which is acquired in section 2.4.2.  Secondly, the neighbour pixel 
point of backbone_end in a backbone line, denoted by 
backbone_end_nei, is extracted.  The intersection, denoted by 
inter_backbone_contour, of pig’s buttock contour and the tangent 

of the backbone line’s fitting curve in point backbone_end_nei is 
extracted.  Then, inter_backbone_contour is added into 
point_backbone.  Finally, cur_fit_backbone is fitted by all points 
in point_backbone.  The cur_fit_backbones of the backbone lines 
in Figures 7a-7c are shown in Figures 8a-8c, respectively.  Where, 
red smooth lines are the cur_fit_backbones, and thick white lines 
inside pig contours are backbone lines.  White circle points in 
pig’s buttock contours are inter_backbone_contours. 

(2) Perpendicular line segments extraction 
Intersections of a pig body contour and lines which are 

perpendicular to the corresponding cur_fit_backbone are extracted, 
as shown in Figures 9a-9c.  Where, blue lines are perpendicular to 
each cur_fit_backbone, which is shown with a red smooth line 
inside each pig contour.  Red points on each pig’s contour are the 
extracted intersections, based on which, the length of each 
perpendicular line segment can be calculated. 

 

   
a. From Figure 7a b. From Figure 7b c. From Figure 7c 

 

Figure 8  The cur_fit_backbone of the backbone line in Figure 7 
 

   
a. From Figure 8a b. From Figure 8b c. From Figure 8c 

 

Figure 9  Lines perpendicular to the cur_fit_backbone of the backbone line in Figure 8 
 

(3) Feature points extraction 
Starting with the line passing through the point 

inter_backbone_contour, the length of each perpendicular line 
segment is calculated one by one.  For each perpendicular line in 
Figures 9a-9c, lengths variation of perpendicular line segments are 
shown in Figures 10a-10c, respectively, with solid lines.  A 
polynomial curve, as shown in Figures 10a-10c with dashed line, is 
fitted for each solid line.  Extract the first three local maximum 
(denoted by loc_max_fit) and minimum (denoted by loc_min_fit) 
points for each polynomial curve.  Loc_max_fits and loc_min_fits 
are shown in Figures 10a-10c with hollow triangle points and 

hollow circle points, respectively.  
In ten points radius around each loc_max_fit and loc_min_fit, 

three local maximum points and minimum points on the original 
lengths variation curve, shown with solid lines in Figures 10a-10c, 
are extracted.  Local maximum (denoted by loc_max_orilen) and 
minimum (denoted by loc_min_orilen) points on the original 
lengths variation curve are shown in Figures 10a-10c with star 
points and plus points, respectively.  According to the 
loc_max_orilens and loc_min_orilens, twelve points on a pig 
contour are extracted and shown in Figures 10d-10f.  Where, 
points labelled A to J are corresponding to feature points with the 
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same number in Figure 1b.  Feature points labelled K to N will be 
acquired based on the points labelled A to J and K′ to L′ in   
Figure 10. 

Feature point M is extracted by the following steps. 
Step 1, calculate the area (denoted by S) of the shape enclosed 

by the perpendicular line segment AB (refer to Figure 10) and pig 
buttock contour. 

Step 2, starting with point A, each pixel point (denoted by P) in 
pig buttock contour is extracted sequentially in the 
counterclockwise direction.  Connect the center point of line 
segment AB (denoted by Pc) and P, and the area of the shape 
enclosed by segments PPc, APc and pig buttock contour segment 
AP is calculated, which is denoted by S′.  Repeat step 2 until 
S/2-S′<τ.  Where, τ is a threshold, which is set to be 3 in BSDPE. 

Step 3, each pixel point (denoted by M′) in a five pixel points 
radius around P is extracted sequentially in the counterclockwise 
direction.  For each M′, the distance (denoted by dist_M′_Pc) 
between M′ and Pc is calculated.  Point M′ with the largest 
dist_M′_Pc is chosen as the feature point M. 

Feature point M for each pig contour shown in Figures 10a-10c 
are shown in Figures 11a-11c with yellow triangle points, 
respectively.  Each point is labelled with a character M. 

