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Abstract: Detection of yellow rust using hyperspectral data is of practical importance for disease control and prevention.  As 

an emerging spectral analysis method, continuous wavelet analysis (CWA) has shown great potential for the detection of plant 

diseases and insects.  Given the spectral interval of airborne or spaceborne hyperspectral sensor data differ greatly, it is 

important to understand the impact of spectral interval on the performance of CWA in detecting yellow rust in winter wheat.  

A field experiment was conducted which obtained spectral measurements of both healthy and disease-infected plants.  The 

impacts of the mother wavelet type and spectral interval on disease detection were analyzed.  The results showed that spectral 

features derived from all four mother wavelet types exhibited sufficient sensitivity to the occurrence of yellow rust.  The Mexh 

wavelet slightly outperformed the others in estimating disease severity.  Although the detecting accuracy generally declined 

with decreasing of spectral interval, relatively high accuracy levels were maintained (R2>0.7) until a spectral interval of 16 nm.   

Therefore, it is recommended that the spectral interval of hyperspectral data should be no larger than 16 nm for the detection of 

yellow rust.  The relatively loose spectral interval requirement permits extensive applications for disease detection with 

hyperspectral imagery. 
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1  Introduction

 

Crop diseases pose a major threat to crop production and 

account for 10%-40% of global yield losses[1-3].  Featured by fast, 

nondestructive characteristics, hyperspectral remote sensing is an 

efficient tool for agricultural monitoring, particularly the detection 

of diseases and insects.  In a study on the detection of rhizomania 

in sugar beet, Steddom et al.[4] observed significant changes in the 

normalized difference vegetative index (NDVI) and red green ratio 

(RGR) between healthy and symptomatic plants for both leaf and 

canopy samples.  Naidu et al.[5] analyzed changes in leaf spectral 

reflectance between grapevines infected by leafroll disease and 

healthy plants; the results recommended employment of multiple 

parameters including original band reflectance at 684 nm, 752 nm, 

and 970 nm, a vegetation index (VI), and the photochemical/ 
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physiological reflectance index (PRI) for detection of the disease in 

both symptomatic and non-symptomatic leaves.  In a case study 

on the detection of powdery mildew in winter wheat canopies using 

leaf hyperspectral data, Zhang et al.[6] formed an optimal disease 

detection model based on several spectral features, including three 

VIs (the chlorophyll absorption in reflectance index (CARI), 

modified CARI (MCARI), and green normalized difference 

vegetation index (GNDVI)), two derivative spectral features (the 

sum of 1st derivative values within the blue edge (SDb) and the 

maximum value of the first derivative within the blue edge (Db)), a 

continuous removal transformed spectral feature (Wid), and the 

reflectance of green bands corresponding to the band setting of 

Landsat-5 TM (RG).  Castro et al.[7] applied hyperspectral 

techniques for the early detection of laurel wilt disease in avocado 

plants.  Their results suggested that the combination of features 

including transformed CARI (TCARI), GNDVI, NIR/G, 

Red-edge/G, and the Green vegetation index (VIGreen) can achieve 

the optimal performance in early detection of the disease.   

To detect crop diseases with hyperspectral data, it is important 

to apply spectral analysis methods to fully utilize the wealth 

information contained in the spectral dimension[8,9].  As an 

emerging spectral analytical technique, continuous wavelet analysis 

(CWA) was recently introduced to process vegetative hyperspectral 

data[10,11].  Its capability for continuous signal decomposition on 

both wavelength and scale dimensions, provides CWA with the 

ability for diverse feature selection traversal in feature selection.  

In addition, rather than using spectral intensity information, CWA 

focuses on variations in spectral shape, which can potentially 

enhance its resistivity to noise[12].  Recently, CWA has revealed 

great potential for extracting wavelet features for the detection of 
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several diseases and insects, such as yellow rust, powdery mildew, 

and aphids in winter wheat[13-15].  Compared with conventional 

spectral features (e.g., vegetation indices, spectral derivative 

analysis, continuous removal analysis), the superior performance of 

CWA-derived features makes it a promising tool for monitoring 

diseases and insects with remote sensing data.   

