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Abstract: To detect the respiratory disease through pig cough sound in the early stage, a novel method based on Deep Neural 
Networks-Hidden Markov Model (DNN-HMM) was proposed to construct an acoustic model for continuous pig cough sound 
recognition.  Noises in the continuous pig sounds were eliminated by the Wiener algorithm based on wavelet thresholding the 
multitaper spectrum, and the experimental corpus was obtained from the denoised continuous pig sounds.  The 39-dimensional 
Mel Frequency Cepstral Coefficients (MFCC) extracted from the corpus were considered as feature vectors.  Sounds in pig 
farms were divided into pig coughs, non-pig coughs, and silence segments.  In the HMM, the number of hidden states of pig 
cough, non-pig cough and silence segments were 5, 5 and 3 respectively, and the observation states represented the feature 
vectors of the continuous pig sound signal.  Based on experiments and empirical theory, the DNN model with 3 hidden layers 
and 100 nodes per layer was used to describe the correspondence between hidden states and observation serials.  Through 
experiments, the context frames of DNN input were set to 5.  Under the condition of optimal parameter setting, the traditional 
acoustic model Gaussian Mixture Model-Hidden Markov Model (GMM-HMM) was compared with DNN-HMM through a 
5-fold cross-validation experiment.  It was found that the Word Error Rate (WER) of each group in DNN-HMM was lower 
than that in GMM-HMM, and the average WER was 3.45% lower.  At the same time, the best result of the DNN-HMM model 
was obtained with the lowest WER of 7.54%, and the average WER was 8.03%.  The results showed that the method of 
DNN-HMM based acoustic model for continuous pig cough sound recognition was stable and reliable. 
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1  Introduction  

The global demand for meat products is expected to increase 
steadily[1-3], while pork accounts for a huge part of the meat 
products.  At present, there is a growing trend towards large-scale, 
intensive, and standardized breeding in the global pig industry.  
However, pig respiratory diseases have become one of the most 
common and harmful diseases in pig farms.  Even though there 
are numerous kinds of pig respiratory diseases, pig cough sounds 
are the most dominant symptoms, containing vibration information 
when pig’s throat or airway is stimulated.  Thus, the monitoring of 
pig cough sound could be used to build an intelligent alarm system 
for the early detection of pig respiratory diseases[4-7].  The method 
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for pig cough detection used nowadays is the simple manual 
detection, which not only has high labor costs but also can’t 
guarantee the recognition results.  With the rapid development of 
modern information, digital signal processing, sensing techniques 
and other technology, the combination of computer science 
technology and speech characteristics analysis technology is 
proved to be more efficient.  Thus, applying the automatic speech 
recognition method to the pig cough sound recognition field is 
beneficial to the pig industry. 

By studying different characteristics of pig cough sound, 
Mitchell et al.[8] studied the cough sounds of Belgian Landrace× 
Duroc hybrid pigs, and found that the duration of cough sounds in 
sick and healthy pigs was 0.3 s and 0.21 s, respectively.  Sara et 
al.[9] studied the cough sounds of Landrace×Large White hybrid 
pigs and found that the duration of cough sounds in sick and 
healthy pigs was 0.67 s and 0.43 s, respectively, at the same time, 
the Root Mean Square and peak frequency of the cough sounds of 
sick pigs were lower than those of healthy pigs.  In the early study, 
the methods of pig cough sound recognition almost relied on 
isolated-word speech recognition methods.  Moshou et al.[10] used 
a neural network as a classifier to distinguish pig cough sounds 
from other sounds like grunts, metal clanging and noise.  The 
correct recognition rates of the 4 kinds of sounds were desirable, 
around 90.00%, but the experiments were carried out in laboratory 
conditions.  Van Hirtum and Berckmans[11,12] used a fuzzy 
c-means clustering algorithm to recognize pig cough sounds in 
laboratory conditions as well.  Although their results were as high 
as 92%, the overall error rate reached 21%.  Further study was 
done by Guarino et al.[13] who applied the dynamic time warping 
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algorithm to conduct pig cough sounds recognition in pig farm 
conditions with the 85.5% of pig cough sound and 86.6% 
non-cough sounds being correctly identified.  Liu Zhenyu et al.[14] 
realized the recognition of pig cough sound based on HMM, and 
the recognition rate reached 80.0%. 

