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Abstract: Soil Plant Analysis Development (SPAD) Chlorophyll Meter reading was used to effectively characterize 
chlorophyll content, which is an important indicator of the health status of plant leaves.  In this study, the hyperspectral images 
of apple leaves infected by apple mosaic virus (ApMV) were captured, and their SPAD values were measured.  The spectral 
reflectance of leaves with varying degree infection of disease is significantly different.  In particular, the reflectance in visible 
wavebands of leaves with a more serious infection was higher than that of leaves with a less severe infection.  Several 
hyperspectral vegetation indices were highly correlated with the SPAD values of apple leaves (correlation coefficient > 0.9).  
Models were established to estimate apple foliar SPAD values based on these vegetation indices.  Among the models, the 
multivariate regression model with partial least square regression (PLSR) method achieved the highest accuracy.  The SPAD 
value of a whole apple leaf was calculated from its SPAD distribution image and used as a quantitative index to represent the 
health status of an apple leaf.  Furthermore, the SPAD value of a whole apple leaf could also be estimated rapidly and 
accurately by extracting the spectral average value of the whole leaf using a simple model.  It can be used as a rapid detection 
method of SPAD values of apple leaves to monitor and describe the health conditions of apple leaves quantitatively. 
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1  Introduction  

Apple mosaic disease is a common viral disease on apple trees 
caused by Apple mosaic virus (ApMV).  Irregular pale-yellow 
spots or bands along major veins can be found on affected leaves[1].  
Damages in mesophyll cells would cause a decrease in chlorophyll 
content, and thus decline the photosynthetic capacity of leaves.  
As a result, the apple yield will reduce considerably[2].  The health 
status and the physiological performance of a plant can be assessed 
by measuring the amount of chlorophyll content in leaves[3-5].  
Thus, the severity of mosaic diseases can be estimated by 
determining the chlorophyll content in leaves[6].  

SPAD Chlorophyll Meter is widely used to measure foliar 
chlorophyll content non-destructively, in vivo.  By measuring the 
transmittance of two light radiation at 650 nm and 940 nm, the 
instrument calculates a relative SPAD (Soil Plant Analysis 
Development) value that is highly correlated with chlorophyll 
content.  In previous researches, the coefficient of determination 
of the relationship between chlorophyll content and SPAD value 
were between 0.8-0.95[7-10].  Therefore, it is feasible to use SPAD 
value as a diagnostic indicator to reflect leaf health conditions, and 
the level of disease on apple leaves can be determined by their 
SPAD values[11,12].  Although the SPAD Chlorophyll Meter is 
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able to acquire instant SPAD data, it can only measure the 
chlorophyll content of a single point on one leaf each time.  It 
cannot obtain the SPAD value or its distribution of a whole leaf.  
However, mosaic spots or bands are distributed unevenly on leaves, 
and single-point measurement cannot accurately evaluate the 
disease level of a whole leaf.  As leaves are the basic units of 
photosynthesis of an individual plant, the health condition of a 
whole leaf should be quantitatively described.  

A hyperspectral image has the characteristic of 
image–spectrum integration.  Every pixel on the hyperspectral 
image contains abundant spectral information of the target object.  
In theory, the specific property of a target object on each pixel can 
be predicted by using a proper remote sensing inversion model 
based on their spectral signatures.  With the development of 
hyperspectral imaging technology, imaging spectrometers are 
widely used in agriculture-related processes, such as estimating 
chlorophyll[13], water[14,15], and nutrient[16,17] contents of crop leaves, 
monitoring damages caused by pests and diseases in farmland[18], 
and examining disease spots on crop fruits and seeds[19,20].  Huang 
et al.[21] quantified the disease index of yellow rust in wheat with 
photochemical reflectance index derived from aerial hyperspectral 
images.  Delalieux et al.[22] used both fluorescence and 
hyperspectral images to detect apple scab infections on leaf scale 
and found that the index ρ1480/ρ2135 had the potential to identify 
scab disease before visible symptoms appeared.  Mehrubeoglu et 
al.[23] applied the support vector machine classifier on hyperspectral 
images to identify red blotch disease on grape leaves.  Xie et al.[24] 
used image classification technique to distinguish healthy tomato 
leaves and leaves with gray mold of different severities according 
to spectral characteristics.  

Hyperspectral imagery technology has great potential to detect 
plant diseases.  However, there were few researches on apple 
mosaic disease by hyperspectral imaging.  Besides, most 
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researches focused on image classification technique when using 
hyperspectral images to identify plant diseases and used the percent 
of diseased leaf area to estimate disease severity, which is not 
objective or accurate enough[25].  Therefore, the objective of this 
paper is to develop a method that can quantitatively describe the 
severity of apple mosaic disease on leaf scale through hyperspectral 
images by detecting the SPAD value. 

