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Abstract: Considering the time-consuming and tedious work of the current methods to control plant layout, which is mostly 
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1  Introduction

 

In China, many kinds of crops are grown.  Different types of 

crops need different environments to grow well.  For example, the 

distribution and layout of plants in a field affect the light utilization 

of the crop canopy, the transport of materials, the resilience, and 

the competition for soil nutrients among the plants.  A reasonable 

arrangement of row spacing and field planting modes can take full 

advantage of the physiological characteristics of crops and their 

regulation ability and reduce competition among plants, thereby 

avoiding overgrowth in early stages, ensuring the full utilization of 

light, heat, and other resources, and improving field microcirculation 

to accumulate additional organic matter.  Therefore, the scientific 

and effective control of plant layout is necessary to regulate the 

growth of crops and improve their yield and quality[1]. 

The optimal allocation of plant layout has been valued by 

agricultural producers and researchers[2].  The determination of 

the layout of traditional agricultural crops is mostly based on expert 

experience[3,4] or field trials[2-11].  Although the empirical model of 

experts is simple and practical, it tends to target certain 

characteristics of an area such as climate, geography, soil type, and 

crop planted, and therefore has less general applicability.  

Traditional field trials also target a limited number of varieties.  

Testing should be repeated after plants are changed, thereby 

resulting in time-consuming and tedious work.  With the 

popularization of mechanical sowing and planting, the spacing of 
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sowing is often uniformly determined for the same crop, and 

cannot reflect the characteristics of different plant types.  This 

traditional approach has failed to meet the requirements of modern 

precision agriculture for the precise positioning, quantification, and 

timing of agronomic measures and the modern agriculture 

requirements for smart farming technology[12] and production 

processes. 

Plant spacing, row spacing, and field planting patterns are key 

factors affecting the regulation of crop spatial layout and 

population structure.  Different combinations of those factors will 

produce different yields.  Therefore, problems related to spatial 

layout optimization in plants are complex.  Many solutions are 

available for this kind of optimization problem in practical 

agricultural production, which has a large solution space and 

involves spatial information.  In recent years, there are researchers 

who utilized functional-structural plant models (FSPMs) and 

optimization algorithms for this kind of problem and good results 

have been obtained.  For example, Qi et al.[13] used particle swarm 

optimization (PSO) to automatically optimize the sink strength 

parameters in a virtual corn model and obtained the ideal plant type 

of corn to increase the weight of corn, leaves, and stalks.  

Quilot-Turiona et al.[14] used genetic algorithms to automatically 

optimize the six most influential parameters in a virtual peach tree 

model and obtained the ideal peach plant type with improved fruit 

quality.  However, their optimization factors are abstract and 

focused on describing the physiological processes in crops.  

Providing intuitive reference information to quantify the plant type 

design is difficult.  Drewry et al.[15] used the multi-objective 

optimization algorithm to change the five characteristic parameters 

in the canopy to find the optimal combination of canopy structural 

parameters, and simultaneously improve plant yield, water use 

efficiency, and photosynthesis.  However, the parameter to be 

optimized is a macroscopic description of the canopy structure, 

which cannot describe the geometric morphological characteristics 

of individual plants. 

In this article, we propose an optimization strategy for plant 

spatial distribution based on a virtual plant model and a genetic 
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algorithm.  By using this method, we will study the optimization 

of plant layouts of two kinds: 1) intercropping of maize and 

soybean plants; 2) sole cropping of rice plants.  To achieve this 

goal, starting with the solution based on intelligent computing, we 

combine the geometrical characteristics of the virtual plant models 

with the spatial structure and physiological characteristics of the 

plant population, and also the physical and geometric 

characteristics of the leaves.  Our study will provide a technical 

reference to determine the appropriate spacing parameters for crop 

cultivation. 

2  Abstraction of the problem 

In agricultural practice, two methods have been developed to 

grow crops in the same area simultaneously: 1) planting one type of 

plant, or sole cropping and 2) planting different crops at intervals of 

a certain number of rows, such as 1:2 or 2:3, called intercropping.  

Intercropping is frequently used between high and short crop plants, 

such as maize and soy. 