From a practical perspective, it is important to conduct CWA 

analysis on airborne or spaceborne hyperspectral imagery data to 

allow monitoring or mapping of crop diseases on a parcel level.  

However, the spectral quality (particularly the spectral interval) of 

hyperspectral imagery data is considerably lower than that of data 

from field spectrometers, such as the ASD Fieldspec spectrometer.  

Given the high cost and low availability of hyperspectral imagers, 

sometimes hyperspectral imaging sensors with relatively large 

spectral interval are also considered in field campaigns.  Therefore, 

it is necessary to understand the impact of spectral interval on the 

performance of CWA in detecting crop diseases.  In addition, the 

influence of the type of mother wavelet used in the analysis, which 

is another important determinant of CWA performance on crop 

disease detection, is also unknown.  Therefore, the objectives of 

this study were to: (1) evaluate the influence of mother wavelet 

type on the performance of CWA in disease monitoring; (2) assess 

the impact of spectral interval on CWA; and (3) examine the 

capability of wavelet features for disease detection based on the 

accuracy of estimation models.   

2  Materials and methods 

2.1  Experiments and data collection 

Experiments were conducted in an experimental winter wheat 

field at Beijing Xiaotangshan Precision Agriculture Experimental 

Base, Beijing, China (40º10.6ʹN, 116º26.3ʹE) during the 2010-2011 

growing seasons.  A winter wheat cultivar susceptible to yellow 

rust disease, Jingdong 9843, was used as the subject of the 

experiment.  The soil in the field was characterized as silt-clay 

loam.  The recommended fertilization and irrigation rates for this 

cultivar (200 kg/hm2 nitrogen and 450 m3/hm2 water) were applied.  

For yellow rust inoculation, the plants were sprayed with summer 

spores according to the National Plant Protection Standard[16].  

Two spore concentration levels were used to create a gradient of 

infection severity: 4 mg/100 mL and 7.5 mg/100 mL, with a dosage 

of 5 mL spore solution per square meter.  To prevent the 

occasional infection of the reference area (healthy plants), a 

fungicide spray procedure was implemented.  Spectral 

measurements and disease surveys were carried out from the 

jointing stage (Zodaks 37) to grain-filling stage (Zodaks 70) of 

winter wheat, considering the timing of preventive procedures.   

 
Figure 1  Disease symptoms and spectral behavior of yellow rust 

2.1.1  Spectral measurements and processing 

To collect leaf spectral measurements, wheat leaves were cut 

from plants with scissors and stored on ice.  To avoid dehydration, 

the collected samples were immediately transported to a nearby 

laboratory within 20 min, and the spectral measurements were 

conducted.  During the experimental period, a total of 198 leaf 

samples consisting of 55 healthy and 143 diseased leaves of various 

severities were collected.  The samples were randomly grouped 

with a proportion of 60:40 percent for calibration and validation. 

Leaf spectra were taken with a FieldSpec® UV/VNIR 

spectroradiometer (ASD Inc., Boulder, Colorado, USA) and an 

ASD Leaf Clip.  The wavelength range of this system is from  

350 nm to 2500 nm.  Ten measurements were taken and averaged 

to obtain a spectrum for each leaf.  The spectrum of a white 

reference panel with 99% reflectance was measured to convert the 

radiance to reflectance after measurements of every 10 leaves.  

The raw spectral data were processed using ViewSpec software 

(commercial software for the ASD spectroradiometer).  After 

processing, reflectance spectra with 1-nm interval were obtained 

for analysis.  A digital color photo was taken immediately after 

each spectral measurement for determination of disease severity.  