Continuous speech recognition technology is more practical 
and efficient than the isolated word recognition method.  An 
acoustic model can describe the physical changes of the speech and 
the appropriate choice of acoustic modeling unit is very crucial for 
continuous speech recognition.  As the most common acoustic 
models, the HMM can deal with sequences of variable length.  In 
the HMM, by setting the causes of the speech signal as hidden 
states and the characteristics of the speech signal as observation 
states.  The speech signal can be described through the transitions 
of hidden states.  The wide use of HMM in human speech 
segmentation and classification builds its foundation role in 
modern speech recognition technology[15,16].  More and more 
scholars apply the HMM acoustic model to animal speech 
recognition.  In 2012, Milone et al.[17] proposed an acoustic model 
based on HMM for continuous cattle ingestive sounds recognition, 
which divided the continuous cattle ingestive sounds into three 
syllables: “chews”, “bites” and “chewbites”.  These three syllables 
were used as the HMM acoustic modeling units.  The HMM 
hidden states were the components of ingestive events and HMM 
observation states were used to describe the spectral characteristics 
of continuous cattle sounds.  More similar applications have been 
done in other kinds of animal sound recognition field.  Based on 
HMM, Reby, et al.[18] proposed a method for the recognition of the 
bouts in red deer.  Milone et al.[19] proposed the sheep ingestive 
sounds recognition and Trifa et al.[20] proposed the antbird sounds 
recognition. 

At present, there is no reported research of continuous pig 
sound recognition based on the acoustic model.  In this paper, the 
HMM[21,22] is used to construct the acoustic model of continuous 
pig sound in farm conditions.  Since the pig cough is the subject 
of study, other sounds in the pig houses can all be classified as 
non-coughs.  Therefore, pig cough and non-cough constitute the 
HMM acoustic modeling units.  The factors affecting pig cough 
and non-cough are set as hidden states of HMM, and feature 
vectors of continuous pig sound as observation states of HMM.  
DNN[23-25] is powerful in functional expression and has a strong 
ability to learn the essences of the high dimensional feature vectors.  
Its deep structure helps to extract more abstract and more 
discriminative characteristics[26,27].  DNN can be used to model 
feature vectors of continuous pig sound and to describe the 
corresponding relation between HMM observation states and 
hidden states.  In this paper, we try to take the feature vectors of 
the continuous pig sounds as inputs of DNN and take the 
probability distributions of hidden states of HMM as its outputs.  
Thus, we propose a new method for continuous pig cough 
recognition based on DNN-HMM acoustic model[28-30]. 

 
Figure 1  Flowchart of the structure of this paper 

The rest of the paper is organized in Figure 1.  The second 
part includes pig sound acquisition, noise filtering, corpus building 
and feature extraction.  The third part introduces the establishment 
and training of a continuous pig sound acoustic model.  The 
experimental results and discussion are presented in the fourth part, 
followed by the conclusions in the fifth part. 

2  Corpus building and feature extraction 

2.1  Pig sound acquisition  
Pig sound acquisition was conducted at the quality pig farm of 

Huazhong Agricultural University using a recording pen (China, 
Mrobo M66) with a sampling frequency of 48000 Hz and the 
continuous working time of 24 h.  The acquisition experiment was 
carried out in March and April, the epidemic phase of pig 
respiratory diseases.  The pig sounds were registered from       
10 Landrace pigs, 5 of which have a respiratory disease with 
apparent coughs diagnosed by veterinarians.  And the sounds 
include pig sounds of cough, sneeze, eating, scream, hum, shaking 
ears, and sounds of dogs, metal clanging and some other 
background noise.  Then the recorded signals with frequent pig 
coughs for 30 h were selected for experiments. 
2.2  Pig sound preprocessing 

Due to the complex environmental conditions in pig farms, the 
suitable filtering algorithm is vital for the recognition of pig cough 
sounds.  Figure 2a is a farm noise time-signal with duration of  
8.68 s and Figure 2b shows its frequency content, while Figure 2c 
is a continuous pig cough sound time-signal with a length of   
12.71 s and Figure 2d shows its frequency content.  From Figure 
2b and Figure 2d, it can be seen that the frequency band of farm 
noise mainly concentrates below 5000 Hz and overlaps with the 
frequency band of pig cough sounds (300-8000 Hz), which means 
the traditional digital filter (low-pass, high-pass or band pass) is not 
effective in denoising pig sounds.  In this paper, the speech 
enhancement algorithm is used to eliminate the noise in continuous 
pig sounds. 