Here we consider crop varieties, field configuration, plant type, 

geographical latitude, planting season, and many other factors and 

to obtain the optimum morphological traits of crop plants, the 

optimum plant spacing, and the optimum row spacing parameter 

characteristics to obtain the maximum photosynthetic yield based 

on the functional structure model of plants under the specific light 

conditions.  Before designing the algorithm, we should analyze 

the evolution of plant morphological characteristics of different 

plant species in different growth stages with different row spacing 

and planting patterns and the spatial and temporal variations of 

light distribution.  In a monoculture or intercropping mode and 

different planting modes, such as equal row spacing, wide–narrow 

row spacing, and staggered row, the range of row and plant spacing 

should be explicit.  The characteristics of monoculture and 

intercropping methods should be compared through studies of plant 

spatial layout, and the types of parameters that must be optimized 

should be determined.  For a monoculture, the parameters to be 

optimized are plant spacing, row spacing, and their relative 

positions in the field. 

For two different plants, namely, A and B, individual plant 

spacing and row spacing, the allocation of plant and row spacings 

between the two crops, and the ratio between the number of the 

rows of two crops should also be optimized.  Assuming that f(x) 

represents the mapping from the combination x of different layout 

factors in the photosynthetic carbon assimilation of a plant; we may 

initially derive an optimization model describing the planting 

layout of a plant as follows: 

max M(xi)S, i{1,2} 

where, xi refers to a vector composed of layout factors, x1 

represents plants planted as a monoculture; x2 indicates two kinds 

of plants planted in an intercropping manner.  We want to 

maximize M(x) by using the functional-structural plant models and 

an optimization algorithm. 

3  Establishment of functional-structural plant 

models (FSPMs) 

A functional-structural plant model is a model that accurately 

reflects the interaction between the three-dimensional 

morphological structure and physiological functions of a plant 

based on its specific morphology.  It provides a new way to study 

the operation of the plant system under different environmental or 

internal factors.  To establish an FSPM model, one needs to 

establish the plant structure in terms of basic units, the rules of 

morphological development and the models of the metabolic 

processes that drive plant growth[16].  We utilize a software called 

GroIMP[17] (Grammar-related Interactive Modeling Platform 

Growth) to build the FSPMs we need.  It is a modeling platform, 

based on Java and the tailored modeling language XL (eXtended 

L-systems), and includes model construction, visualization, 

interactive modules, etc.  XL is developed based on the Java 

programming language, and further integrated with the parallel 

rewriting rules of the L-system[18]. 

3.1  Modeling of plant structures  

To simulate the topological structures of the plants and their 

growth process, the spatial characteristic of maize, soybean and 

rice plants at each growth stage, which include the topology and the 

sequence of activities of various plant modules, are analyzed to 

deduce the parameters of an eXtended L-system, such as axiom and 

productions.  We divide the architecture of those three plants into 

base, growth unit, fruit, leaf, etc., and suppose that the growth unit 

is made of an internode, an axillary meristem, and a leaf.  On this 

basis, we can deduce the axiom and productions to describe the 

spatial structure.  For example, through analyzing of the 

topological structure of soybean, the initial graphics structure 

axiom ω of the soybean generating structure and production rule 

set {R1, R2, R3, R4} of an eXtended L-system are as follows: 

ω: B(1) 

R1: B(i) (i<=maxRank) → B(i+1) M(i, 1) 

R2: M(i, j) (i<=maxRank, j<=maxOrder) → P(i, j) M(i, j+1) 

R3: P(i, j) (i<=maxRank, j<maxOrder) → I(i, j) & (180) G(i, j) 

R4: P(i, j) (i<=maxRank, j<maxOrder) → RL(α)I(i, j) φ(60) 

Lk1(i, j) φ(180) Lk2(i, j)  φ(-60)Lk3 (i, j) 

where, B is the base, m is the meristem; P is the growth unit; I is 

the internode; Lk1 is the leaf; G is the pod; & (180) is used to 

control the angle between soybean pod and stem; RL(α) is used to 

control the angle of stem and branches; φ(60) controls the 

trifoliolate leaves; parameters i and j presents the tiller number and 

internode number; maxRank is the maximum number of single 

stems, and maxOrder is the maximum number of internodes. 

