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Abstract: Computers have become an integral part of human lives.  Computers are used in almost every field even in 

agriculture.  Technologies like computer vision-based pattern recognition are being used to detect diseases and pests like 

weeds affecting the crop.  The Weeds are unwanted plants growing among crops competing for nutrients, water, and sunlight.   

It can significantly reduce the quality and yield of the crops incurring a huge loss to the farmers.  This paper investigates the 

use of texture features extracted from Laws’ texture masks for discrimination of Carrot crops and weeds in digital images.  

Laws’ texture method is one of the popular methods used to extract texture features in medical image processing, though not 

much explored in plant-based images or agricultural images.  This experiment was carried out on two categories of benchmark 

digital image datasets of Carrot crop and Carrot weed respectively, which are publicly available.  A total of 70 texture features 

were extracted.  The dimensionality reduction technique was used to get the optimal features.  These features were then used 

to train the Random Forest classifier.  The results and observations from the experiment showed that the classifier achieved 

above 94% accuracy. 
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1  Introduction

 

Lately, there is a big difference in the way the agronomists and 

farmers can gather and analyze data because of the advances in 

technology.  Automated livestock management, precision weed 

control and measurement of phenotypic characteristics of the plants 

and crops all allow us in attaining good yield and profit with less 

input.  The main concept behind these systems is Computer Vision 

(CV).  Computer Vision is defined as the process of analyzing 

images and videos automatically to obtain meaningful inference or 

measurements without human intervention.  This is one of the latest 

technologies that are being used in precision agriculture.  Precision 

Agriculture is defined as ‘art and science of enhancing crop 

production using the latest technology’[1].  For many years, 

technology being used in agriculture such as mechanical harvester, 

various sensor networks to know about the current environmental 

condition and to predict environmental changes that may happen in 

the near future.  One of the reasons for using computer vision in 

agriculture is to eliminate the extensive use of chemical herbicides 

and to favor the development of environment-friendly and 

non-chemical methodologies.  In a few decades, it is predicted that 

most of the manual farming chores will be replaced by robotic 

farming, which will be based on the computer vision techniques to 

do things like preparing the land for cultivation, weed control, 

monitoring and harvesting[2]. 
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Weeds are unwanted plants growing amongst crops.  Weeds 

compete with the crops for nutrients, water and sunlight thus can 

cause low yield.  India is the second largest in the farm output but 

the yield is very low and one of the main reasons for this is due to 

weeds[3].  Weed management is very poor in India especially in 

the coastal Karnataka region of India because of the 

non-availability of laborers.  In addition, weeds are mainly 

controlled in India by chemical or mechanical weeders.  The 

overuse of chemical herbicide leads to contamination of 

groundwater.  Many farmers in India lack knowledge of 

site-specific treatment.  That is, for a particular weed, the suitable 

herbicide in the right amount has to be used otherwise, it leads to 

herbicide-resistant weeds.  Both mechanical and chemical ways of 

controlling weeds take into account the general condition of the 

field without considering the spatial or temporal changes that can 

occur at minute-level.  Therefore, this is the best time to harness 

the power of computer vision technology for precision weed 

management.  The use of technology for weed management not 

only reduces labor problems but also gives way for chemical-free 

farming and helping in increasing the yield and reducing loss.  

India is the most populous country next to China.  Therefore, 

India has to use technology in agriculture to increase food 

production and hence meet growing food demand.  According to 

Young et al.[4], in the future, many tasks in agriculture will be 

automated using computer vision or robotic vision technology.  

Common agricultural tasks like land preparation, sowing, weeding 

and so forth will be carried out by agricultural robots operating 

under computer vision technology.  Even weed detection and 

removal will be automated with the help of computer vision as 

shown in Figure 1.  These field robots have camera sensors, which 

will take images of the field, and images will be processed using 

advanced image processing techniques, which will help robots to 

take the appropriate action such as weed removal if detected.  

Also by flying drones on the field, images of the field can be 

captured.  These images can be processed using advanced image 
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processing techniques or computer vision techniques, which will 

help in identifying the weeds so that specific types of treatment can 

be given in controlling or eradicating the weeds.  

 
Figure 1  Weed robots removing weeds.  Courtesy[4] 

 

We can find many studies carried out to distinguish the crop 

and weed using image processing and soft computing techniques in 

the literature.  Philipp Lottes et al.[5] used Unmanned Arial 

Vehicle (UAV) to acquire the images and analyzed the images for 

weed types, crop spatial distribution, and weed-crop ratio.  Visual 

features and geometrical features were extracted from the 

vegetation segmentation from the background.  Random Forest 

classifier was used to classify the vegetation into crop and weed.  