To assess the influence of the spectral interval on CWA, the 

original spectra were resampled to create a series of datasets with 

different spectral gaps.  In addition to the original spectral data 

with a 1-nm interval, the spectra were resampled to form datasets 

with spectral intervals of 2 nm, 4 nm, 8 nm, 16 nm, 32 nm, and  

64 nm.  These measurements thus constituted a gradient of 

spectral intervals.  A resampled spectrum with different spectral 

intervals is shown in Figure 2.  

2.1.2  Severity determination 

The disease index (DI) was used to quantify disease severity; it 

reflects the proportion of disease pustules on the leaf[17-18].  The 

DI was estimated using image processing software based on a 

machine vision technique.  The software included two 

segmentation steps: one for identifying the leaf from the 

background, and the other for recognizing damaged areas on the 

leaf.  Using visual recognition as a reference, the software yielded 

a DI estimation accuracy of over 95%.  

2.2  Continuous wavelet analysis of spectral data 

Leaf spectra were analyzed using CWA to extract the most 

appropriate wavelet features for disease detection.  The CWA 

workflow includes wavelet decomposition of the spectral signal, 

derivation of wavelet features, and performance assessment. 

2.2.1  Wavelet decomposition of spectral data 

As a central process of CWA, wavelet decomposition is 

implemented to convert each original spectrum to a set of energy 

coefficients on continuous wavelengths and scales according to a 

mother wavelet function.  The transformation is conducted 

according to the following equation:   

, ,( , ) , ( ) ( )f a b a bW a b f f d



                (2) 

where, Ψ(λ) indicates the mother wavelet; a is a scaling factor 

indicating the wavelet’s width; b is a shifting factor indicating the 

position of the wavelet; and f(λ) is the hyperspectral reflectance 

spectrum (λ=1, 2, … n; n is the number of wavebands).  The 

coefficients Wf (ai,bj); i=1, 2,…, m; j=1, 2,…, n) constitute a 

scalogram with two dimensions, where one is scale and the other is 

waveband (m×n matrix).  Only the wavelet powers at dyadic 

scales (e.g., 21, 22, 23, …, and 210) were retained to reduce the 

computational load[10-11].  To assess the influence of the type of 

mother wavelet on the performance of CWA, four different mother 



140   November, 2018                       Int J Agric & Biol Eng      Open Access at https://www.ijabe.org                        Vol. 11 No.6 

wavelets were tested in the analysis: Gaus1, Mexh, Meyr, and Morl.  The function curves of the four wavelets are shown in Figure 3. 

 
Figure 2  Demonstration of a spectrum resampled with different spectral intervals 

 
Figure 3  Function curves of four different wavelets 
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2.2.2  Derivation of wavelet features 

To analyze the correlations between the decomposed wavelet 

energy coefficients and disease severity, a correlation scalogram 

was generated to indicate the suitability of wavelet features at 

continuous wavelengths and scales.  To achieve this purpose, the 

coefficients of determination (R2) for linear correlations between 

wavelet coefficients and DIs across all measurements were 

calculated.  The R2 values corresponding to different wavelengths 

and scales can thus form a correlation scalogram, which is also an 

m×n matrix.  The wavelet features can be identified based on this 

correlation scalogram and a thresholding method[10,13].  In this 

study, 1% was used as the threshold, indicating elements in the top 

1% based on corresponding R2 values in the correlation scalogram.  

To guarantee that the wavelet features had sufficient stability, only 

regions with four or more elements were retained in the analysis.  

Within each feature region, only the element with the highest R2 

value was retained as the CWA feature for disease detection.  

Because a spectral response dominated by leaf water content is 

significantly weaker than that dominated by pigments and visible 

symptoms, the feature selection was conducted over a wavelength 

range of 350-1300 nm (response to pigment variation and visible 

disease symptoms) and 1300-2500 nm (response to variation in leaf 

water content).  The feature selection was first performed on the 

original spectral data with four different mother wavelets.  Then, 

based on the mother wavelet with the highest sensitivity to disease 

severity, the feature selection was further performed on the 

resampled spectral datasets with different spectral intervals.  The 

identified features corresponding to different mother wavelets and 

different spectral intervals were used to support subsequent 

modeling processes and the analysis of the influences of mother 

wavelet type and spectral interval.  

