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Abstract: Hyperspectral imaging was applied to classify the damaged wheat kernels and healthy kernels.  The spectral 

information was extracted from damaged wheat kernels and healthy kernels samples.  The effective wavelengths were 

obtained from spectral of 865-1711 nm by X-loadings of principal component analysis (PCA) and successive projection 

algorithm (SPA) method, respectively.  Partial least square method (PLS) and least square-support vector machine (LS-SVM) 

were then used to build classification models on full spectral data and effective wavelengths dataset, respectively.  The results 

showed that the classification accuracy of every LS-SVM model was the best, being 100%.  While the accuracy of the PLS 

model was slightly lower, still over 97%.  The confusion matrix showed that several damaged wheat kernels samples were 

misclassified as healthy samples, while all healthy samples were correctly classified.  The overall results indicated that 

hyperspectral imaging could be used for discriminating the damaged wheat kernels and could provide a reference for detecting 

other grain kernels grading degrees.  Further, this study can provide a research basis for the development of online or portable 

detectors on grain damaged kernels recognition, which will be beneficial for grain grading or post-harvest quality processing of 

other grains. 
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1  Introduction

 

Wheat is one of the major crops and one of the three major 

staple foods in China.  It is of great importance to classify the 

quality of wheat for the purpose of ensuring food security, realizing 

quality prices in wheat market transactions.  According to wheat 

national standards of China[1], damaged wheat kernel is one 

important degrading factor in classifying wheat grade.  The wheat 

grade depends on the proportion of damaged wheat kernels, grade 1 

and 2 requires the proportion is less than or equal to 6%, while 

grade 3, 4 requires the proportion is less than 8%, and grade 5 

requires less than or equal to 10%[1].  The damaged wheat kernels 

normally are caused by insect infestation, mechanical damage, 

diseased kernels, germinal kernels and moldy kernels during 

harvest and storage.  Such damages seriously affect the quality of 

food and the safe storage of wheat.  Conventionally, damaged 
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wheat kernels are detected by manual method, which is 

time-consuming, inefficient, and being subjective, and so on[2]. 

As a fast and non-destructive method, the spectroscopy 

technique has been widely used in crop quality detection.  A 

visible/near-infrared hyperspectral imaging system was used to 

classify aflatoxin B1 contaminated maize kernels, principal 

component analysis (PCA) and factorial discriminant analysis 

(FDA) models showed that the prediction accuracy was over 96%[3].  

Hyperspectral imaging was used to predict protein content in single 

wheat kernels by building partial least squares (PLS) regression 

models[4].  Near-infrared (NIR) hyperspectral imaging system was 

used to detect five concentration levels of Ochratoxin A (OTA) in 

contaminated wheat kernels, and PCA was applied to identify the 

key wavelengths[5].  Near-Infrared hyperspectral imaging was 

used to evaluate the diffusion of water into single wheat kernel 

sections over time with PCA and a supervised method based on the 

Non-Negative Least Squares (NNLS) algorithm[6].  Near-infrared 

hyperspectral imaging was used to detect fungal infection and 

Ochratoxin A contamination in stored wheat and PCA was applied 

to obtain significant wavelengths.  All the three classifiers of 

linear, quadratic and Mahalanobis discriminant classifiers 

differentiated healthy kernels from fungal-infected kernels with a 

classification accuracy higher 90%[7].  Besides the application on 

crop quality detection, spectroscopy technology had been widely 

used on qualitative analysis of variety[8,9], adulteration[10-14], crops 

of different years[15], etc. 

In terms of identifying damaged wheat kernels, a lot of 

research has been conducted.  The near-infrared hyperspectral 

imaging was used to detect insect-damaged wheat kernels.  In the 

result, linear discriminant analysis and quadratic discriminant 
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analysis classifiers correctly classified 85%-100% healthy and 

insect-damaged wheat kernels[16].  The short-wave near-infrared 

hyperspectral and digital color imaging were used to identify 

insect-damaged wheat kernels from healthy wheat kernels, and the 

quadratic discriminant analysis classifier gave the highest accuracy 

and correctly identified 96.4% healthy and 91.0%-100.0% 

insect-damaged[17].  The hyperspectral image was used to detect 

unsound wheat kernel with a multi-classification support vector 

machine quickly and accurately, and the total identification rate of 

the 4 classification models was over 94%[18]. 

A color machine vision system was used for the identification 

of healthy and six types of damaged kernels (broken, 

grass-green/green-frosted, black-point/smudged, mildewed, heated 

and bin-/fire-burnt).  By using a non-parametric classifier with a 

selected combined feature model of 24-color and four 

morphological features, the average classification accuracies were 

over 90%[19].  The soft X-ray imaging was used to detect fungal 

infected wheat from healthy wheat, and several models were built 

to compare classification accuracies[20]. 