2  Materials and methods 

2.1  Leaf sampling and SPAD value measurement 
A total of 160 infected (in varying severity) and healthy apple 

leaves from the cultivar ‘Gala’ were randomly collected from an 
orchard in Shaozhai Village (34°22�12��N, 108°00�45��E), 
Xinglin Town, Fufeng County, Shaanxi Province, China on June 7, 
2016, when apple trees were in their fruit filling stage.  The apple 
leaves were sealed in a plastic bag and then placed in an insulation 
box with ice bags to maintain freshness.  

The leaves were immediately transported to the laboratory for 
measurement.  With the leafstalk at the bottom, each leaf was 
divided into four sections according to the symptom, and the 
distribution and severity of disease spots within each section were 
similar.  Since the chlorophyll content of each section for each 
leaf needed to be measured, it is impossible to use the chemical 
method because  some of the sections weren’t weighted enough 
for the extraction.  Therefore, a SPAD-502 Plus Chlorophyll 
Meter (Minolta Camera Co., Ramsey, NJ, Japan) was used to 
measure foliar chlorophyll content, which could measure an area as 
small as 2 mm × 3 mm.  In order to cover the whole section, each 
section was measured ten to twenty times according to its size, and 
the average of these readings was used as the SPAD value of the 
section.  In this way, the SPAD values of 640 sections were 
recorded.  
2.2  Acquisition and processing of hyperspectral images of 
leaves 

SOC710-VP portable hyperspectral imager (Surface Optics 
Corp., San Diego, CA, USA) is an embedded push-broom 
imaging spectrometer that does not require an external scanning 
platform and possesses a visual focusing function.  The 
hyperspectral image consisted of 128 wavebands within the range 
of 400-1000 nm and 520×696 pixels.  After measuring the 
SPAD values, the apple leaves were placed on a light-absorbing 
black background cloth with a gray reference panel.  And the 
hyperspectral images of the leaves were acquired under sunlight 
in an outdoor space by using SOC710-VP.  The measurement 
was conducted between 12:00 pm to 2:00 pm in sunny weather  
and no wind or clouds.  

With the support of SRAnal 710 software, raw images were 
converted into reflectance images that could be processed by the 
remote sensing image software ENVI 5.1 (EXELIS VIS, Boulder, 
CO, USA).  The sections corresponding to the measured SPAD on 
each leaf were selected by using the ROI tool in ENVI 5.1, and the 
weighted average of spectral reflectance in each ROI was used as 
the spectrum of this section.  Therefore, the spectra of 640 

samples were obtained. 
2.3  SPAD-sensitive vegetation indices 

As the linear or nonlinear combinations of reflectance in 
several wavebands, vegetation indices (VIs) are widely used in 
remote sensing to build relationships between spectral properties 
and plant biophysical parameters.  VIs can be used to retrieve 
foliar pigments, water content, cell structure, biomass, and other 
parameters in plants[26].  A number of narrowband VIs that are  
sensitive to SPAD value or chlorophyll content were used, and the 
correlation coefficients, denoted by r, between these indices and 
SPAD values were calculated in Excel 2016 (Microsoft, Redmond, 
Wash, USA).  Five VIs with absolute r values higher than 0.9 
were selected to establish an  SPAD value estimation model of 
apple leaves (Table 1). 

 

Table 1  Vegetation indices and formulas used in this paper 

Name Formula Reference

Green Normalized Difference Vegetation Index  
(GNDVI) 

(ρ790-ρ550)/ 
(ρ790+ρ550) 

[27] 

Pigment Specific Simple Ratio for Chl a (PSSRa) ρ800/ρ680 [28] 

Pigment Specific Simple Ratio for Chl b (PSSRb) ρ800/ρ635 

Vogelmann Red Edge Index 1 (VOG1) ρ740/ρ720 [29] 

Simple Vegetation Index Ratio (SR) ρ774/ρ667 
 

2.4  Modelling methods 
First, the 640 samples were sorted in ascending order of SPAD 

values.  Then, using systematic sampling method, taking the third 
sample as the start point and taking the next sample with every 
five-sample interval, the data of the 640 samples were divided into 
a calibration subset containing 512 samples, which were used to 
build the regression models, and a validation subset containing 128 
samples, which were utilized to evaluate the regression models.  
Table 2 shows the descriptive statistics of the datasets.  