The Wiener algorithm based on wavelet thresholding the 
multi-taper spectrum proposed in the paper of Hu et al.[31] was used 
to enhance the speech signals of pig sound.  The wavelet 
transform can get multi-scale subdivisions and focus on any details 
through scaling and translation operations.  And the threshold of 
the suppression noise level is obtained according to the difference 
between the speech and the noise.  The multi-taper spectrum is a 
nonparametric spectral estimation method that applies many 
mutually orthogonal windows to the estimated sequence of the pig 
sound sample and then obtains the average frequency spectrum.  
The algorithm can be summarized in five steps: (1) Use multi-taper 
spectrum to calculate the multi-taper power spectrum of original 
pig sounds; (2) Smooth multi-taper power spectrum of original pig 
sounds based on wavelet thresholding; (3) Calculate noise power 
spectrum based on the power spectrum of silence segment of the 
original pig sounds; (4) Calculate the ratio of the power spectrum 
of original pig sound to the noise power spectrum to obtain the a 
priori Signal to Noise Ratio (SNR); (5) Using the prior SNR to 
obtain the transfer function of the Wiener filter, and with the help 
of the transfer function, the denoised pig sound signals were 
obtained. 

For easier processing, the 30-hour original pig sound signal 
was divided into 360 segments with 5 min each denoised 
individually.  The following Figure 3 shows a denoised 
time-signal of the continuous pig cough sounds from Figure 2c 
processed by the Wiener algorithm based on wavelet thresholding 
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the multitaper spectrum.  Compared with the time-signal before 
and after speech enhancement, it can be seen that the noise in the 
pig sound signal has been significantly reduced after the 
enhancement even with almost no distortion. 

 
a. 

 
b. 

 
c. 

 
d. 

Figure 2  Pig farm environment noise analysis 
 

 
Figure 3  Time-signal of enhanced continuous pig cough sounds 

in Figure 2c 
 

2.3  Selection of experimental corpora 
Even after denoising, there are still so many different kinds of 

sounds in the continuous pig signal, posing a difficulty for 
recognizing pig cough sound.  Subsequently, based on previous 
studies on the characteristics of the pig cough sound[8,9], this paper 
study the duration and energy of individual pig cough sound in the 
experimental corpus to get the threshold ranges.  The threshold 
ranges were then set according to these two characteristics, and if 

the speech samples from the denoised continuous speech were not 
within this range, they would be removed.  After this step, we got 
the final experimental corpus.  The following describes the 
endpoint detection algorithm for detecting speech samples in 
denoised continuous speech, and then introduces the method of 
threshold selection. 

Pig sound signal endpoint detection means finding the start and 
end frame of all speech samples from a signal containing pig 
sounds.  As the noise in the 360-segment pig sound was 
significantly reduced after the speech enhancement, we performed 
the detection of speech samples by the single-parameter 
double-threshold endpoint detection method based on short-time 
energy.  For the pig sound segment y(n), the vth frame is 
expressed as yv(n) after framing, and the short-time energy of the 
pig sound signal Ev is defined as 

         
1
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where n is the sampling point number, and L is the frame 
length, which is taken as 25 ms (1200 sampling points) according 
to the short-time stationary characteristic of the speech signal. 

The single parameter in the algorithm is the normalized 
short-time energy ev.  The formula is as follows: 
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where, V is the total frames of the sound segment. 
Thresholds T1 and T2 are calculated as: 

      1 1 21.5max{ , , , }NIST e e e=              (3) 

      2 1 21.1max{ , , , }NIST e e e=              (4) 
where, NIS is the frame length of the front part of the pig sound 
segment. 

Calculated from Equation (3) and (4), T1 and T2 are 
approximately 0.02 and 0.002 respectively.  When ev is higher 
than T1, it is judged as speech frames.  When it is lower or higher 
than T2, it is determined as the start and end frames of the pig 
speech samples. 

