
162 September, 2019 Int J Agric & Biol Eng Open Access at https://www.ijabe.org Vol. 12 No.5

Association rule mining algorithm based on Spark for pesticide

transaction data analyses

Xiaoning Bai1,2, Jingdun Jia1,3*, Qiwen Wei4, Shuaiqi Huang1, Weicheng Du5, Wanlin Gao1*
(1. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China;

2. Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China;
3. Ministry of Science and Technology Torch Center, Beijing 100045, China;

4. National Agricultural Technology Promotion Center, Beijing 100125, China;
5. Information Center, Ministry of Agriculture and Rural Affairs, Beijing 100125, China)

Abstract: With the development of smart agriculture, the accumulation of data in the field of pesticide regulation has a certain
scale. The pesticide transaction data collected by the Pesticide National Data Center alone produces more than 10 million
records daily. However, due to the backward technical means, the existing pesticide supervision data lack deep mining and
usage. The Apriori algorithm is one of the classic algorithms in association rule mining, but it needs to traverse the transaction
database multiple times, which will cause an extra IO burden. Spark is an emerging big data parallel computing framework
with advantages such as memory computing and flexible distributed data sets. Compared with the Hadoop MapReduce
computing framework, IO performance was greatly improved. Therefore, this paper proposed an improved Apriori algorithm
based on Spark framework, ICAMA. The MapReduce process was used to support the candidate set and then to generate the
candidate set. After experimental comparison, when the data volume exceeds 250 Mb, the performance of Spark-based
Apriori algorithm was 20% higher than that of the traditional Hadoop-based Apriori algorithm, and with the increase of data
volume, the performance improvement was more obvious.
Keywords: Spark, association rule mining, ICAMA algorithm, big data, pesticide regulation, MapReduce
DOI: 10.25165/j.ijabe.20191205.4881

Citation: Bai X N, Jia J D, Wei Q W, Huang S Q, Du W C, Gao W L. Association rule mining algorithm based on Spark for
pesticide transaction data analyses. Int J Agric & Biol Eng, 2019; 12(5): 162–166.

1 Introduction

Smart agriculture is a modern agricultural mode supported by
Internet of Things technology and data science. It is the outcome
that combines information technology and agriculture compared
with precision agriculture, smart agriculture focuses on how to
make the most efficient use of various agricultural resources and
minimize agricultural energy consumption, including smart
production, smart circulation, smart sale, smart community and
smart management. As of 2018, Chinese digital economy[1] ranks
second in the world and Chinese agriculture has entered the age of
digitalization. China has gradually achieved that information
perception, quantitative decision-making, intelligent control and
personalized service in the whole process of agricultural production.
In this context, agricultural operators have a huge demand for
agricultural-related information services in order to achieve the
accurate investment of agricultural inputs[2]. Pesticide is an

Received date: 2018-12-23 Accepted date: 2019-05-22
Biographies: Xiaoning Bai, PhD candidate, research interests: agricultural
informatization. Email: bxn@agri.gov.cn; Qiwen Wei, PhD, Professor, research
interests: agricultural plant protection. Email: weiqiwen@agri.gov.cn; Shuaiqi
Huang, Master, research interests: data mining. Email: caucieehsq@163.com;
Weicheng Du, MS candidate, research interests: agricultural informatization.
Email: 1277170016@qq.com;
*Corresponding author: Jingdun Jia, PhD, Professor, research interests:
agricultural informatization. No.2 Sanlihe, Xicheng District, Beijing 100045,
China. Tel: +86-18601058700, Email: jiajd@most.cn; Wanlin Gao, PhD,
Professor, research interests: intelligent agriculture. College of Information and
Electrical Engineering, China Agricultural University, Beijing 100083, China.
Tel: +86-10-62736755, Email: gaowlin@edu.cn.

important agricultural input. China's pesticide application ranks
first in the world, far higher than the average level of pesticide
application in the world, posing a serious threat to wildlife, soil and
water resources[3]. At present, the agricultural supervision data of
China has accumulated a certain scale, and the pesticide transaction
data collected by the pesticide national data center only produces
more than 10 million records daily. In order to solve the problem
of pesticide abuse, it is urgent to mine the hidden relationship in the
pesticide circulation data. In turn, so as to provide data support
for the supervision and management and healthy development of
the pesticide industry.