Single-element regression analyses between vegetation indices 
and SPAD values of leaves were carried out in Origin 9.0 
(OriginLab Cooperation, Northampton, USA), and the optimal 
results were selected to establish the single-element regression 
models for foliar SPAD estimation based on single VI.  

Collinearity diagnostics of VIs was carried out in SPSS 20 
(IBM Corp., Armonk, NY, USA) and the results are seen in Table 
3.  Four eigenvalues are close to 0 and two condition indices are 
larger than 30, indicating a serious problem with collinearity.  In 
such a case, multivariate linear regression will not work well.  
Partial least squares regression (PLSR) is a multivariate statistical 
analysis method.  Compared with traditional multiple regression 
method, PLSR comprehensively considers principal component 
analysis, classic correlation analysis, and multiple linear regression 
in the modeling process, effectively eliminating the collinear effect 
of independent variables[30].  Therefore, a SPAD estimation model 
based on multiple VIs was established using SIMCA-P12.0 
(Umetrics AB, Umeå, Sweden) and the PLSR was used to make 
full use of the information contained in the VIs that is highly 
correlated with foliar SPAD values.  

 

Table 2  Descriptive statistics of the apple leaves SPAD values 

 Sample number Mean Median Minimum Maximum Standard deviation

Calibration subset 512 27.2 23.7 0 69.6 17.9 

Validation subset 128 27.1 23.5 0 69.1 18.1 

All samples 640 27.2 23.6 0 69.6 17.9 
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Table 3  Collinearity diagnostics of VIs 

Dimension Eigenvalue Condition Index 
Variance Proportions 

(constant) GNDVI PSSRa PSSRb VOG1 SR 

1 5.810 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.160 6.025 0.03 0.01 0.00 0.00 0.00 0.00 

3 0.020 17.124 0.03 0.02 0.04 0.00 0.01 0.03 

4 0.008 26.702 0.06 0.47 0.03 0.00 0.04 0.00 

5 0.001 78.637 0.12 0.31 0.70 0.20 0.43 0.46 

6 0.001 95.340 0.76 0.19 0.23 0.79 0.52 0.52 
 
 

3  Results 

3.1  SPAD values and hyperspectral signatures of apple leaves 
with different disease degrees 

With the aggravation of the mosaic disease, leaves show 
small-scaled yellow and pale spots in early stages, large-scaled 
yellow and pale regions in moderate degrees, and complete 
whitening symptoms in severe cases.  Apple mosaic virus 
destroys leaf tissue structures and causes chlorophyll 
decomposition in infected regions[31].  As a result, SPAD values 
decreased, which were supported by the results of SPAD 
measurement (Figure 1).  The results also show that the SPAD 
values of the healthiest leaves exceeded 50, while with severe 
diseases corresponded to low SPAD values.  Therefore, SPAD 
value can be reasonably used as a quantitative indicator of the 
severity of the disease. 

 
Figure 1  SPAD values of infected regions with varying severity 

on an apple leaf with mosaic disease 
 

In Figure 2, the spectral reflectance in regions with different 
disease degrees, represented by various SPAD values, varies 
significantly in the visible wavelength (400-700 nm), where the 
reflectance increases evidently as SPAD values decrease.  This 
phenomenon occurs because the absorption spectrum of 
chlorophyll is mainly in the visible light range, and the chlorophyll 
decomposition in the infected regions caused by the disease 
weakens the absorption of visible light but enhances the 
reflection[32], and that is why the disease spots are in pale-yellow 
color.  In general, the spectral reflectance of the infected regions 
in the near-infrared (NIR) wavebands (700-1000 nm) is lower than 
that in normal regions because of cell structure destruction.  
However, the reflectance reduction in the NIR regions is not as 
evident as that in the visible regions.  Similar phenomena were 
found by Zhang et al.[33] and Devadas et al.[34] The possible reason 
is that chlorophyll does not interact with NIR radiation, and the 
reflection and transmission of NIR radiation is mainly determined 
by the internal structure of the leaves.  
3.2  Establishment and verification of VIs-based apple foliar 
SPAD value estimation model 

Based on simple regression analysis, five single-element apple 

 
Figure 2  Reflectance spectra of infected regions on apple leaves 

with different SPAD values 
 

foliar SPAD estimation models were established for 512 calibration 
subsets by using each of the VIs as independent variable.  These 
five models were marked as SPAD-GNDVI, SPAD-PSSRa, 
SPAD-PSSRb, SPAD-VOG1, and SPAD-SR.  A multivariate 
SPAD estimation model was established using the five VIs based 
on PLSR method as independent variables and recorded as 
SPAD-PLSR.  The coefficients of determination (R2) and the 
root-mean-square error (RMSE) of the models were used to 
evaluate the accuracy of different models.  In Table 4, 
SPAD-PLSR model shows the highest accuracy because all 
spectral information contained in the VIs is used.  Among the five 
single-element SPAD estimation models, SPAD-GNDVI shows the 
highest accuracy, and the R2 and RMSE values are similar to the 
SPAD-PLSR because of the significant correlation between the 
spectral reflectance at 550 nm and the SPAD value, as described in 
Section 3.1. 