100 pig cough samples were randomly selected from the 
denoised continuous pig signal by the endpoint detection method.  
The start and end frame of the ith pig cough sample are vbegini an 
vendi, thus the duration of the ith pig cough sample is defined as 
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where, inc represents the overlap, which is chosen to be 10 ms. 
Then calculate the average duration of the 100 pig cough 

samples by the following equation 
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The average duration of the 100 pig cough samples was 
calculated to be 0.529 s, the longest was 0.688 s, and the shortest 
was 0.388 s.  Since this threshold is not calculated from all of the 
pig cough samples from the denoised 30-hour continuous pig sound 
signal, we extended the duration of the cough sample ranged from 
0.338 to 0.738 s. 

Then, the short-time energy Ev of the vth frame of the ith pig 
cough sample is calculated by Equation (1), then the energy of the 
ith pig cough sample is obtained as 
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Further, calculate the average energy of these 100 pig cough 
samples as 
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The calculated average energy of 100 pig cough samples is 
189.60, the maximum is 822.87, and the minimum is 40.15.  We 
only consider the lower limit energy of the pig cough samples, so 
this threshold is set to 35.15.   

The endpoint detection algorithm is applied to the 360-segment 
continuous pig signal to obtain all the speech samples in the corpus.  
And then calculate the duration and energy of each sample, and 
remove those speech samples whose duration and energy are not 
within the set thresholds.  After that the speech still contains a 
large number of silence segments, so most of them are deleted 
manually.  At last, we cut 5 continuous speech samples from the 
360 segments as one sentence, and 610 sentences are obtained.  
Thus, there are 3050 speech samples in the experimental corpus, of 
which 2032 are pig cough samples and 1018 are non-pig cough 
samples.  Then label the 610 sentences, for example, the sentence 
“Sneeze, Cough, Cough, Hum, Scream” in Figure 5 can be labeled 
as “non-pig cough, pig cough, pig cough, non-pig cough, non-pig 
cough”. 
2.4  Extraction of signal characteristics  

The Mel Frequency Cepstral Coefficients (MFCC)[32,33] is 
based on the auditory mechanism of the human ear.  In MFCC, 
the linear spectrum is mapped into a non-linear Mel spectrum, and 
the spectral characteristics of the sound are analyzed based on 
human auditory experiments.  After being framed and windowed, 
the spectral energy of the pig sound signal is calculated by the Fast 
Fourier Transform (FFT).  And then apply the Mel filter to the 
energy to get the Mel filter energy and calculate its Discrete Cosine 
Transform (DCT).  As a result, we obtain a 13-dimensional 
MFCC which can reflect the static characteristics of pig speech.  
At last, we add first-order and second-order differential coefficients 
which reflect the dynamic characteristics of the speech to obtain a 
39-dimensional MFCC.  The specific steps of MFCC extraction 
are shown in Figure 4.  

 
Figure 4  Flowchart of MFCC extraction 

3  Establishment and training of pig sound acoustic 
model 

3.1  Establishment of acoustic model of pig sound 
HMM describes two stochastic processes, one is the short-time 

stationary properties of a non-stationary signal, called the 
observable process, and the other is how each short-time stationary 
property changes to the next short-time stationary property, called 
hidden dynamic process.  The sound signal of the pig farm is an 
observable sequence X={x1, x2, x3, ···, xT}, where T is their length.  
And this sequence is made by factors from pig itself or external 

conditions.  These factors can be regarded as the hidden state sets 
S={s1, s2, s3, ···, sK}, where K is the number of hidden states.  
There are three key parameters in HMM, including the initial 
hidden state probability distribution π(q1)={p(q1=si)}, where qt is 
the hidden state at time t, si is the ith hidden state in S; the 
transition probability asisj={p(qt =sj|qt–1=si)} of the hidden state from 
si to sj; and a model to estimate the observation probabilities 
p{X/S}. 

Since the object of this recognition target is pig cough, all 
other sounds could be classified as non-pig cough.  And in this 
paper, the pig cough and non-pig cough are named as pig cough 
syllable and non-cough syllable, and another silence syllable is 
introduced when the silent segments in the sentence are taken into 
consideration.  Thus, these three kinds of syllables are 
respectively represented as “ks”, “nks” and “sil”. 