Feature points K to N are extracted by the following steps. 
Step 1, direct least square method[24-25] is adopted to fit an 

ellipse based on pixel points in the shorter contour segments IK′ 
and JL′ (refer to Figure 10).  The fitted ellipse (denoted by E_fit) 
of each pig contour shown in Figures 10a-10c are shown in 
Figure11a to Figure 11c, respectively. 

Step 2, intersections of an E_fit and the corresponding pig 
contour are extracted.  The intersection which is nearest to K′ is 
selected to be feature point K.  The intersection which is nearest to 
L′ is selected to be feature point L. 

Step 3, the shorter arcs section of E_fit ended by feature points 
K and L are extracted, which is denoted by KLmin.  The 
intersection of KLmin and the cur_fit_backbone is selected as the 
feature point N. 

The extracted feature points K to N for Figures 10d-10f are 
shown in Figures 11a-11c, with yellow triangle points. 

 
a. Length variation of Figure 9a b. Length variation of Figure 9b c. Length variation of Figure 9c 

 

   
d. Feature points extracted from Figure 10a e. Feature points extracted from Figure 10b f. Feature points extracted from Figure 10c 

 

Figure 10  Length variations of the perpendicular line segments in Figure 9 and twelve temporary feature points extracted based on the 
variation curves 

 

   
a. Feature points for pig contour in Figure 8a b. Feature points for pig contour in Figure 8b c. Feature points for pig contour in Figure 8c 

 

Figure 11  Feature points A to N for pig contour in Figure 8 
 

2.4.4  Body surface dimension parameters calculation 
Five features are need to be extracted, among which, four 

length features (L1 to L4) and one area feature (A4).   
(1) Length features calculation 
L1 to L3 is assigned the value of the length of line segment IJ,  

EF, and AB.  Line segments AB, EF, and IJ are shown in Figure  
12 with green lines. 

For L4, the intersection of the cur_fit_backbone with line 
segment AB is extracted, which is shown in Figure 12 with yellow 
triangle and labelled by O.  Then, points M and O are connected 
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and the length of the line segment MO, denoted by len_MO, is 
calculated.  Finally, calculate the length of the cur_fit_backbone 
segment between points N and O, which is denoted by 
len_curve_NO.  The sum of len_MO and len_curve_NO is 
assigned to L4. 

(2) Area features calculation 
A1, A2, and A3 are calculated by using convex hull[26] firstly in  

this part, and then A4 is assigned to the sum of A1, A2, and A3.  
For A1, a convex hull is constructed by the line segment GH, pig 
body contour sections GIK, HJL, and the ellipse section KNL.  
The convex hull for A1 (denoted by conhull_A1) of each pig 
contour shown in Figures 8a-8c are shown in Figures 13a-3c with 
green line, respectively.  Then the area of conhull_A1 is calculated 
and assigned to A1. 

 

   
a. Line segments for pig contour in Figure 8a b. Line segments for pig contour in Figure 8b c. Line segments for pig contour in Figure 8c 

 

Figure 12  Line segments corresponding to L1 to L4 for pig contour in Figure 8 
 

   
a. Convex hulls for pig contour in Figure 8a b. Convex hulls for pig contour in Figure 8b c. Convex hulls for pig contour in Figure 8c 

 

Figure 13  Convex hulls for A1 to A3 of pig contour in Figure 8 
 

Similarly, each convex hull for A2, denoted by conhull_A2 and 
shown in Figure 13a to Figure 13c with red line, is constructed by 
line segments CD and GH, pig body contour sections CEG and 
DFH.  Each convex hull for A3, denoted by conhull_A3 and 
shown in Figure 13a to Figure 13c with yellow line, is constructed 
by line segment CD, pig body contour sections CMD.  The area of 
conhull_A2 and conhull_A3 are calculated and assigned to A2 and 
A3, respectively.  Finally, the sum of A1, A2, and A3 is assigned 
to A4.  The five features of the three pig body surfaces shown in 
Figure 8 are shown in Table 1. 