Though the above researches mainly focused on the 

identification of damaged kernels, one kernel was taken as one 

sample, and different types of damaged wheat kernels were 

identified.  It is exhausting and time-consuming to pick out every 

damaged wheat kernel of different damaged degrees and collect 

corresponding spectral information one by one.  And the wheat 

grade only depended on the proportion of damaged wheat kernels 

(mixed by all types of damaged kernels), not on the single 

damaged kernel.  Thus, it’s urgent to study on identifying 

damaged wheat kernels with piles of wheat kernels and search for 

one efficient and non-destructive method with hyperspectral 

imaging technology. 

The purposes of this study were to: (1) collect wheat kernels 

samples and group them into two classifications manually, (2) 

acquire spectral imaging data of wheat kernels by the hyperspectral 

imaging system, (3) analyze effective wavelength using X-loadings 

of PCA and SPA method, (4) establish PLS and LS-SVM models 

to identify the unhealthy wheat kernels from the healthy ones based 

on full spectral data and selected effective wavelengths, 

respectively. 

2  Materials and methods 

2.1  Experimental materials 

The wheat seeds material (Shannong 12) was bought in Seed 

Company of Shandong Agricultural University in Taian city, 

Shandong Province, China.  The seeds were harvested in Taian 

city in June 2017.  According to the quality of wheat kernels, two 

categories of samples were classified: damaged and healthy.  

Samples of three types of damaged kernels including broken, 

black-point, wheat coat wrinkle were manually picked, as shown in 

Figure 1.  As shown in Figure 1a, there were black points on 

wheat kernels, which might be caused by fungi and bacteria disease.  

Figure 1b showed some incomplete wheat kernels, which were 

broken during harvest or storage.  As shown in Figure 1c, there 

were some wrinkles on the wheat kernels coat, which might be 

caused by moisture.  Figure 1d showed healthy wheat kernels, 

which were bright and smooth.  The damaged and healthy kernels 

were divided into 360 trays (diameter of 550 mm, depth of 100 mm) 

respectively.  All the trays were full of wheat kernels, and the 

surface was pushed to flat, as shown in Figure 2.  There were 360 

samples at each category, and a total of 720 samples were collected 

in this study. 

 
a. Black point       b. Broken        c. Wrinkle       d. Healthy 

Figure1  Examples of damaged and healthy wheat kernels 
 

 
a. Damaged kernels    b. Healthy kernels 

Figure 2  Samples of damaged wheat and healthy wheat 
 

2.2  Acquisition of hyperspectral images 

2.2.1  Hyperspectral imaging system 

In this study, a hyperspectral imaging system (900-1700 nm) 

with a spectral resolution of 5 nm was used.  This system was 

composed of an imaging spectrograph (ImSpector N17E, Spectral 

Imaging Ltd., Oulu, Finland), 256 CCD camera (Xeva 992; Xenics 

Infrared Solutions, Leuven, Belgium) with a camera lens 

(OPCA05G, Hamamatsu, Japan), computer and electronically 

controlled mobile platform devices (PSA200-11-X, Zolix 

Instruments Co., Ltd., Beijing, China), etc.  The system was 

placed in a dark room, four 100W halogen lamps (HSIA-LS-TAIF, 

Zolix instruments Co., Ltd., Beijing, China) were symmetrically 

placed at a 45° angle for illumination. 

2.2.2  Image acquisition and calibration 

Nine trays of samples were evenly placed on the conveyor 

three by three every time, and the parameters were set as follows: 

the scan speed was 19 mm/s, the distance between the lens and 

conveyor was 250 mm, the exposure time of the camera was 11 ms.  

The NIR hyperspectral images were collected with SpectralSENS 

(Spectral Imaging Ltd., Finland) and processed using 

ViewSpecPro6.2.0 and Envi4.6 (Environment for Visualizing 

Images software, Research Systems Inc., Boulder, CO, USA). 

To acquire a hyperspectral image under the same experimental 

conditions, the dark reference image and the white reference image 

should be captured for image calibration.  The dark reference 

image was captured by turning off the illumination and covering 

the lens of the camera with its opaque cap completely.  And the 

white reference image was captured using a standard Teflon white 

board.  Then the calibration was conducted by Equation (1)[21]. 

0
raw dark

white dark

I I
I

I I





                  (1) 

where, I0 is the calibration image; Iraw is the raw image, 
darkI  is 

the dark reference image; Iwhite is the white reference image. 

A region of interest (ROI) with a size of 100×100 pixels in the 

center of each corrected image was chosen, and the average 

reflectance spectrum of each ROI was extracted to represent each 

sample by Envi4.6. 