In order to describe the three syllables, we use 5 hidden states 
to model the pig cough syllable or non-cough syllable, and 3 
hidden states to model the silence syllable.  So there are altogether 
13 hidden states in HMM, the hidden states of “ks” is expressed as 
{s1, s2, s3, ···, s5}, the hidden states of “nks” is expressed as {s6, ···, 
s10}, and the hidden states of “sil” is expressed as {s11, s12, s13}.  
Each hidden state has two transitions (self-loop or transition to the 
next hidden state), which we call transition-id after they are 
numbered.  So there are a total of 26 transition-ids, expressed as 
Str={s1

tr,…,s26
tr}, {si

tr,s2i
tr} is the expression of the transition-id of 

si, where si
tr represents the self-loop transition of si, s2i

tr indicates 
the transition from si to sj.  Because the continuous pig sound 
signal can be viewed as observable sequences resulting from the 
transition between hidden states, every frame from the sentence can 
be represented as a transition-id, which reflects the correspondence 
between the transitions and the hidden states.  Figure 5 shows the 
correspondence between one sentence, 3 syllables, 13 hidden states, 
and 26 transition-ids. 

 
Figure 5  Correspondence between one sentence, 3 syllables,  

13 hidden states, and 26 transition-ids 
 

The DNN-HMM acoustic model structure is shown in Figure 6.  
From the paper [34], the traditional acoustic model GMM-HMM 
could be described as the following equation: 

11
2 1

( / ) ( , / ) ( / ) max ( ) ( / )t t

T T

q q t t
q t t

p X w p X q w p q w q a p x qπ −

= =

= ≅∑ ∏ ∏
  (9) 

note that the observation probability is p(xt /qt)=p(qt /xt)p(xt)/p(qt). 
where, w is a possible recognition sequence obtained by the Viterbi 
decoding algorithm[35,36]; xt is the observation state at time t; p(qt) is 
the prior probability of each hidden state estimated from the 
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training sentences, and p(xt) is independent of the word sequence 
and thus can be ignored[34].  

Then Formula (9) could be further simplified into the 
expression of the DNN-HMM acoustic model. 

11
2 1

( / ) max ( ) ( / )/ ( )t t

T T

q q t t t
t t

p X w q a p q x p qπ −

= =

≅ ∏ ∏     (10) 

From the above Equation (10), the DNN-HMM based acoustic 
model is mainly determined by the initial hidden state probability 
distribution π(q1) and the transition probability aqt–1qt of the HMM 
model, and the posterior probability p(qt /xt) of DNN model. 

 

 
Figure 6  DNN-HMM acoustic model structure 

 

3.2  GMM-HMM model training 
The purpose of DNN-HMM based acoustic model training is 

to obtain an HMM model and a DNN model.  Before training the 
DNN-HMM model, we should first train a GMM-HMM model[37,38] 
to generated alignment information in the training procedure of the 
DNN model.  As each hidden state of the GMM-HMM model is 
modeled by a probability density function, we then get 13 
probability density functions in the Gaussian mixture model[39].  
The joint probability density function of GMM is expressed as: 

     
1

( ) ( ; ,Σ )
K

k k k
k

p X c G X μ
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= ∑              (11) 

where, k is the kth probability density function; ck is the weight of 
the kth probability density function; μk and ∑k denote the mean and 
covariance matrix of the kth probability density function 
respectively. 

The model parameters include π(q1), asisj from the HMM and 
Θ={ck, μk, ∑k} from the GMM.  The HMM model parameters can 
be updated through the alignment information obtained by the 
Viterbi decoding algorithm, and the update of GMM model 
parameters is conducted by the Expectation-Maximization(EM) 
algorithm[40,41].  The GMM model parameters after the tth 
iteration are defined as Θ(t)={ck

(t), μk
(t), ∑k

(t)}.  Then the 
observation sequence X(t) is obtained after the process of Viterbi 
decoding.  According to the correspondence between the 
transition-id and the hidden state, we can count the number of the 
transition-id stri and str2i which belong to hidden states si.  So the 
self-loop probability of hidden state si can be calculated by 
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, where si

tr(1) and s2i
tr(1) are the two 

transition-ids corresponding to the hidden state si at the initial time. 
Since the hidden states are in one-to-one correspondence with 

the probability density functions, all frames corresponding to the 
kth probability density function can be obtained, which means, all 
the frames with the transition-id sk

tr or s2k
tr in the observation 

sequence X(t) are easy to be found, defined an Xk
(t), the number is Nk.  