 

Table 1  Five dimension parameters (pixels) of the three pig 
body surfaces 

Pig No. L1 L2 L3 L4 A4 

1 86.55 87.55 99.6 289.58 23516 

2 94.04 92.8 97.72 309.47 25935 

3 89.46 89.17 104.8 314.23 25890 
 

3  Results and discussion 

3.1  Algorithm testing 
150 top-view depth pig images are selected randomly from the 

pig image database, which was collected by the camera system 
described in section 2.  Because adhesive pigs segmentation is not 
taken into account in the proposed algorithm, images with adhesive 
pigs are removed.  The remaining 126 images are processed and 
the body surface dimension parameters (L1 to L4 and A4 shown in 
Figure 1) are measured automatically, by using IMIX and BSDPE, 
respectively.  Using the pig body surface dimension results, 
extracted by manual labelling tool, as the gold standard, the 
parameters accuracy of IMIX and BSDPE are compared. 

With three of the 126 images (Figure 14), for example, pig 
body surface dimension parameters results comparison between 
different methods is shown in Table 2.  Where, length parameters 
(Li, i=1 to 4) and area parameter (A4) differences between IMIX or 
BSDPE and manual labelling tool are denoted by ΔLi (i=1 to 4) and 
ΔA4. 

 

   
a. Pig with a nearly straight body posture b. Pig with a slightly curving body posture c. Pig with an obvious curving body posture 

 

Figure 14  Images for parameters accuracy comparison 



September, 2018                  Lu M Z, et al.  Extracting body surface dimensions from top-view images of pigs                  Vol. 11 No.5   189 

 

Table 2  Pig body surface dimension parameters results 
comparison between different methods 

Image ID  ΔL1 ΔL2 ΔL3 ΔL4 ΔA4 

IMIX 2.57% 1.62% 2.22% 3.48% 4.17% 
1 

BSDPE 1.11% 2.83% 1.69% 2.74% 1.35% 

IMIX 3.24% 6.81% 2.21% 5.63% 5.51% 
2 

BSDPE 2.16% 1.74% 4.25% 1.94% 1.98% 

IMIX 6.97% 1.62% 1.70% 6.65% 6.23% 
3 

BSDPE 2.50% 0.07% 1.37% 3.84% 2.57% 
 

For all the 126 images, average accuracy comparison of each 
parameter obtained by BSDPE and IMIX is shown in Figure 15.   

Where, ΔLi (i=1 to 4) and ΔA4 have the same meaning with 
those in Table 2.  The data presented in Figure 15 indicate that the 
mean and SE of parameters differences of BSDPE are lower, which 
means that BSDPE can extract pig body surface dimension 
parameters with a higher accuracy and reliability than IMIX. 

 
a. Comparison of the mean of each parameter difference 

 
b. Comparison of the standard deviation (SE) of each parameter difference 

Figure 15  Comparison of length and area parameters accuracy 
 

3.2  Discussion 
Pig body surface dimension parameters can be used to estimate 

pig live weight and carcass traits.  However, pigs’ postures are 
diverse, which makes parameter extraction based on image 
processing difficult.  In this study, an algorithm, named by 
BSDPE, is proposed to extract length parameters (L1 to L4) and an 
area parameter (A4) from top-view pig depth images automatically.  
By using manual labelling results as a gold standard, the average 
accuracy of length and area parameters of BSDPE are found to be 
97.71% (SE=1.64%) and 97.06% (SE=1.82%), respectively.  
These results are better than those of IMIX, which are found to be 
95.12% (SE=2.66%) and 94.82% (SE=2.85%).  Moreover, t-test 
results show that the p-value of length and area parameters 
accuracy between BSDPE and IMIX are 6.27×10-8 (p<0.05) and 
0.0358 (p<0.05), respectively.  It means that there’s a significant 
difference between the two algorithms in parameters extraction 
accuracies. 

Parameters accuracy improvement is due to the following two 
aspects.  Firstly, backbone line extracted in BSDPE can follow 

pig’s backbone line accurately, which in turn brings more accurate 
feature points location in pig body contour.  Secondly, the curve 
used to cut pig head and neck is acquired by an ellipse which is 
fitted by pig shoulder contour points.  The variation of pig’s body 
posture has very little impact on the shape and size of the fitted 
ellipse, which brings a more reasonable curve for pig head and 
neck removing. 