The dataset consisted of sugar beet plants and the commonly 

available weeds in the fields of Germany and Switzerland.  Ch. 

Gée et al.[6] presented a generalized method to know the weed 

infestation rate in agronomic images.  Initially, the method was 

tested on the simulated images, which simulated maize field images.  

After the vegetation was extracted using the spectral index method, 

crop row is detected using a double Hough transform.  The weed 

and crop were discriminated using region-based segmentation 

based on the blob coloring method.  The accuracy for crop row 

was found to be 87% in case of medium weed infestation rate and 

100% in case of low weed infestation rate.  The result of crop and 

weed discrimination was compared with the manual weed 

infestation estimation.  The correlation coefficient found to be 

0.83 in the case of medium weed infestation.  Ciro Potena et al.[7] 

used convolutional neural networks (CNN) on RGB images and 

near-infrared images and an attempt was made to distinguish crop 

and weed.  Vegetation segmentation from the soil background was 

done using the normalized difference vegetation index (NDVI) 

method trained by a lightweight CNN.  Now in order to classify 

the vegetation as crop or weed, a deeper 3-class CNN was used.  

Wu et al.[8] identified the weeds found in between the crop rows 

based on position and edge feature.  For edge detection, Roberts’s 

edge detecting operator is used.  After edge detecting, the image 

was divided into blocks and each block number of white pixels was 

compared with the threshold to determine whether they belong to 

weed or not.  The correct detection rate average was found to be 

95%.  The algorithm can be used to detect the weed in other crops, 

which are grown row-wise such as corn, soy, maize.  

Burgos-Artizzu et al.[9] performed real-time identification of weed 

patches in maize fields.  Fast image processing (FIP) and slowed 

robust crop row detection was combined and this produced very 

good results even under natural variable conditions.  Hong et al.[10] 

performed the segmentation of corn crops from weeds.  Images 

were acquired under natural variable conditions from various 

sources like fields, laboratory, and greenhouse.  The vegetation 

was segmented using the normalized excess green index method 

based on a threshold.  A median filter of size 3×3 was used to 

reduce the noise.  The morphological operations were used to 

calculate features and an artificial neural network was used for 

classification of crop and weed.  In the initial stage, the accuracy 

was around 72% but after improvement by ignoring the incomplete 

morphological features near the edges of the image, the accuracy 

was found to be 95%.  Hemming et al.[11] developed a 

classification algorithm for Cabbage and Carrot crops and weeds.  

Eight morphological and color features are combined to create a 

joint feature space and for each object.  Then feature selection is 

used to determine which features suitable for discriminating weeds 

and crops.  Fuzzy logic based membership function was used for 

classification.  Kumar et al.[12] used texture features based on 

curvelet transform and Tamura texture features in discriminating 

crops and weeds.  Zhiche Li et al.[13] discriminated the weed and 

crop using texture feature extracted using the color co-occurrence 

method.  Kumar et al.[14], made a review on the crop and weed 

segmentation.  Agrawal et al.[15], extracted the texture features like 

contrast, energy, and so forth using a gray-level co-occurrence 

matrix of the leaf images.  Ab Jabal et al.[16] identified the plants 

using color, shape and texture feature extracted using a gray-level 

co-occurrence matrix.  Faisal Ahmed et al.[17] extracted only color, 

size-independent, and size-dependent features in discriminating 

chilly crops and weeds.  Slaughter et al.[18] differentiated plants 

using shape, color and texture features based on contrast, regularity, 

energy and so forth.  Abdul Kadir et al.[19], identified different 

plants, shape, color and texture features were combined to form a 

common feature space.  Wu et al.[20] used the Scale-Invariant 

Feature Transform(SIFT) to extract features used for classification.  

Ali Caglayan et al.[21], extracted the shape and color features of 

individual leaves for classification purposes.  Andres Milioto et 

al.[22], developed a convolution neural network (CNN) based 

semantic classification weeds, crops, and background.  With the 

help of existing index-based methods, the CNN learns and makes a 

pixel-wise classification of weed, crop, and background in 

real-time.  The accuracy achieved is around 91%.  Bonirob robot 

was used in capturing the images from the fields.  This study was 

done with the purpose of giving site-specific to the fields with the 

aim of reducing the overuse of chemicals.  The review paper by 

Wäldchen et al.[23] gives us insight into the various approaches that 

have been used in the identification of plant types using computer 

vision techniques.  In addition, authors have given a brief 

introduction to various publicly available plant image datasets and 

flower datasets for researchers working in this domain.  Authors 

also state that there are many researchers who have worked on their 

own dataset which is not made public and on images obtained from 

web sources.  

The objectives of the study were 1) to apply the Laws’ texture 

masks to extract the textural features, and 2) to train the classifier 

with the textural features and to analyze the results produced by the 

classifier. 