We adopt a method of polyhedral joints to simulate the stems 

and develop a function with four parameters (the spatial position, the 

direction, the radius, and the length of cylinder) to conveniently 

draw a cylinder.  Since the stem is cylindrical, an internode was 

used as a unit in the model, and the stem consists of multiple 

connective internodes.  The cylinder function provided by GroIMP 

was used to simulate the internodes.  Simulation of the leaves in 

this paper was achieved by controlling of feature points and forming 

triangle meshes using GroIMP polygon Mesh functions.  The male 

and the female tassels of a maize plant, and the pods of a soybean 

plant, are simulated based on the analysis of their shape and 

characteristic by using the suitable functions provided by GroIMP.  

The parameters of different organs at different growth times are 

saved into a database, and then the morphological models of those 

three plants are established, as shown in Figure 1. 
 

   
a. Maize plant b. Soybean plant c. Rice plant 

 

Figure 1  Simulated shapes of different crops 
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3.2  The models of the metabolic processes 

The light environment, the radiation model, the photosynthesis 

model, the carbon partitioning model, and the growth functions for 

organs, are considered to build the plants’ functional models while 

neglecting the effects of water and mineral uptake on plants.  

We establish a virtual light environment[19,20], which has two 

kinds of radiations: 1) the solar radiation directly reaching the 

Earth’s surface, which named the direct radiation; and 2) the solar 

radiation being scattered after passing through the atmosphere, 

which called the diffuse radiation.  According to the solar constant, 

the time-varying Earth-Sun distance, the real Earth-Sun distance 

and the elevation angle of the sun, the direct radiation (W/m2) and 

the diffuse radiation (W/m2) can be calculated.  

The amount of Photosynthetic Active Radiation (PAR), 

intercepted by the canopy of plants is calculated using a radiation 

model in the platform of GroIMP[21].  For example, we divide the 

maize canopy into two parts: 1) the upper part, which is above the 

top of the soybean plant; and 2) the lower part, which is the rest.  

With the leaf area index of the upper and lower parts of the maize 

canopy, together with the unit area of the soybean calculated, 

radiation intensity of the upper and lower parts of the maize and the 

soybean canopies is calculated using the radiation.  We calculate 

the crops’ extinction coefficients[22] respectively.  Then the light 

interception amount of the intercropping soybean and maize can 

also be calculated[23]. 

A photosynthesis model which changed the species-specific 

parameters and the environmental parameters accordingly[24] was 

established to estimate the current average leaf photosynthetic rate 

(mol/m2s).  Through the calculation of light distribution in the 

canopy and single leaf photosynthesis efficiency, the available 

photosynthetic products from all leaves are collected to a Common 

Assimilate Pool (CAP)[25].  The accumulation of photosynthetic 

production PR(T) (unit: g), which is produced in each growth day 

of soybeans or maize’s leaves with the area of x (unit: m2), is 

dynamically added to CAP, and the assimilation substance YCAP(T) 

in day T is[28]: 

YCAP(T) = YCAP (T–1) + PR(T)             (1) 

Growth is based on the source-sink hypothesis with organ sink 

forcing the current assimilates to be distributed to various organs 

for growth and development.  During the growing process, the 

sink strengths of all organs are added up.  In the case of no 

material transport resistance, each growing organ O obtains the 

assimilation production Ko(T) (unit: g) from the pool through 

competition, according to their percentage of its own sink strength 

to the total sink strength[26].  Thus, the biomass amount BO(T) of 

organ O in growth day T is: 

BO(T) = BO(T–1) + KO(T)              (2) 

According to allometric relationships between the biomass 

increment of organ O in growth cycle T and plant’s 3D geometrical 

sizes, the diameter variation DO(T) of organ O is:  

DO(T) = KO(T)×φO                (3) 

where, φO is the conversion factor between biomass and organ 

size[26].  To different kinds of plants or different kinds of organs in 

a plant, the values of φO are different.  However, in order to 

reduce the complexity of the model, we suppose that the values of 

φO are the same for one type of organ in a plant.  