So from the E-step of the EM algorithm, we can get the following 
iterative formula. 
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where, n =1, 2, 3, ···, Nk. 
The updated parameters can be obtained by M-step: 
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      (13) 

In this procedure, the iterations are set to 40.  When the 
procedure is done, the HMM and GMM model parameters are 
combined to construct a trained GMM-HMM model. 
3.3  Unsupervised training of DBN 

Deep Belief Network (DBN) is a generative model proposed 
by Hinton[42], forming by Restricted Boltzmann Machines 
(RBM)[43].  Its training is performed by the training of RBM, 
whose training method is the unsupervised layer-wise greedy 
pre-training algorithm.  RBM is an energy model with only two 
layers, called visible layer v and hidden layer h, the visible and 
hidden units form a bipartite graph with no visible-visible or 
hidden-hidden connections. 

The hidden units take a binary value and obey the Bernoulli 
distribution h∈{0,1}Nh×1 where Nh indicates the number of hidden 
units.  The RBM can be divided into Gauss-Bernoulli RBM and 
Bernoulli-Bernoulli RBM depending on the input of the visible 
layer, if the input feature vectors are continuous pig sound 
characteristics, it will be a Gaussian-binary RBM, and if the inputs 
are binary values, it will be a binary-binary RBM. 

In this DNN-HMM model, the input is a feature vector of a 
continuous pig sound sentence which determines the first layer of 
RBM is Gaussian-binary RBM and the other layers are 
binary-binary RBM.  For Gaussian-binary RBM, v∈RNv×1 where 
Nv is the number of visible units.  The energy function is defined 
as 

1( , ) ( ) ( )
2

E a a b wΤ Τ Τ= − − − −v h v v h h v         (14) 

where, a and b represent the visible unit bias and hidden unit bias 
respectively, w∈RNh×Nv is the matrix of the visible and hidden 
connection weights. 

For binary-binary RBM, v∈{0,1}Nv×1 and the energy function  
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is defined as 
   ( , )E a b wΤ Τ Τ= − − −v h v h h v             (15) 

Introduce a regularization factor ( , )
,

EZ e−= ∑ v h
v h

 and define 

the joint probability of RBM as 

      
( , )

( , )
EeP
Z

−

=
v h

v h                   (16) 

The RBM model parameters include w, a and b.  The special 
network structure of RBM can be used to get the conditional 
probability P(v/h) and P(h/v), that from the hidden layer 
calculates the visible layer and from the visible layer calculates 
the hidden layer, as shown in Equation (17) and Equation (18) 
respectively. 

       
1

( ) ( )
N

i
P P

=
= ∏

v

iv h v h                 (17) 

1
( ) ( )

N

j
P P

=
= ∏

h

jh v h v                 (18) 

According to the CD1 algorithm[44,45], when the hidden layer is 
calculated from the visible layer input, only one Gibbs Sampling is 
needed, that is, the hidden layer is used to estimate the visible layer, 
and then the hidden layer is estimated by the visible layer.  Then 
RBM can perfectly perform the extraction of input characteristic 
parameters.  For the feature vector v, we first calculate the 
characteristic distribution of hidden units by Equation (18), and 
apply Gibbs sampling to the probability distribution to obtain h; 
then generate v’ from h by Equation (17), and finally generate h’ by 
Equation (18).  Here we get RBM parameter updating equations 
as follows 

    1
( 1) ( ) ( )t tw w η Τ Τ+

+ ′ ′= −vh v h             (19) 

     ( 1) ( )
1( )t ta a η+ = + − ′v v                (20) 

      ( 1) ( )
1( )t tb b η+ = + − ′h h                (21) 

where, η1 is the RBM learning rate; w(t), a(t) and b(t) are the RBM 
model parameters obtained in the tth training, and w(t+1), a(t+1) and 
b(t+1) are the RBM model parameters obtained in the t+1th training. 
3.4  Supervised training of DNN 

In this DNN-HMM model, the DNN is used to simulate the 
posterior probability p(qt/xt) of the HMM hidden state qt under 
given input observation state conditions xt, which is a classification 
problem.  Therefore, a DNN model with L+1 layers is formed by 
adding a softmax layer to the trained l-layer DBN network where 
layer 0 is the characteristic input layer, and layer L is the softmax 
layer.  DNN model parameters include wl, bl and l={1, 2, 3,…, L}.  
Here, the DNN uses the error back propagation algorithm[46,47] for 
training, and the DNN training parameters label ylabels are generated 
by the trained GMM-HMM model.  The objective function JCE is 
selected as the cross-entropy loss function and its function is 

 
1

logi i

K

CE labels L
i

J y o
=

= −∑              (22) 

where, ilabelsy  is the ith element of 1{ , , }Klabels labels labelsy y y= , iLo  

is the ith element of the output layer characteristic vector, 

1{ , , }KL L LO o o= . 