Spark is a parallel computing framework based on In-memory
cluster computing, which has a one hundred times better
performance than the popular Hadoop MapReduce algorithm. It
ensures the real-time performance of data processing in the big data
environment with high fault-tolerance and high scalability. Thus,
this framework is commonly used for analyzing mass data because
of its excellent performance[4]. Spark’s memory computing is
based on a new distributed memory abstract resilient distributed
dataset (RDD). For RDD, Spark has many built-in operations that
can convert one RDD to another. Memory calculations are made
up of this series of RDD operations. In particular, the RDD
persistence operation can cache the RDD in the memory of the
working node[5], so that when the subsequent operations reuse the
data, they can be directly read from the memory. This is another
factor affecting the computing speed of Spark. In addition,
Spark's fault-tolerant approach is also very different from Hadoop,
which is fault-tolerant through multiple copies of data. Spark
does not need to back up data. It records a series of operations
performed on the RDD and constructs a directed acyclic graph

September, 2019 Bai X N, et al. Association rule mining algorithm based on Spark for pesticide transaction data analyses Vol. 12 No.5 163

(DAG). If the data is in error or lost, it is recalculated according
to the DAG.

Spark was originally developed as a cluster-computing
framework by University of California, Berkeley in 2009, then
became open-source next year. There was a lack of data mining
framework at that time, and most of these frameworks available
were insufficient in optimization. Apriori algorithm, which was
proposed by Agrawal in 1993, is mainly used for association
analysis. The algorithm is able to obtain frequent itemsets by
generating candidate itemsets and testing downward closure
lemma[6].

Some modifications were proposed to develop Apriori
algorithm. Lin et al.[7] proposed an improved Apriori algorithm
based on array vector, which reduces the number of connection and
unnecessary traversing, improves the utilization efficiency of
memory. Similarly, the improved Apriori algorithm based on
vector matrix was proposed by Cao et al.[8] Zhao et al.[9] used
orthogonal linked list to improve the storage process of Apriori
algorithm. This algorithm simplifies the Scala process and the
pruning process, thus simplifying the generation process of
frequent itemsets and improving the time efficiency of Apriori
algorithm.

TF-IDF is another Association Rules Mining algorithm. It is
used for feature extraction in text based on Vector Space Model by
calculation the weight of each feature item for the text, to extract
the key words and core content in the article. In addition, TF-IDF
is able to be used of dimension reduction of features for text
preprocessing[10]. Therefore, based on the existing research, this
paper proposed an optimal Apriori algorithm and implemented
parallelization based on Spark. From the experiments on data sets
of millions of orders and analysis of the algorithms idea and
performance, we find that there are three deficiencies in the Apriori
algorithm. (1) The method of filtering out non-frequent itemsets
in processing of generating the Lk+1 needs further improvement.
(2) There is simplified margin for excessive connections in itemsets
during the processing of Lk connection. (3) Apriori algorithm will
access many redundant data items and transactions when traversing
the database. In view of the weakness of Apriori algorithm
mentioned above, the corresponding improvement methods, and
more efficient algorithm ICAMA were proposed in this paper.
The ICAMA algorithm uses the idea of MapReduce to improve the
two stages of Apriori. The first stage: the data structure is
changed while reading the data set to be processed from the HDFS,
and the first frequent item set is filtered, and the finally obtained
data set is stored in the RDD form in the memory of each node of
the cluster. The second stage: frequent k itemsets are directly
generated based on frequent k–1 item sets. Repeat this process
until no more frequent itemsets are generated[11]

They all include the processing that data transformation and
statistics. A comparison experiment between ICAMA algorithm
and MapReduce based Apriori algorithm shows a result of 20%
performance improvement for B-Apriori. And the high
performance is maintained even dealing with a million-level dataset.
In addition, this paper implements ICAMA algorithm based on
Spark framework, which fills the gap that there is no algorithm for
Association Rules Mining in Spark's scalable machine learning
library (MLlib) [12].