In this paper, a day was considered as the basic time unit for 

the growth cycle.  Plants grow once in each simulation step, and 

their intrinsic function and three-dimensional structure change once.  

Therefore, the growth dynamics of the maize/soybean plant before 

the termination of the plant growth are simulated.  The 

functional–structural model of rice used in this study is based on 

our previously published paper[28]. 

4  Plant spacing optimization based on the 

optimization algorithm 

With the preceding analysis, an optimization algorithm of a 

planting layout based on an evolutionary algorithm is proposed.  

The optimum design of plant layout factors is achieved by 

optimizing the growth conditions.  Several problems should be 

considered during the algorithm design: the coding strategy and 

initial population design of individual chromosomes, the design 

strategies of genetic operators, and the evaluation of individual 

fitness.  The coding format of an individual chromosome is    

{c0, c1,…, cnc-1}, where ci denotes one chromosome, and nc 

represents the number of chromosomes contained in the genome.  

The plant spacing, the row spacing, the relative position, the 

planting method (monoculture or intercropping), and the ratio 

between the number of rows are considered as chromosomes.  

Furthermore, chromosomes comprise multiple genes, and ng refers 

to the total number of genes in a single chromosome.  The genetic 

code string length, population size, termination algebra 

optimization, and other parameters strongly influence algorithm 

efficiency and optimization results, so the optimization objective, 

algorithm efficiency, and computer performance are combined to 

set the parameters of the optimization algorithm.  Figure 2 shows 

the flowchart of the plant spacing optimization algorithm.  

 
Figure 2  Flowchart of the optimization algorithm 

 

In the algorithm, parents continuously generate individual 

offspring through selection, crossover, and mutation operations, 

and the resulting individual offspring compete with their parents to 

join the updated population.  The process continuously cycles 

until it meets the programmed termination condition.  After 

several generations of optimization occur, the elite individuals are 

obtained and the appropriate spacing parameters for crop 

cultivation are also determined. 

4.1  Coding scheme 

In the plant spacing optimization algorithm, the genetic factors 

are a combination of plant and row spacings.  In this study, 

individuals are coded in terms of their plant and row spacing, and 

each information bit of the genetic factor is 0 or 1.  The range of a 

parameter is [Umin, Umax], and the genetic code length of the 
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parameter is l.  The smallest parameter code 0 corresponds to the 

parameter Umin, the largest parameter code 2l–1 corresponds to the 

parameter Umax, and the difference between two consecutive 

parameters is the numerical accuracy.  As the parameters are 

evenly distributed, it is easy to calculate the numerical accuracy: 

max min

2 1l

U U






                   (4) 

Binary genetic factors can be converted into real numbers 

through the binary code decoding function to obtain the real values 

of the plant spacing factor GDspacing and the row spacing factor 

GHspacing.  If a binary genetic code string is X:alal-1…a2a1, then the 

numerical value x is expressed as follows: 

1 max min
min 1

( 2 )
2 1

l i
i li

U U
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4.2  Initialization of the population and genetic manipulations 

Determining the number of optimal solutions is often difficult 

when the range of feasible solutions is large.  Therefore, we need 

to conduct random sampling uniformly in the solution space of a 

problem to obtain individuals[29].  An individual with a length of 

LR is binary coded, and each bit of information on the binary code 

is randomly selected from {0, 1}.  For population initialization 

with nc individuals, at least LR×nc random decisions are required. 

Genetic manipulation includes crossing, mutation, and 

selection, which can simulate the natural selection of species in 

nature.  We use the roulette algorithm[30] to implement a selection 

operation based on the fitness of an individual.  The mutation 

strategy and the cross-operation proposed by Li et al.[29] are used to 

generate new individuals.  

4.3  Design of fitness function 

The establishment of a comprehensive evaluation model of 

individual fitness with reasonably high efficiency and low cost is a 

key step to design an optimization algorithm.  The yield usually 

reveals whether an agronomic measure is appropriate or optimal in 

agricultural production.  In this study, the yield per unit field 

planting area of the plant population is considered during the 

design of the fitness evaluation function.  The individual fitness 

evaluation model for high-yielding crops is designed through the 

observation and analysis of the configuration of different row 

spacings of high-yielding plant groups and their morphological 

changes in different growth stages.  In addition, the model must 

be combined with the plant growth cycle so that the optimized 

parameters can withstand continuous adaptation tests throughout 

the growing season.  