After minimizing the objective function JCE by the stochastic 
gradient descent method, we can get the neuron weight matrix wl

(t) 
of lth layer and l-1th layer and the lth layer neuron threshold vector 
bl

(t) after the tth iteration which are as follows 

        ( ) ( )CE
l lt

l

J e O
w

Τ∂
=
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         ( )
CE

lt
l

J e
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In the above formula L L labelse O y= − , ( )
1 ( ) [ ( ) ]t

l l l le w f Z eΤ
− ′= , 

1( )
1 l

l Zf Z
e−=

+
. 

As ( ) ( )(1 ( ))l l lf Z f Z f Z′ = − , where Zl represents the neuron 
input characteristic vector in the lth layer, Ol is the neuron output 
characteristic vector in the lth layer, el is the error in the lth layer, 
eL is the error in the output layer. 

So the DNN optimization formula is as follows 

    
( )

( 1) ( )
2

t
l

CEt t
l l

w

Jw w η+ ∂
= +

∂
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    ( 1) ( )
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Jb b
b
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where, η2 is learning rate; wl
(t+1) and bl

(t+1) are the DNN model 
parameters obtained in the t+1th training. 

Figure 7 shows the training flowchart of the DNN-HMM 
acoustic model.  In the process of training, a GMM-HMM model 
is trained first, then the unsupervised DBN model is trained, based 
on which a softmax classification layer is added to form the DNN 
model, and then the supervised training is carried out with the help 
of the output ylabels of GMM-HMM model, followed by the 
re-evaluating of the initial probability π(q1) and transfer probability 

1t tq qa −  of HMM.  Finally, the DNN-HMM model is constructed 

and the posterior probability p(qt /xt) is obtained. 

 
Figure 7  Flowchart of the training of DNN-HMM acoustic model 

4  Results and discussion 

4.1  Evaluation metrics 
The recognized sequence in continuous pig voice is continuous.  

In this study, Word Error Rate (WER) is used to evaluate the 
performance of the continuous pig cough sound recognition system.  
Compare the recognition result with the reference sequence of test 
corpora, and get the sum of substitution error S (Substitution), 
insertion error I (Insertion) and deletion error D (Deletion), and 
divide by N, the total number of speech samples in the corpus, 

which bring the WER, that is, WER= S I D
N

+ + .  

The following is the interpretation of the three errors: Assume 
Reference sequence is (nks, ks, ks, nks, nks), and the Recognized 
sequence is (nks, nks, ks, nks, nks).  By comparing the test results 
with the standard labels, we can see that the second non-pig cough 
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sound in the recognition result is the insertion error, the third 
non-pig cough sound is the substitution error, and the unidentified 
last non-pig cough sound in the standard labels is classified as the 
deletion error.   

We apply the 5-fold cross-validation method for 
experiments[48].  That is to say, the 610 sentence corpus is evenly 
divided into five mutually exclusive subsets of equal size, and then 
the union of four subsets is used each time as the training set, the 
rest one subset is used as a test set.  So that trainings and tests can 
be performed five times, and the final result is the average 
recognition rate over the 5 tests. 
4.2  Model parameter settings 

The DNN-HMM acoustic model has a complex structure and 
many parameters, selecting a reasonable combination of parameters 
is of great significance to obtain a stable and reliable model.  
Considering the dimensions of the feature vectors and the amount 
of the training sentences, the layer number of depth neural network 
layer is chosen to be 3, and the number of units per layer is 100.  
For the first Gaussian-binary RBM, a learning rate of 0.01 was 
used for 40 epochs, while for the other binary-binary RBMs, a 
learning rate of 0.4 was fixed for 20 epochs. 