2 Design and implementation

2.1 Introduction of Spark framework
Spark is a parallel computing framework originally developed

by the Berkeley AMP laboratory, which is based on In-memory
cluster computing. This framework has the advantage of
in-memory computing based on Resilient Distributed Dataset
(RDD), so it is faster than Hadoop MapReduce computing
framework. In-memory computing is the key to the high
efficiency of Spark framework, which refers to loading useful data
onto the database into the memory of the computing node when
Spark is working. RDD is the implementation of in-memory
computing. Persist operation and fault tolerance are two
significant characters of RDD[13]. The effect of persist operation
is to cache the RDD to memory of the computing node. So,
persist operation provides more inefficient procession in reuse data.
Unlike Hadoop, Spark builds DAG by recording historical
operations on RDD to improve fault tolerance instead of data
backup. When data is wrong or lost, Spark gets correct RDD by
original RDD and tracing the DAG.

Spark improves performance by 100 times compares to
traditional Hadoop MapReduce method. The architecture of
Spark shown as figure 1can be divided into four modules: Spark
SQL-RDD (for unit of data execution), MLlib (for Machine
leaning), Graphx (for graphs computation) and Spark Streaming
(for real-time processing). Meanwhile, Spark is highly efficient
because it’s able to store intermediate results of iterations in
memory rather than in hard disk. The modules of Spark will be
described in following[14].

Figure 1 Architecture of Spark

2.2 Algorithmic details of Apriori
It only requires traversing the data set twice for Spark to

implement the matrix-based Apriori algorithm. Combining with
technological architecture, Spark improves the efficiency of
Association Rules Mining by using global and local support-based
pruning. Its transaction data sets and frequent itemsets are stored
in HDFS file system based on Hadoop. In order to save memory
space and reduce traversing times, the matrix stores Boolean values,
and each row as a transaction, each column as a differential item.
The support counts of itemsets can be got by doing “and’
operations between corresponding matrices[15].

Apriori is an important algorithm for Association Rules
Mining. It can be divided into two steps: the first step is to find
all the frequent itemsets and the second step is to generate
association rules based on frequent itemsets. When the number of
sets is greater than 0, a list of candidate itemsets consisting of k
items is generated, and then to keep frequent itemsets and generate
a list of candidate itemsets consisting of k+1 items[16].
2.3 Implementation of distributed Apriori based on Spark

This paper implements a distributed Apriori algorithm using
Scala programming language, which mainly combines Spark
framework and RDD operator. The implementation of the
algorithm is divided into the following two parts.

The first part is to generate frequent itemsets L1, which is
shown in Figure 2. Including:

164 September, 2019 Int J Agric & Biol Eng Open Access at https://www.ijabe.org Vol. 12 No.5

1) Use flatMap to let transaction set T be distributed to parallel
computing system in the form of RDD<String and Number>.

2) Accumulate number of items with reduceByKey.
3) Use filter to filter down the item set less than the support.
The second part,is to get LK from LK+1. Including:
1) LK Self-join to CK+1.
2) Traverse the database, compare CK by the method in first

part.

Figure 2 Flowchart of distributed Apriori

3 Improvement of ICAMA algorithm

3.1 The idea of improving the algorithm
In the first phase of the classic Apriori Spark-based

implementation YAFIM, the data set to be processed directly into
the HDFS[17] in the first stage is stored in the RDD form in the
memory of each node of the cluster, and then each map task reads
in and processes several rows. Each item contained in these lines
is transmitted with a value of 1, and the reducer sums and filters all
the value values of each item to obtain an item whose number of
occurrences is not less than the minimum support. Since the data
set is read directly from HDFS, its organization in memory remains
the same: each row represents a transaction T, and T consists of the
TID[18] and all the items contained in the transaction T. Therefore,
it is necessary to calculate the number of occurrences of an item set,
and only the data set can be traversed as a whole to count the
results. This process is repeated for each iteration, which is a
considerable time consumption.

In order to solve the above problems, ICAMA adopts a data
structure conversion method to read data sets from HDFS and
realize data structure conversion[19]. Each map task reads in and
processes several rows. The processing method is different from
YAFIM[20], but is included in the transaction. All items emit the
key-value pairs of the item and the corresponding transaction
number, and the reducer combines each corresponding transaction
number. The transaction number is then counted and filtered to
obtain a converted data set F containing only a frequent set of 1
items. The structure conversion process of the data set[21].

Axy in F represents whether Ix is included in TIDy. If it is
included, axy is 1, otherwise it is 0. At this time, if you need to
calculate the number of occurrences of a k item set in the entire
data set, you only need to find the value corresponding to the k
items in data set F. The result of the operation is all the
transaction numbers containing the k item set, and the count of
occurrences can be obtained.