The correlation between crop yield and photosynthetic carbon 

assimilation is significant, that is, the more the carbon assimilation 

per unit area of land is, the higher the plant yield will be.  As such, 

the fitness function of the optimization algorithm should be 

designed on the basis of the amount of assimilated photosynthetic 

carbon.  To accelerate the algorithm’s search for the optimal 

solution, we propose the addition of a dynamically changing 

penalty function to the fitness function.  An appropriate initial 

value of the penalty factor is set so that the search process can be 

simplified in the early evolution and that the algorithm can 

effectively search the solution space.  During the algorithm 

process, the penalty factor constantly changes as the evolution 

algebra increases to separate the feasible and infeasible solutions 

effectively. 

Yield is one of the most important criteria for measuring the 

suitability of plant spacing and row spacing in agriculture.  Fitness 

is calculated on the basis of the functional-structural model of the 

plants[31].  The fitness M of an individual is the total 

photosynthesis field per unit planting area, and is calculated as: 

1

( )
N

i

Y i

M
s




                   (6) 

where, N is the number of plants; Y (i) is the yield of the i-th plant, 

and s is the planting area. 

Assuming that the plant and row spacing are inherited factors, 

we determine the plant and row spacing in terms of the yield per 

unit area.  Before using genetic algorithms for optimization, we 

should set relevant parameters, including crossover probability pc, 

mutation probability pm, initial population size nc, and maximum 

evolutionary generation tmax.  We also determine the range of 

plant and row spacing and generate P0. 

4.5  Genetic algorithm parameters 

In the genetic algorithm, LR, nc, pm, pc, and tmax of the genetic 

code string strongly influence computational efficiency and 

optimization results.  According to the range of parameters 

proposed by [32], the parameters of the genetic algorithm are set on 

the basis of the optimized object, the efficiency of the algorithm, 

and the performance of the computer used in the experiment. 

(1) LR.  In this study, the plant and row spacing of rice were 

used as genetic factors.  The length of the coding string is related 

to the range of values and optimization precision.  Therefore, the 

coding length of the genetic factors is set on the basis of the 

experience and plant type of traditional agriculture. 

(2) nc.  A large population often contains extra genotypes and 

can simultaneously deal with different individuals; therefore, 

obtaining the global optimal solution is easy.  However, the 

computation time of each generation is extended as the population 

size increases.  Considering the range of optimization objects and 

the optimization accuracy, we set the population size to 20. 

(3) pc.  The convergence rate initially improves as pc is 

increased from zero.  Considering that the selected elite 

individuals in this algorithm have retained most of the good genes 

and that the influence of pc on the good gene structure is reduced, 

we set pc to 0.9. 

(4) pm.  Variation operations can effectively generate new 

individuals and prevent the genetic algorithm from degrading to a 

random search[33].  In this study, pm is set to 0.08. 

(5) tmax.  If the optimal solution to a problem is known, then 

finding the optimal solution is the corresponding termination 

condition.  However, if the optimal solution to a problem is 

unknown, then an iteration limit constant should be set as the 

termination condition[32].  The algorithm takes a long time because 

the photosynthesis yield per unit plant area taken as the fitness 

value takes a long time to compute; therefore, we set the iteration 

limit constant to 100 generations. 

5  Experiments and analysis 

The experiment is based on a GroIMP platform and is 

programmed in Java.  Our computer hardware is Intel (R) Core i5 

4590 with 2.66 GHz CPU, 8GB memory, and NVIDIA GTX 970 

graphics card.  The rice variety used in the experiment is double 

haploid rice (DH)[26]. 