2.3  Performance assessment of wavelet features in disease 

detection 

To link the identified wavelet features with disease severity of 

yellow rust, models for estimating disease severity were established 

with partial least square regression (PLSR) analysis.  For wavelet 

features corresponding to different mother wavelet types and 

datasets with different spectral intervals, the models were trained 

with 60% of the data (calibration samples) and validated against the 

remaining 40% of the data (validation samples).  To assess and 

compare different model forms, two indices, the coefficient of 

determination (R2) and the root mean square error (RMSE), were 

used as accuracy indicators.  All statistical analyses were 

implemented in SPSS 19.0.  The entire workflow of the analysis is 

illustrated in Figure 4.  

 
Figure 4  Workflow of data processing and analysis 

3  Results and discussion 

3.1  Wavelet features derived from different mother wavelet 

types 

Based on the training data, four correlation scalograms 

corresponding to different types of mother wavelets were generated 

(Figure 5).  In general, significant differences were observed 

among the four correlation scalograms.  The correlation 

scalogram for Gaus1 was similar to that for Mexh, whereas the 

correlation scalogram for Meyr was similar to that for Morl.  Such 

a pattern may be related to the similarity of the shapes of the 

mother wavelets (Figure 3).  Following the feature selection 

protocol as described in Section 2.2.2, different numbers of wavelet 

features were identified corresponding to the four mother wavelets.  

The transformations according to the Gaus1, Mexh, Meyr, and 

Morl mother wavelets yielded 6, 7, 8, and 11 features, respectively.   

 
Figure 5  Correlation scalogram of continuous wavelet analysis with different types of mother wavelets 

 

As seen in Table 1, regardless of the mother wavelet type, 

many wavelet features were distributed around the red to 

near-infrared spectral region (620-780 nm).  In this region, 

spectral variation is closely associated with the absorption of 

photosynthetic pigments (mostly chlorophyll and carotenoids).  

Disease infection will destroy chloroplasts, causing spectral 

variation in this region[19].  Moreover, given that yellow rust 

pustules are orange in color, the presence of these pustules also 
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changes the reflectance of red bands[20,21].  Among the wavelet 

features within the red to near-infrared spectral regions, a certain 

proportion was distributed around the red-edge region (670-    

760 nm), where a strong response of the spectral signal to plant 

stresses is typically observed.  The reflectance in spectral regions 

beyond 1300 nm is governed by the absorption of vegetation water 

content.  Given that the disease also induces dehydration[19], a 

number of wavelet features were identified in this region.  
 