The ICAMA algorithm uses the idea of MapReduce to improve
the two stages of Apriori algorithm. (1) ICAMA proposed a
suitable data structure for simplify the number of occurrences of

the item set from traversing the entire data set to summing the bit
set of the corresponding item. And then discarded the generation
process of the candidate to further improve the efficiency of the
algorithm[22]. (2) ICAMA make the frequent k–1 item sets stored
in Fk–1 are directly connected to the same two types as YAFIM[23].
If they are connectable, their corresponding Bit Sets are summed,
and the Bit Set operation and operation are performed. The
processing will be terminated while the transaction number of all
connected k itemsets is recorded in the Bit Set. Next, it is
determined whether the number of transaction numbers in the Bit
Set is greater than the minimum support degree. If it is greater
than, the connected item set is a frequent k item set, and the result
Bit Set is stored as a key value pair in Fk. The first stage start
with convert each row of the dataset into multiple (item, TID)
key-value pairs by flat Map(), then reduce By Key() to connect the
TIDs of the same key into a string and filter the string at the same
time using filter() The number of transaction numbers included in
the transaction number is less than the minimum support value[24],
and then map() is used to construct a string of each TID into a Bit
Set, so the first frequent itemsets will be stored in the form of (item,
Bit Set) key-value pairs.

The second stage is to obtain k-item sets through the iterative
process which is start from k–1 item sets. First, the candidate k
item set is obtained from the frequent k–1 item set self-joining and
pruning. In order to make the search candidate set faster, YAFIM
stores the candidate k item set in the hash tree. Then start the map
task, each map task processes several transactions, to obtain all k
pairs in the transaction and searches the hash tree and determine
whether it is a candidate set. If it is a k candidate set, it is
transmitted as a Key (key, 1) key-value pairs, the reducer counts
and filters the parts of the frequent k-item set. This is the
implementation of the most classic Apriori algorithm, but it is often
because the most time-consuming process of generating candidate
sets in this process makes the efficiency of the algorithm
constrained.
3.2 Time complexity

It is necessary to make assumptions about some values and
then express the analysis results in this form in the form of
mathematical expressions. Suppose T represents the number of
transactions in the data set to be processed, M represents the
number of map tasks in the work, and f represents the number of
frequent 1 item sets[25]. The asymptotic time complexity of

YAFIM is 2 2()TO f a
M

+ × ; the asymptotic time complexity of

ICAMA is ()TO f
M

× .

4 Experiment

4.1 Experimental data
The experimental data is the transaction information of

agricultural inputs products collected by the Institute for the
Control of Agrochemicals in China Pesticide Digital Supervision &
Management Platform[26]. Every day, more than 100000 pesticide
operators across the country upload their business information to
this platform[27], including price, trading location, the varieties of
agricultural products inputs and scale of transactions. The
supervision platform generates more than 10 million data records
per day, so we took one day’s data generated from this platform for
analysis and testing the performance of the spark-based Apriori
algorithm[28].

September, 2019 Bai X N, et al. Association rule mining algorithm based on Spark for pesticide transaction data analyses Vol. 12 No.5 165

4.2 Pseudo-code of the experiment
Input:

The Dataset D, which stored in HDFS in the form of data
blocks. The minimum threshold of supports min_sup.
Processing:

1) Get L1

Instans=sc.tectfile(D)
L1=instans.map(_, 1)
instans.map(_, 1).reduceByKey(_+ _).filter(_ >min_sup)

2) Construct local matrix G
Matrix G=The initialized matrix of H×(J+2)
foreach (l in L1)
 foreach (t in Di)
 if (l in t)
 G.add(1)
 else
 G.add(0)

3) Get local candidate itemsets
for (1<k<maxL){
 for (0≤m<maxL){
 count=0
 for (m<n<maxL){
 while (count<k){
 if (G[m][maxL–1]<k)
 break
 else
 count++
 }
 Loscal_sup_count = [use “AND” operation on
‘kcolum items’ of G]
 Cx.add(<kcolumn_items, local_sup_count>)
 }
 }
}

4) Calculate global support, get frequent itemsets
Gck = Ck.reduceBykey(_ + _).filter(_.2 < min_sup)
L = instans.map(_, gCk).reduceBykey(_ + _).filter(_ > min_sup)
L += ck.reduceBykey(_ + _).filter(_.2 > min_sup).add(kitems,
sup_count)
return L

Output:
Frequent itemsets L derived from data set D.