5.1  Optimization of intercropping planting of maize and 

soybean plants 

The inter-planting mode is a mode that intercropping crops are 

planted in the same field in a certain proportion.  There has been a 

great deal of maize and soybean intercropping pattern research in 

field trials.  Based on the establishment of a maize/soybean 

intercropping function and structure model, the focuses of this 



150   January, 2020                        Int J Agric & Biol Eng      Open Access at https://www.ijabe.org                         Vol. 13 No. 1 

study are the inter-planting patterns with ratio 2:3 and 1:2 of the 

maize and the soybean plants, to study the intercropping and 

compact planting, as shown in Figure 3.  The distance between 

maize and soybeans, soybean and maize is defined as inter distance 

Din, the distance between maize and maize, soybean and soybean is 

defined as space distance DMM and DSS. 

 
Figure 3  The 1:2 maize/soybean intercropping pattern  

( m  represents the maize, the other one represents the soybean, 

inside the dotted line is the calculation region) 
 

In this algorithm, more light interception is the optimization 

target.  Through continuous iteration of the genetic algorithm to 

optimize the value of Din, DMM and DSS within their specified 

ranges, the best distance combination which maximizes light 

interception will be obtained. 

In the experiments, the ratios 2:3 and 1:2 were used as the 

maize/soybean intercropping mode for planting distance 

optimization.  Furthermore, the intercropping space distances, Din 

between maize and soybean population is within the range [5 cm, 

60 cm], and the simulated intercropping population was with 10 

columns.  As for the ratio 2:3, after many minutes running for 

growth, within the domain of Din and DMM or DSS, the optimal 

planting distance combination for optimized light interception can 

be calculated simulating unit land area, shown in Table 1.  The 

change of light interception quantity in 120 days’ growth process of 

initial plants and optimal plants are shown in Figure 4.  After 110 

days, the light interception is basically stable.  The light 

interception before optimization was 7416 mol/m2·d, while after 

optimization it is 9424 mol/m2·d, which is about 1.27 times more.  

Figure 5 shows the visualization simulation results of the 

soybean/maize population.  As for the ratio 1:2, after many times 

running for growth, within the domain of [5 cm, 60 cm], the results 

are shown in Table 1.  The change of light interception quantity in 

120 days’ growth process of initial plants and optimal plants are 

shown in Figure 4.  The light interception before optimization was 

7639 mol/m2·d, while after optimization is 10429 mol/m2·d, which 

is about 1.36 times more.  The results show that the combination 

of virtual plant model, the genetic optimization algorithm and the 

ability of the computer to process data at high speed leads to obtain 

the best combination of planting distances in the designated domain 

and under the designated inter-specific mode. 
 

Table 1  Optimal planting distance of maize/soybean 

intercropping 

Planting  

distance 

in the ratio of 1:2 in the ratio of 2:3 

Optimal  

distance 

Initial  

distance 

Optimal  

distance 

Initial  

distance 

Din 30 5 50 5 

DMS 30 5 50 5 

DSS 10 5 10 5 

 
Figure 4  Leaves’ light interception before and after optimization 

 

 

Figure 5  Population morphology of maize/soybean (2:3) 
 

5.2  Optimization of sole cropping of rice plants 

In traditional agriculture, the large distance between adjacent 

plants is generally defined as row spacing, and the small distance is 

referred to as plant spacing.  Most of the field trials have focused 

on narrow row spacing (15-33 cm), while some studies have 

investigated broad row spacing between 36 and 42 cm[34].  In most 

modern mechanized agricultural machinery, row spacing and plant 

spacing are fixed at 30 cm and at 12-16 cm, respectively.  In this 

experiment, the changes in the plant spacing (Dspacing) and the row 

spacing (Hspacing) are controlled within a certain range.  For 

example, Dspacing and Hspacing belong to the range of [10 cm, 30 cm] 

and the range of [15 cm, 45 cm], respectively.  The initial row 

spacing is set to 20cm, and initial plant spacing is set to 15 cm. 

Rice plantings in 4×4 and 5×5 patterns are constructed on the 

basis of the GroIMP platform to generate initial populations for 

genetic algorithms.  The construction of virtual scenes and the 

simulation of the rice yield are based on the functional structure 

model proposed by [26].  Each experiment is conducted three 

times.  The optimization results of plant spacing, row spacing, 

and yield per unit area are shown in Table 2.  The yield per unit 

area of the optimized plant population improves compared with 

the planting conditions of 20 cm row spacing and 15 cm plant 

spacing. 
 