In terms of a further accuracy improvement of pig body 
surface area parameters, a better method for surface area 
calculation is worth studying.  In BSDPE, area parameters are 
calculated by using convex hull.  For a pig body which has no 
concave part (such as pig body in Figures 13a and 13b), convex 
hull will return accurate area results.  However, concave part will 
exist, usually in a pig’s trunk, when the pig stands with an obvious 
curving body posture, as shown in Figure 13c.  A concave part 
will reduce area parameters accuracy calculated based on convex 
hull.  Therefore, a better area calculation method which can deal 
with concave part in pig body surface is worth to study in the 
future. 

In terms of practical application of BSDPE, the following two 
aspects should be considered in the future.  Firstly, BSDPE should 
be improved to extract dimension parameters for images with 
adhesive pigs.  It can be achieved by combining BSDPE with 
adhesive pigs segmentation method[25, 27-28].  Secondly, pig height 
should be taken into account to acquire actual pig body surface 
dimension parameters.  Images in this study were captured by 
top-view cameras.  Therefore, pig height will influence its body 
surface dimension in images.  That is, for pigs with the same 
actual body surface dimension and different height, body surface 
dimension extracted by BSDPE will be different.  This definitely 
influences the accuracy of the estimation results of live weight and 
carcass traits.  Thus, with the height information obtained from 
depth images captured by KINECT cameras, body surface 
dimension parameters extraction with height compensation should 
be considered in future work. 

4  Conclusions 

An algorithm is developed to extract pig body surface 
dimension parameters from depth images.  The algorithm is 
based upon pig body skeleton, the Delaunay triangulated network, 
and ellipse fitting.  Firstly, pig’s backbone line is extracted by 
using skeleton branch points binary tree and the Delaunay 
triangulated network.  Secondly, lengths of line segments 
defined by intersections of pig contour and lines perpendicular to 
the backbone line are calculated.  Feature points on a pig 
contour are extracted by the lengths variation of line segments 
which are perpendicular to the backbone line.  Thirdly, the head 
and neck of a pig is removed by an ellipse, which is fitted by the 
pig’s shoulder contour sections.  Finally, five pig body surface 
dimension parameters are calculated based on the feature points 
and pig contour without head and neck. 

The proposed algorithm is implemented in Matlab® (R2012b) 
and applied to 126 top-view depth pig images.  By using manual 
labelling results as a gold standard, the accuracy of length and area 
parameters extracted by BSDPE are 97.71% (SE=1.64%) and 
97.06% (SE=1.82%), respectively.  The accuracies are better than 
those of IMIX, which are 95.12% (SE=2.66%) and 94.82% 
(SE=2.85%), respectively.  The improvement of pig body surface 
dimension parameters accuracy can improve the accuracy of pig 
live weight and carcass traits estimation, which is essential for 
breeders to adjust management regime. 
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Appendix 1 

The manual labelling software is named by 
“PigAreaLabelling.exe”.  The main steps of the manual labelling 
tool are described below. 

Step 1, run “PigAreaLabelling.exe”, a window appears 
showing the template image and asking to select the points in a 
certain order, as shown in Figure 16a. 

 

 
a. Illustration of the order of points selection b. Ellipses in ham and shoulder 

 

 

 
 

 
c. End point selection for each line segment d. Border definition of pig body 

 
e. Manual labelling results 

Figure 16  Screenshots of each main step of the manual labelling tool 
 

Step 2, the operator is asked to move and resize two ellipses so 
that they are inscribed to the ham and shoulder, respectively, as 
shown in Figure 16b. 

Step 3, end points of line segments corresponding to P1AP1B, 
P3AP3B, and P5AP5B in Figure 16a, are chosen, as shown in 
Figure 16c.  The middle points of P1AP1B, P3AP3B, and 
P5AP5B are denoted by P1C, P3C, and P5C, respectively.   

Step 4, the operator is asked to draw the border of A4 (pig 
body area), as shown in Figure 16d. 

Step 5, manual labelling results are provided in a text file, as 
shown in Figure 16e.  Coordinates of each point (defined as 

shown in Figure 16a) are recorded in rows 2-9.  A4 area is 
recorded in row 11.  L1, L2, L3, P1C, P3C, and P5C are 
calculated based on the coordinates shown in Figure 16e.  L7 is 
the summation of the lengths of the following line segments: 
P7AP5C, P5CP3C, P3CP1C, and P1CP7B.  
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