4.3 Holistic description of the experiment
1) Experimental environment
The computer cluster of the experimental platform consists of

eight servers. Each server installs two same Linux systems
(Ubuntu, Version.12.04) with exception of computing framework,
and the computing frameworks they install respectively are Spark +
YARN, Spark + Mesos and Hadoop[29].

2) Experimental steps
The Spark based parallel computing is implemented by Mesos.

So, it is necessary that set the host and port of the Spark-Mesos
before the experiment. Deploying Spark on YARN to deploy
Spark frameworks on YARN requires first installation of
Maven3.0.4[30] and configuration of its environment variables.
Subsequently, Maven is used to compile and package the Spark
kernel separately into an independent jar package. Copy the jar
package into the other machines in the cluster complete
configuration[31,32].

3) Results
The experiment compares among the performances of single

machine Apriori algorithm, Hadoop based parallel computing
Apriori algorithm and Spark based parallel computing Apriori
algorithm on different size data sets. The results are shown in
Figures 3 and 4.

Figure 3 Running time of different data block

Figure 4 Running time of different algorithm

4.4 Analysis
Experiments show that the scale of dataset to be processed is

positively related to computation. So single machine cannot
complete Association Rules Mining for large amounts of data
limited by computing resources[33]. Although the ICAMA
algorithm described in this paper consumes additional running time
due to process communication and data transmission, this
consumption will not increase greatly due to the expansion of
datasets. The larger the amount of data, the smaller the
consumption ratio is. Besides, the algorithm has the advantages
of parallel computing, such as making full use of computing
resources on different machines[34] and reducing the demand for the
performance of a single machine[35].

5 Conclusions

This paper briefly summarizes the performance bottlenecks of
the classic Apriori algorithm, and improves these aspects,
especially the candidate set generation process, and obtains a more
optimized algorithm. Then, based on the Spark platform's
efficient support for the iterative algorithm, it will improve. The
Apriori algorithm is parallelized on Spark and implemented.
Then, the detailed analysis and comparison of the existing classic
Apriori Spark implementation YAFIM and the improved Apriori
algorithm Spark implementation ICAMA are described, and how to
improve the algorithm is described. Finally, the efficiency of
ICAMA is fully proved theoretically and experimentally.
Especially when the amount of data continues to increase, the
ICAMA performance improvement will be more obvious.
Therefore, the algorithm described in this article has the effecter
clustering and has better computational performance on large-scale
data. In summary, this algorithm can effectively mine agricultural

166 September, 2019 Int J Agric & Biol Eng Open Access at https://www.ijabe.org Vol. 12 No.5

inputs information, provides the basis for the market regulation of
agricultural inputs product markets, and realizes the precise
investment of agricultural inputs. And then it provides algorithm
basis for achieving the supervision and traceability management of
the agricultural inputs market.

Acknowledgements

This work was financially supported by National Natural
Science Foundation of China (No. 61601471). The authors
gratefully acknowledge the helpful comments and suggestions of
the reviewers, which have greatly improved the presentation.

[References]
[1] Li D L. Internet of things and wisdom agriculture. Agricultural

Engineering, 2012; 2(1): 1–7. (in Chinese)
[2] Zhao C J. Intelligent agriculture prospects, digital technology will have a

new future. Marketing (Agricultural Resources and Markets), 2018; 18:
59–61. (in Chinese)

[3] Zhang M, Jin Y H, Zheng F T. Investigating the “One Farm Household,
Two Production Systems” in rural China: The case of vegetable and fruit
farmers. Annual Meeting of Agricultural and Applied Economics
Association (AAEA), Boston, Massachusetts, July 31-August 2, 2016.

[4] Yan M J, Luo J, Liu J Y, Hou C W. IABS: parallel improved Apriori
algorithm based on Spark. Application Research of Computers, 2017;
34(8): 2274–2277.

[5] Zhou Z H, Yang Q. Machine learning and its applications. Beijing:
Tsinghua University Press, 2011.

[6] Apache Hadoop. http://hadoop.apache.org/.
[7] Lin J X, Huang Z. An improved Apriori algorithm based on array vectors.