In the acoustic model, DNN can use the information of 
adjacent frames to model the mutuality between context features.  
Here, through the 5-fold cross-validation experiments, the number 
of context frames was discussed in the range of 0-12 increased by 1.  
Figure 8 is the line chart of experimental results corresponding to 
context frame numbers.  We can see that in the process of splice 
value increasing from 0 to 12, each group of WER shows a trend of 
decreasing first and then increasing.  This trend can be better 
reflected by the average WER of the five groups.  According to 
the line chart of mean change of WER, splice value is better in the 
range of 5-8.  Considering that the larger the value of splice is, the 
higher the feature parameter dimension will be, to reduce network 
redundancy, select splice as 5, that is, the current frame is xt, then 
the input of DNN model is {xt–5, ···, xt–1, xt, xt+1, ···, xt+5}, a total of 
11 frames correspond to the MFCC features of the continuous pig 
sound. 

 
Figure 8  Line chart of WER of DNN-HMM acoustic model 

corresponding to context frames 
 
 

4.3  Comparison of DNN-HMM and GMM-HMM acoustic 
model 

Traditional acoustic model GMM-HMM uses GMM to 
describe continuous pig sound signals.  Although enough 
Gaussian functions can simulate almost any data distribution, 
compared to DNN with a multi-layer neural network structure, 
shallow GMM modeling Capacity is still limited.  In addition, 
DNN can not only capture high-order correlation characteristics in 
continuous pig sound signals but also consider the features of 
context frames by changing the number of input neurons, while 

GMM can only process one frame feature at a time.  Furthermore, 
GMM, as a generative model, uses the EM algorithm for 
unsupervised training, aiming to simulate the original input 
continuous pig sound signal.  As a classification model, DNN is 
trained with a supervised error back-propagation algorithm, which 
can better classify the input observation state into the 
corresponding hidden state. 

In order to compare the traditional acoustic model 
GMM-HMM with DNN-HMM, the 5-fold cross-validation method 
was carried out, and the models were trained based on the model 
parameters selected in previous steps.  The WER of the two 
models is shown in Table 1.  According to the recognition results, 
the WER of all the five groups of DNN-HMM is lower than that of 
GMM-HMM, and the average WER is 3.45% lower.  Specifically, 
among the three kinds of errors, the substitution error is obviously 
reduced, which shows the strong classification ability of DNN.  
At the same time, it can be seen from Table 1 that the WER of each 
group of DNN-HMM is maintained within 10.00%, the optimal 
WER is 7.54%, and the average WER is 8.03%, which shows that 
the model is stable and reliable. 

 

Table 1  5-fold cross-validation WER between GMM-HMM 
and DNN-HMM/% 

GMM-HMM DNN-HMM 
Species

ks nks S I D WER ks nks S I D WER

1 416 194 63 3 3 11.31 416 194 39 4 3 7.54

2 418 192 47 3 2 8.52 418 192 42 2 2 7.54

3 364 246 86 5 5 15.74 364 246 46 7 3 9.18

4 399 211 51 3 3 9.34 399 211 41 5 2 7.87
5 435 175 70 3 3 12.46 435 175 45 3 1 8.03

Avg 11.48 8.03

5  Conclusions 
(1) This paper proposed a new method for continuous pig 

cough sound recognition.  The sounds from the pig house 
condition were divided into pig cough and non-pig cough.  An 
acoustic model of continuous pig sounds was constructed based on 
DNN-HMM.  The characteristic parameters corresponding to the 
continuous pig sound were considered as the observation sequences, 
while the factors that determine the causes of pig sounds were 
referred to as hidden states.  So the continuous pig sounds were 
regarded as a signal generated by the transitions of the hidden 
states in the HMM. 

(2) The DNN model which had a strong classification ability 
was introduced to describe the correspondences between hidden 
states and observation sequences in HMM.  And DNN can not 
only consider multi-frame context features but also model 
nonlinear features of pig sounds. 

(3) Through the 5-fold cross-validation experiments, the 
GMM-HMM model was compared with DNN-HMM.  It turned 
out that the WER of DNN-HMM was lower than that of 
GMM-HMM, and the average WER was 3.45% lower.  At the 
same time, the WER of each group of DNN-HMM was maintained 
within 10.00%, the optimal WER was 7.54%, and the average 
WER was 8.03%, which shows that the model was stable and 
reliable. 
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