3  Multivariate chemometric methods 

3.1  Principal component analysis  

Principal component analysis (PCA) is usually used to reduce 

the dimensionality of the data while retaining most of the variance 

in the datasets[6].  By several principal components (PCs), each 

sample can be represented by relatively few numbers instead of 
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thousands of variables[6].  Generally, the first several PCs can 

reveal the most relevant information, and different scores of PCs 

can express the importance of each PC[21]. 

3.2  Successive projection algorithm  

The successive projection algorithm (SPA) is a forward 

selection method, which was used to select variable wavelengths 

from the full spectrum wavelengths.  Select effective sets of 

variables for multivariate calibration, and it starts with one 

wavelength, then incorporates a new one at each iteration, until a 

specified number N of wavelengths is reached[21].  

3.3  Partial Least Squares  

Partial Least Squares (PLS) is one method used for 

constructing predictive models.  As one linear discrimination 

method, the PLS algorithm is commonly used in spectral data 

analysis and can effectively eliminate the co-linearity problem of 

spectral data[8].  

3.4  Least squares support vector machines  

Least squares support vector machines (LS-SVM) 

methodology, an optimized version of the standard SVM, is one of 

the supervised learning methods (classes or composition of the 

samples in the data matrix is involved)[21-23].  It has a wide 

application for pattern recognition and function estimation.  

3.5  Software tools 

The spectra data extraction was conducted on Envi4.6, PCA 

and PLS models were carried out on Unscrambler X10.1 (CAMO 

AS, Oslo, Norway), LS-SVM models were built using LS-SVM 

v1.8 toolbox running on MATLAB R2011a(The MathWorks and 

all graphs were designed by Origin8 SR0 (Origin Lab Corporation, 

Northampton, MA, USA).  

4  Results and discussion  

4.1  Spectral profiles 

The average spectral curves of damaged wheat and healthy 

wheat covering the range of 865-1711 nm were illustrated in Figure 

3.  It could be observed that the general trends of spectral 

reflectance curves of the two groups showed similar profiles.  

From the range of 865-1130 nm, the spectral reflectance of the 

damaged wheat was higher than healthy wheat, and the trend of 

curves was fluctuant; From the range of 1130-1160 nm, the spectral 

reflectance of the damaged wheat showed similar spectral curves 

with healthy wheat and slight differences of reflectance value; 

From the range of 1160-1711 nm, the spectral reflectance of the 

damaged wheat was lower than healthy wheat, which was obvious 

as the wavelength increased.  

 
Figure 3  Mean spectral reflectance curves of wheat kernels 

The locations of the reflective valley and reflection peak were 

almost the same.  There were obvious reflective valleys around 

985 nm, 1192 nm and 1452 nm.  There were obvious reflection 

peaks at 945 nm, 1098 nm, and 1298 nm.  They were caused by 

frequency doubling or frequency absorption of C-H, N-H, O-H and 

other functional groups.  In detail, the small valley around 

960-980 nm, corresponding to second- and first-overtone O-H 

stretching[8], was associated with water strong absorption.  The 

peaks and valleys around 1100 nm to 1300 nm, corresponding to 

second- and first-overtone C-H stretching, and the significance of 

wavelengths in this region was related to starch molecules in the 

wheat kernels.  Meanwhile, the valley around 1450 nm was 

assigned to the C-H combination band[8].  

4.2  Principal component analysis 

PCA was used for qualitative analysis of discriminating 

damaged wheat kernels from the healthy wheat kernels.  PCA was 

performed on the preprocessed spectral of the two classes.  And 

the corresponding score plots based on PC1, PC2, PC3 were shown 

in Figure 4.  In the group of damaged wheat kernels and healthy 

wheat kernels, PC1, PC2 and PC3 explained 75%, 19% and 2% of 

the variations among samples, respectively.  From Figure 4, there 

was obvious differentiation between the two groups of wheat 

kernels samples, and still, slightly overlaps were observed.  To 

discriminate damaged wheat kernels from healthy ones correctly, 

the corresponding X-loadings of PC1, PC2, and PC3 would be 

analyzed, and the effective wavelengths would be selected.  And 

discriminant models needed to be investigated for classifying the 

two classes.  

 
Figure 4  3-D cluster plots based on PC1, PC2, PC3 

 

4.3  Effective wavelengths selection 

Effective wavelengths selection aims to select only a few 

wavelengths that carry most of the useful information with 

minimum replacing full spectra.  In this study, the loading values 

of PCA and SPA methods were used to select effective 

wavelengths to reduce data dimensionality. 