Computer Applications and Software, 2011; 28(5): 268–271.
[8] Cao Y, Miao Z G, Zhang H X. Application research about degree

warning based on improved Apriori algorithm. Computer Development
& Applications, 2014; 27(6): 1–3. (in Chinese)

[9] Zhao X J, Sun Z X, Yuan Y, Chen Y. An improved Apriori algorithm
based on orthogonal list storage. Journal of Chinese Computer Systems,
2016; 37(10): 2291–2295. (in Chinese)

[10] Mahout. http://mahout.apache.org/.
[11] Distributed computing. http://baike.baidu.com/view/7011548.htm.
[12] Dean J, Ghemawat S. MapReduce: Simplified data processing on large

clusters. Communications of the ACM, 2008; 51(1): 107–113.
[13] Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, et al.

Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation. USENIX Association,
April 25-27, 2012.

[14] Mllib. http://spark.apache.org/mllib/.
[15] Low Y C, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein J.

Graphlab: A new framework for parallel machine learning.

https://arxiv.org/ftp/arxiv/papers/1408/1408.2041.pdf.
[16] Berkhin P. A survey of clustering data mining techniques. Grouping

multidimensional data. Springer, Berlin Heidelberg, 2006; pp.25–71.
[17] Hu S J. Parallel data mining algorithm research in cloud. Chengdu:

University of Electronic Science and Technology of China, 2013. (in
Chinese)

[18] Tian S P, Wu W L. Algorithm of automatic gained parameter value k
based on dynamic k-means. Computer Engineering and Design, 2011;
32(1): 274–276. (in Chinese)

[19] Suo H G, Wang Y W. Reference-based k-means algorithm for document
clustering. Computer Engineering and Design, 2009; 2: 401–403,407. (in
Chinese)

[20] He Z, Qian J S. A multicenter clustering algorithm for automatic
acquisition of K values. Electronics World, 2012; 4: 60–64. (in Chinese)

[21] Bloodgood M, Ye P, Rodrigues P, Zajic D, Doermann D. A random
forest system combination approach for error detection in digital
dictionaries. Proceedings of the Workshop on Innovative Hybrid
Approaches to the Processing of Textual Data. Association for
Computational Linguistics, 2012; pp.78–86

[22] Mahdi M U. Determining number and initial seeds of K-means clustring
using GA. Journal of Babylon University/Pure and Applied Sciences,
2010; 18(3): 1–6.

[23] Lu S L, Lin S M. Distance-based outliers detection and applications.
Computer and Digital Engineering, 2004; 32(5): 94–97. (in Chinese)

[24] Granitto P M, Furlanello C, Biasioli F, Gasperi F. Recursive feature
elimination with random forest for PTR-MS analysis of agroindustrial
products. Chemometrics and Intelligent Laboratory Systems, 2006; 83(2):
83–90.

[25] Zheng L Z, Huang D C. Outliers detection and semi-supervised
clustering algorithm based on shared nearest neighbors. Computer
Systems and Applications, 2012; 21(2): 117–121. (in Chinese)

[26] Ho T K. The random subspace method for constructing decision forests.
EEE Trans. Pattern Analysis and Machine Intelligence, 1998; 20(8):
832–844.

[27] Genuer R, Poggi J M, Tuleau-Malot C. Variable selection using random
forests. Pattern Recognition Letters, 2010; 31(14): 2225–2236.

[28] Shin M, Kang E M, Park S H. Automatically finding good clusters with
seed k-means. Genome Informatics Series, 2003; pp.326-327.

[29] Arthur D, Vassilvitskii S. K-means++: The advantages of careful seeding.
Proceedings of the eighteenth annual ACM-SIAM symposium on discrete
algorithms. Society for Industrial and Applied Mathematics, 2007;
pp.1027–1035.

[30] Yong K. Research on feature selection and model optimization of random
forest. Harbin: Harbin Institute of Technology, 2008. (in Chinese)

[31] Bahmani B, Moseley B, Vattani A, Kumar R, Vassilvitskii S. Scalable
k-means++. Proceedings of the VLDB Endowment, 2012; 5(7): 622–633.

[32] Caruana R, Niculescu-Mizil A. An empirical comparison of supervised
learning algorithms. Proceedings of the 23rd International Conference on
Machine Learning, ACM, 2006; pp.161–168.

[33] Breiman L. Random forests. Machine Learning, 2001; 45(1): 5–32.
[34] Bootstrap. http://en.wikipedia.org/wiki/Bootstrap_aggregating.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