Table 2  Plant spacing optimization results of rice population 

 Hspacing/cm Dspacing/cm 
Yield per unit 

area/g·m
-2

 

Increase in yield 

per unit area/% 

Layouts 4×4 5×5 4×4 5×5 4×4 5×5 4×4 5×5 

Initial factors 20 20 15 15 546.9 532.4 — — 

1 27.5 26.6 17.6 16.8 626.5 619.3 14.6 16.3 

2 26.9 27.2 17.2 16.5 632.8 615.1 15.7 15.5 

3 27.8 26.1 18.2 17.4 628.1 616.4 14.8 15.8 
 

For the 4×4 plants, the yield per unit area is the largest at a 

plant spacing of 17.2 cm and a row spacing of 26.9 cm.  The plant 

and row spacing of the 5×5 plants are 16.8 and 26.6 cm, 

respectively.  As can be seen in Figures 6a and 6c, the 

non-optimized rice visualization scene shows a dense population 

with generally small panicles in the rice plants.  The middle rice 
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plants are affected by the light received because of the interlacing 

of the leaves of the surrounding plants, and their growth is weak.  

The optimized rice visualization scenes are shown in Figures 6b 

and 6d.  In the population, the plant spacing and the number of 

rice ears are large, the overall growth is excellent, and the yield per 

unit area of the optimized population is improved. 
 

  

a. 4×4  non-optimized b. 4×4  optimized 

  

c. 5× 5  non-optimized d. 5× 5  optimized 
 

Figure 6  Comparisons between different layouts of the rice plants 
 

5.3  Discussion 

In comparison with traditional plant spacing optimization, the 

method based on the virtual plant model and the optimization 

algorithm is a new effort towards modeling, which reduces the 

duration of an experiment, resolves the disadvantages of traditional 

field experiments in selecting plant strains, and eliminates space 

and environmental constraints.  This research achieves the 

integration of an optimization algorithm with the model systems in 

both temporal and spatial dimensions.  It is an exploration of a 

new application area of plant functional-structural models[28]. 

The virtual plant growth scene constructed in this study can 

reveal the changes in the morphological structure of plants at 

different planting distances.  The virtual plant growth scene 

combines physiological processes, such as photosynthesis, 

assimilation, and respiration.  Some data and modeling methods 

are derived from the previous studies[25,26,31,35].  

In the proposed plant spacing optimization, the photosynthesis 

yield per unit area is considered the optimization goal.  Although 

a high yield is an important indicator of the reasonability of plant 

spacing, the quality of rice grains[36] and the lodging resistance 

capacity of plants are also affected by plant spacing and indirectly 

or directly influenced by the rice plant.  These factors are related 

to many complex conditions, such as plant traits, air conditions, 

climate, water, soil nutrients, and inorganic salt, which should be 

subjected to numerous field experiments.  Therefore, the proposed 

optimization method should be further improved. 

In the aspect of virtual model construction, data collection is 

based on manual measurement with low accuracy, although data 

regarding the morphological structure of plants used in the 

modeling of this study were obtained through field experiments.  

In the future, data should be collected through image extraction and 

3D scanning to enhance the accuracy of plant modeling parameters.  

In system development, virtual plant construction, canopy leaf area 

calculation, plant spacing optimization and closure time have been 

completed.  In future research, the application of graphics 

hardware (GPU) should be considered to compute the shadows 

affecting photosynthesis. 

 

6  Conclusions 

A method of plant spacing optimization based on a genetic 

optimization algorithm was proposed in this study.  First, the 

virtual plant model, which combines the structure and 

physiological function of crop plants, was used to construct a 

planting scene.  The planting strategies with a higher yield were 

obtained for the intercropping of maize and soybean plants or the 

sole cropping of rice plants by the optimization algorithm 

respectively.  

This study provides new ideas for researchers studying the 

rational close planting of crops.  In view of the fact that the 

optimization algorithm of planting distance specifies the pattern 

and the planting distance change domain, we still need to explore a 

more suitable optimization algorithm for intercropping planting 

distance, especially the optimization algorithm in a specific 

planting pattern. 
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