4.3.1  X-loadings method  

Based on PCA, X-loadings of the first 3 PCs were applied to 

identify effective wavelengths.  Figure 5 showed the loading 

plots and the corresponding labeled effective wavelengths of the 

first 3 PCs from the PCA.  Generally, peaks and valleys in 

loading plots, which revealed the relatively high absolute loading 

values, were identified as the effective wavelengths for 

discriminating damaged wheat kernels from healthy wheat 

kernels.  Figure 5 showed loading had big valleys or peaks at 

wavelengths 937 nm, 965 nm, 1129 nm, 1176 nm, 1217 nm,  

1340 nm, 1411 nm and 1677 nm.  The corresponding identified 

effective wavelengths were labeled in different curves in Figure 5 

with the arrow pointing and were shown in Table 1. 
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Figure 5  X-loadings plots of the PC1, PC2 and PC3 of PCA 

 

Table 1  Effective wavelength selected by two methods 

Method Number Wavelength/nm 

X-loading 8 937, 965, 1129, 1176, 1217, 1340, 1411, 1677 

SPA 8 935, 961, 1130, 1207, 1300, 1370, 1449, 1672 
 

4.3.2  SPA method  

SPA was used to select effective wavelengths of determining 

damaged wheat kernels from the healthy ones and the effective 

wavelengths selected from SPA were 935 nm, 961 nm, 1130 nm, 

1207 nm, 1300 nm, 1370 nm, 1449 nm and 1672 nm.  All these 

effective wavelengths are shown in Table 1. 

4.4  Classification models 

PLS and LS-SVM methodology were employed to establish 

models based on the calibration dataset for discriminating the 

damaged wheat kernels from the healthy wheat kernels.  To build 

the PLS and LS-SVM supervised classification models, the 

damaged wheat kernels and healthy wheat kernels were firstly 

assigned values of 1 and 2.  Then, samples of each category were 

divided into a calibration set and a prediction set with a ratio of 3:1, 

resulting in 270 samples and 90 samples in the calibration and the 

prediction set, respectively. 

In detail, the Gaussian RBF kernel function was chosen, and 

the parameters of γ and σ2 were optimized by a grid search 

procedure and 10-fold cross-validation.  The performances of 

LS-SVM models were evaluated by classification accuracy.  PLS 

models and LS-SVM models were established on full spectra, 

effective wavelength selected by X-loadings and SPA respectively.  

The classification results of PLS and LS-SVM models were shown 

in Table 2 and Table 3.  From Table 2, It was found that the 

accuracy of discriminating healthy wheat kernels was all 100%, 

whatever on PLS models or LS-SVM models.  All the healthy 

wheat kernels were successfully identified without samples 

misclassified.  While, as to the damaged wheat kernels, several 

samples were misclassified as healthy wheat kernels with PLS 

models, there was no misclassification on LS-SVM models.   

Overall, as shown in Table 3, LS-SVM models using full 

spectral, the effective wavelengths selected from X-loading and 

SPA all got satisfactory classification results, 100% respectively.  

And PLS models on corresponding datasets obtained satisfactory 

accuracy too, 98.9%, 98.9% and 97.2% respectively.  So LS-SVM 

models on effective wavelength obtained a better performance, 

which could be used for discriminating damaged wheat samples 

from the healthy ones, revealing the advantage of hyperspectral 

imaging technology. 

Table 2  Classification results of wheat 

Classification 
model 

Wavelength 
Selection 

variable 
Prediction 

Accuracy 
/% 

1 2 

PLS 

Full spectral 
1 88 2 97.8 

2 0 90 100 

X-loading 
1 88 2 97.8 

2 0 90 100 

SPA 
1 87 3 96.7 

2 0 90 100 

LS-SVM 

Full spectral 
1 90 0 100 

2 0 90 100 

X-loading 
1 90 0 100 

2 0 90 100 

SPA 
1 90 0 100 

2 0 90 100 
 

Table 3  Total classification accuracy on PLSR and LS-SVM 

Wavelength selection PLS/% LS-SVM/% 

Full spectral 98.9 100 

X-loading 98.9 100 

SPA 97.2 100 
 

5  Conclusions 

In this study, hyperspectral imaging was applied to 

discriminate against the damaged wheat kernels from the healthy 

wheat kernels.  Effective spectral wavelength was obtained by 

X-loadings and SPA methods.  Then PLS models and LS-SVM 

models were built on full spectral, and effective spectral datasets, 

respectively.  All the models got satisfactory results, with 

classification accuracy over 97%.  And the LS-SVM models 

performed best with classification accuracy being 100%.  

However, several damaged wheat kernels samples were 

misclassified as healthy samples with PLS models.  The results of 

this study indicated that hyperspectral imaging has the potential of 

discriminating damaged kernels in wheat samples.  In further, 

more samples with different proportion of damaged wheat kernels 

were needed for robust discrimination of wheat kernels grading.  

Additionally, the development of the portable detectors on the 

damaged wheat kernels would be beneficial for wheat kernels 

grading or post-harvest quality processing of other grains.  
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