Table 1  Summery of wavelet features and corresponding 

accuracies 

Wavelet 

features 
Scale 

Central 

wavelength/nm 

Wavelet 

features 
Scale 

Central 

wavelength/nm 

WF_Gaus1_01 3 488 WF_Mexh_01 3 633 

WF_Gaus1_02 1 643 WF_Mexh_02 8 688 

WF_Gaus1_03 4 679 WF_Mexh_03 1 706 

WF_Gaus1_04 1 695 WF_Mexh_04 3 1699 

WF_Gaus1_05 3 1918 WF_Mexh_05 3 1745 

WF_Gaus1_06 8 2145 WF_Mexh_06 4 2117 

   WF_Mexh_07 4 2181 

Accuracy 
R

2
: 0.7239,   

RMSE: 0.1373 
Accuracy 

R
2
: 0.7527,   

RMSE: 0.1343 

WF_Meyr_01 6 647 WF_Morl_01 6 621 

WF_Meyr_02 5 676 WF_Morl_02 5 641 

WF_Meyr_03 6 698 WF_Morl_03 4 645 

WF_Meyr_04 5 725 WF_Morl_04 5 665 

WF_Meyr_05 5 749 WF_Morl_05 5 687 

WF_Meyr_06 6 861 WF_Morl_06 5 709 

WF_Meyr_07 6 926 WF_Morl_07 5 732 

WF_Meyr_08 10 1853 WF_Morl_08 10 1321 

   WF_Morl_09 5 1720 

   WF_Morl_10 6 2014 

   WF_Morl_11 7 2167 

Accuracy 
R

2
: 0.7485,   

RMSE: 0.1385 
Accuracy 

R
2
:0.7110,   

RMSE: 0.1420 
 

Among the four types of mother wavelets, the identified 

wavelet features significantly differed with respect to scale and 

central wavelength (Table 1).  The wavelet features corresponding 

to Gaus1 and Mexh were located at relatively lower scales (over 

1-8) compared with those features corresponding to Meyr and Morl 

(over 5-10).  Such a difference may be related to the complexity 

of the wavelet shapes.  Because feature extraction using wavelet 

analysis mainly relies on similarities between the shape of the 

mother wavelet and the original spectral signal, it is understandable 

that mother wavelets with relatively complex shapes tend to 

capture broad spectral changes at higher scales, whereas mother 

wavelets with simple shapes tend to capture smaller spectral 

variations at lower scales.  The estimation accuracies of the 

models (Table 1) suggested that wavelet features based on Mexh 

performed slightly better in estimating the severity of yellow rust 

infection compared with features based on the other mother 

wavelet types.  As a commonly used mother wavelet, Mexh has 

been shown to concentrate energy in transformed signals and 

remove noise during spectral analysis[22,23].  More important, the 

shape of the Mexh wavelet reflects some classic vegetation 

absorption features, making it a frequently used wavelet for 

transforming vegetation spectral signals[10,13].  Based on this result, 

the Mexh wavelet is the optimal mother wavelet for extracting 

wavelet features for yellow rust detection, and was therefore used 

in subsequent analyses.  

3.2  Impact of spectral interval on CWA analysis for disease 

detection 

To investigate the influence of spectral interval on the use of 

CWA for disease detection, the original spectra were resampled to 

a series of datasets with a gradient of spectral intervals.  The 

correlation scalograms corresponding to different spectral intervals 

are demonstrated in Figure 6.  Based on the correlation 

scalograms and the capability of the identified wavelet features for 

disease detection (Table 2), a general pattern could be observed: 

the number of wavelet features decreased with decreasing spectral 

interval.  For the original spectra and those with 2 nm and 4 nm 

intervals, a total of 7 wavelet features were identified.  For the 

remaining spectral data (8-nm interval and larger), the number of 

wavelet features gradually decreased to only one (64-nm interval 

data).  

 
Figure 6  Correlation scalograms corresponding to different spectral intervals 
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Table 2  Modeling accuracy of disease detection based on 

wavelet features from datasets with different spectral intervals 

Resampled spectral interval/nm Number of features R
2
 RMSE 

Original 7 0.7527 0.1343 

2 7 0.7548 0.1338 

4 7 0.7467 0.1352 

8 6 0.7186 0.1411 

16 5 0.7208 0.1411 

32 3 0.6604 0.1628 

64 1 0.4926 0.1929 
 

The underlying basis for this phenomenon is the gradual loss 

of spectral detail with decreasing spectral interval.  In CWA, the 

continuous decomposition of a spectral signal guarantees that 

wavelet features corresponding to different scales can be separated.  

Thus, even if spectral details associated with low-scale wavelet 

features are lost, some high-scale wavelet features characterizing 

the general spectral shape can still be extracted.  This trait 

explains why the relationship between wavelet features and disease 

severity as indicated by R2 and RMSE did not vary much with 

decreasing spectral interval.  Changes in retrieval accuracy were 

particularly small, until a spectral interval of 16 nm (R2 declined 

from 0.7527 to 0.7208 and RMSE increased from 0.1343 to 0.1411, 

for original and 16-nm data, respectively).  The difference in 

retrieval accuracy for models based on the original, 2-nm interval, 

and 4-nm interval spectra could barely observed.  According to 

the Mexh correlation scalogram, several sensitive feature regions 

(marked in red in Figure 6) around the pigment absorption and 

red-edge regions (i.e., WF_Mexh_01 and WF_Mexh_03) spanned a 

couple of scales.  In addition, some sensitive feature regions 

corresponding to plant water absorption maintained relatively a 

high scale of 4-5 (i.e., WF_Mexh_06 and WF_Mexh_07).  