 

Table 4  SPAD value estimation models from calibration 
dataset 

Model Formula R2 RMSE

SPAD-GNDVI y = 98.453x1
2

 + 29.651x1 + 2.8682 0.8914 5.9611
SPAD-PSSRa y = –0.4106x2

2
 + 14.926x2 – 13.464 0.8861 6.0411

SPAD-PSSRb y = –0.9461x3
2

 + 18.078x3 – 14.666 0.8536 6.8505
SPAD-VOG1 y = 124.59x4 – 122.09 0.8336 7.3026
SPAD-SR y = 9.8141x5 – 8.4326 0.8447 7.0551

SPAD-PLSR y = 19.9303x1 + 2.5317x2 + 2.44639x3 + 
2.03638x4 + 25.8519x5 – 32.5462 0.8956 5.8042

Note: y refers to SPAD, x1 refers to GNDVI, x2 refers to PSSRa, x3 refers to 
PSSRb, x4 refers to SR and x5 refers to VOG1. 

 

The prediction abilities of all models were evaluated by a 
validation subset.  Fitting analysis between the predicted SPAD 
values based on different models and the measured SPAD values 
were conducted.  R2, RMSE, relative error (REP), and the slope of 
the fitting equations were used as indices to evaluate the estimation 
accuracy (Table 5).  The prediction result of SPAD-PLSR model 
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shows the highest accuracy and thus can be used as the optimal 
SPAD estimation model.  In addition, SPAD-GNDVI model also 
presented high prediction accuracy and a relatively simple 
structure.  

 

Table 5  Evaluating the SPAD value estimation models by 
validating the dataset 

Model R2 RMSE REP (%) Slope 

SPAD-GNDVI 0.8686 3.8559 14.9464 0.9437 

SPAD-PSSRa 0.8043 5.6747 19.1126 0.8895 

SPAD-PSSRb 0.8451 4.3341 14.5974 0.9344 

SPAD-VOG1 0.8151 5.5851 18.8109 0.8963 

SPAD-SR 0.8114 5.4679 18.4165 0.8882 

SPAD-PLSR 0.8712 3.8439 13.1101 0.9515 
 

3.3  SPAD value distribution in apple leaves  
In the ENVI software, mask tool was used to remove the 

background and extract the hyperspectral images of leaves.  The 
distribution of SPAD values of apple leaves was obtained by 
calculating hyperspectral images of apple leaves pixel-by-pixel 
using the SPAD-PLSR model.  Figure 3 shows the true color 
images (Figure 3a) and SPAD value distribution images (Figure 3b) 
of three leaves in severe (leaf No.1), medium (leaf No.2), and mild 
(leaf No.3) disease level.  Each pixel value of the resulting image 
is the SPAD value of the leaf pixel.  The area percentage of 
different level of SPAD values in each leaf could be calculated 
from the frequency distribution of SPAD value (Figure 4).  This 
statistical result would help elucidate the damage accurately and 
quantitively.  In Figure 4, the SPAD values of more than 77% area 
of the whole leaf No.1 are lower than 10, indicating that 
chlorophyll in most area of the leaf was degraded because of the 
infection.  Conversely, more than 90% area of leaf No.3 shows 
SPAD values exceeding 50, which implied that this leaf is slightly 
infected and worked well.   
3.4  Estimation of SPAD values of a whole leaf 

Leaf is the basic unit of plant photosynthesis function.  The 
SPAD value of the whole leaf can be used as an indicator of its 
photosynthesis ability and can provide a general overview of its 
health condition quantitatively.  A weighted average of all pixels 
values on the SPAD value distribution image of the leaf could be 
calculated as the SPAD value for the whole leaf.  The SPAD 
values of the three whole leaves are 7.12 (leaf No.1), 17.06 (leaf 
No.2), and 58.97 (leaf No.3) respectively, which accurately reflect 
the health status and photosynthesis ability of each leaf. 

 
Figure 3  True color images of apple leaves with different disease 

levels and their corresponding SPAD value distribution images 

 
Figure 4  Area statistics (expressed as a percentage) of the 
predicted SPAD value distribution of each leaf in Figure 3.   