Therefore, it is understandable that when high-frequency spectral 

information is removed (i.e., low-scale wavelet features, 

corresponding to spectral detail), low-frequency spectral 

information (i.e., high-scale wavelet features, corresponding to the 

general spectral shape) can still respond well to disease severity.  

Such a pattern can also be visually observed from the changes of 

spectral absorption bands across different resampled spectral 

curves (Figure 2).  However, when the spectral interval decreased 

to 32 nm, the number of wavelet features within 350-1300 nm 

decreased to one, and only two features were identified within 

1300-2500 nm (Figure 6).  Such a change indicates that at this 

spectral interval, some important spectral shape information 

relevant to disease severity was lost, which led to a considerate 

drop in accuracy.  Moreover, at a larger interval of 64 nm, spectral 

detail at absorption positions was lost and the spectral curve 

resembled a line chart (Figure 2).  At this interval, only one 

wavelet feature was identified around the red-edge region (Figure 

6).  As a result, accuracy declined sharply at this interval (R2 = 

0.4926, and RMSE = 0.1929).  

Despite the fact that some conventional spectral features (i.e., 

certain VIs, spectral derivatives, or continuous removal features) 

can capture spectral changes induced by infection[14,24], the 

traversal nature of CWA optimizes the scale and position of 

wavelet features, which can potentially lead to stronger correlations 

with disease severity.  The responses of feature selection and 

estimation accuracy to changes in spectral interval suggest that the 

spectral interval of hyperspectral data should be no coarser than  

16 nm for detection of yellow rust disease with wavelet features.  

Although CWA feature extraction mainly relies on hyperspectral 

data, the relatively loose requirement for spectral interval will 

significantly facilitate data acquisition.  With the fast development 

of airborne or spaceborne hyperspectral imagers, the availability of 

data to support disease monitoring and mapping will increase.  

The next step of this research is to use real hyperspectral imaging 

data to examine the capability and feasibility of CWA-based 

strategies for disease monitoring.  Apart from disease monitoring, 

it is also necessary to investigate the influence of spectral interval 

on CWA-based feature selection and modeling for other general 

problems in vegetation remote sensing, such as the retrieval of 

biophysical and biochemical parameters.  More studies in this area 

will promote the use of CWA techniques for practical applications.  

4  Conclusions 

To improve the detection of yellow rust disease based on CWA 

of hyperspectral data, a detailed analysis with respect to the impact 

of mother wavelet type and spectral interval was conducted.  The 

major conclusions are as follows: (1) Despite the fact that the 

central wavelength and scale of wavelet features derived from 

different mother wavelet types (Gaus1, Mexh, Meyr and Morl) 

significantly differed, the accuracies of corresponding models for 

estimating disease severity were similar.  Wavelet features 

corresponding to Mexh slightly outperformed those based on the 

other mother wavelets in disease detection; therefore, Mexh is 

recommended for feature extraction.  (2) Changes in spectral 

interval influenced the number of identified wavelet features, their 

sensitivity to the disease, and the overall modeling accuracy.  The 

number of wavelet features, the features’ sensitivity, and estimation 

accuracy decreased with decreasing spectral interval; the decline 

was gradual for data with spectral intervals of 1-16 nm, but sharp 

for 32-nm and 64-nm intervals.  Therefore, it is recommended that 

the spectral interval of hyperspectral data should be no coarser than 

16 nm for disease detection.  Such a relatively loose spectral 

interval requirement will encourage the application of CWA in 

disease monitoring.  (3) The feasibility of using CWA for disease 

detection with realistic hyperspectral images should be examined in 

the future. 
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