The SPAD values were divided into 7 classes, and the area of  
each class were counted 

 

4  Discussion 

Hyperspectral remote sensing has been an effective tool for 
monitoring the health status of vegetation and determining the 
severity of crops diseases.  Non-imaging field spectrometers, such 
as Analytical Spectral Devices (Boulder, CO, USA), have been 
widely used to detect plant diseases[6,33,35].  These spectrometers 
provide several advantages, including a wide wavelength range and 
high spectral resolution.  However, there are still several 
disadvantages.  For instance, the background cannot be eliminated 
effectively when the measurement is performed in open space.  In 
an enclosed space with an integrating sphere, the field of view is 
fixed and limited to almost a point.  Moreover, the infected 
regions on the leaves are scattered and uneven.  As such, it is hard 
for non-imaging spectrometers to acquire a pure spectrum of a 
region with diseases.  By comparison, hyperspectral imagers 
address these limitations through their photography function.  The 
pure spectra of leaf regions with different disease severities can be 
precisely extracted from hyperspectral images[36,37], and the disease 
distribution can be mapped using image recognition and 
classification techniques[23].  With these advantages, hyperspectral 
imagers are considered suitable instruments for studying plant 
diseases at the leaf and canopy scales.  In our research, a portable 
hyperspectral imaging system was used to collect the hyperspectral 
images of apple leaves with mosaic disease.  The regions where 
the spectra were extracted and where SPAD measurements were 
taken corresponded highly in the images.  As a result, the spectral 
signatures of the specific infected region were analyzed (Figure 1) 
and accurate regression models were established (Table 5). 

The determination of severity is an essential purpose of disease 
detection by remote sensing.  The criteria used to grade disease 
severity in previous studies were usually based on leaf color, 
morphology or area percentage of infected regions within a leaf, 
which were determined via a visual estimation method[6,33,38].  
However, these methods depended on the experiences of observers 
and lacked a constant and objective standard.  Therefore, 
misjudgement is inevitable.  Our observation also revealed that, in 
certain cases, a large area of the infected region in a leaf was 
estimated visually, but the disease was in its early stage and the 
damage to the leaf was mild.  While in other cases, a small area of 
the infected region was visually detected, but the disease was in a 
later stage and the damage to the leaf was serious.  Figure 5 shows 
two leaves with obviously different area percentages of infected 
regions, as determined by visual estimation, but their leaf SPAD 
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values are 21.54 (leaf No.4) and 20.73 (leaf No.5) respectively, 
which indicate that their photosynthesis abilities as whole leaves 
are very similar.  In such case, if the area percentage of infected 
regions is used as the only disease indicator, the true influence of 
the disease can be revealed partially but not comprehensively, and 
the physiological and biochemical mechanisms cannot be 
quantitatively described.  Therefore, the SPAD value and the area 
percentage of the infection severity of the whole leaf, should be 
considered as vital indicators to determine plant disease severity.  

 
Figure 5  A comparison of two leaves with different infected 

patterns but similar average SPAD values 

5  Conclusions 

SPAD values can accurately indicate the chlorophyll content of 
plant leaves and thus can be used as a quantitative indicator for the 
leaf health.  In this study, the hyperspectral images of apple leaves 
with mosaic disease were acquired by using a portable imaging 
spectrometer.  Spectral analysis results revealed that leaf regions 
with different disease levels significantly differed in the visible 
wavebands of the hyperspectral images.  VIs were selected to 
establish the regression models for apple leaf SPAD values.  
GNDVI, a normalized combination of near-infrared and green-light 
wavebands, yielded the highest correlation with the SPAD values 
of apple leaves.  SPAD estimation models with a single VI and 
multiple VIs as independent variables were prepared through 
single-element regression and PLSR.  Among the models, the 
SPAD-PLSR model with five VIs as independent variables 
achieved the highest estimation accuracy.  As such, this model 
was used as an optimal model for analyzing the hyperspectral 
images pixel by pixel, and obtained the SPAD distribution images 
of the leaves.  Furthermore, the average of all pixel values on the 
SPAD value distribution image was considered to be the SPAD 
value of the whole leaf.  In this manner, the disease level, health 
conditions, and photosynthesis of apple leaves could be 
quantitatively described.  This approach could also be used in 
other instances in which plants are exposed to stress caused by 
diseases, insects, or water and nutrients.  

In this paper, the severity of mosaic disease could be 
accurately estimated on a leaf scale by using the hyperspectral 
image.  On the basis of this research, by considering the scale 
effect, it is possible to extent this method to a larger scale to 
evaluate the health status of a whole apple tree in future studies.  
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