2  Materials and methods 

The first dataset used for this study is created by Huang et 

al.[24].  This dataset was obtained from http://github.com/cwfid.  

The annotated images consist of crop marked with green color 

polygons and weeds are annotated with red color as shown in 

Figure 2.  Now based on the color, the only red color polygons 

were retained in the annotated image by masking all green color 

polygons.  Next, the resulted image was multiplied with the 

corresponding original image which had its soil background 

removed.  

http://github.com/cwfid
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Figure 2  Original images of Carrot crop and weed and annotated images[24] 

 

By doing this, images with only weeds were obtained.  Similarly, 

by selecting green colored polygons and masking all red-colored 

polygons and multiplying with original images, images with only 

carrot crops were obtained.  These images were then converted to 

the YCbCr color space.  The luminance component ‘Y’ was 

separated.  Then the Laws’ filter masks[25] were applied to the 

luminance component Y.  The filter masks were obtained from 

five one-dimensional (1-D) vector of length five.  They are E5, L5, 

R5, S5, W5 describing edge, level, ripple, spot, and wave micro- 

structures respectively.  The 1-D vectors are given as follows: 

Edge detection = E5 = [–1 –2 0 2 1] 

Level detection = L5 = [1 4 6 4 1] 

     Ripple detection = R5 = [1 –4 6 –4 1] 

Spot detection = S5 = [–1 0 2 0 –1] 

   Wave detection = W5 = [–1 2 0 –2 –1] 

Now multiplying these vectors with one another, twenty-five 

different masks were obtained which are as follows: 

L5. L5  E5. L5  S5. L5  W5. L5  R5. L5  

L5. E5  E5. E5 S5. E5  W5. E5  R5. E5  

L5. S5  E5. S5  S5. S5  W5. S5  R5. S5  

L5. W5  E5. W5  S5. W5  W5. W5   R5. W5  

L5. R5  E5. R5  S5. R5  W5. R5  R5. R5 

The images in the dataset (after separating crop and weeds) 

were convolved with these 25 filter masks to get textured images 

called ImE5S5.  These textured images were then passed through a 

15×15 average filter to get macro-structures.  After this, images 

were normalized using a min-max normalization method to get 

normalized images called as NormalizedTImE5S5.  Combining 

NormalizedTImE5S5 and NormalizedTImS5E5 by using the equation 

(1) we get,  

FTDE5S5=(NormalizedTImE5S5+NormalizedTImS5E5)/2   (1) 

The final 14 texture descriptors or textured images called FTD 

are as follows 

FTDE5S5 FTDE5L5  FTDE5R5  FTDE5W5 FTDE5E5 FTDL5S5  

FTDL5R5 FTDL5W5  FTDS5R5 FTDS5W5  FTDS5S5 FTDR5R5 

FTDR5W5 FTDW5W5  

Now for each FTD, the five statistical properties were 

calculated.  Figure 3 and Figure 4 summarize the texture feature 

extraction process.  The statistical properties considered are mean, 

standard deviation (SD), skewness, kurtosis, and entropy which are 

given as follows: 
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The second dataset used in this study is created by Lameski et 

al[26].  This dataset was obtained from https://github.com/lameski/ 

rgbweeddetection.  In this dataset, ground truth images are 

gray-level images with the crop in represented in light gray color 

and weed in dark gray color.   Since the images in this dataset 

were acquired under variable natural lighting conditions, to 

minimize the effect of illumination variation, the technique of 

contrast limited adaptive histogram equalization (CLAHE)[27] was 

applied before applying Laws’ texture masks.  In CLAHE, the 

image is divided into small regions called tiles.  Each tile’s 

contrast is enhanced so that it matches with the histogram specified.  

The adjacent tiles are combined with using bilinear interpolation to 

remove boundaries, which are artificially induced. 

 
Figure 3  Steps to extract only one type of plant (either crop or weed) from the image 

https://github.com/lameski/rgbweeddetection
https://github.com/lameski/rgbweeddetection
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Figure 4  Steps involved in extracting statistical features from textured images 

 

2.1  Dimensionality Reduction Technique 

The dimensionality reduction technique refers to the process of 

converting a set of data with huge dimensions to a smaller 

dimension ensuring the new set of data conveys the same meaning.  

Dimensionality reduction technique removes redundant features 

which may decrease the accuracy of the classifier.  In this study, 

recursive feature elimination (RFE)[28] was used for feature 

selection.  In this technique, a support vector machine (SVC)[29,30]  

was built with all the 70 texture features extracted.  These 70 

texture features are listed in Table 1.  The goal of this method was 

to select the optimal subset of features by removing weak texture 

features one by one and validating an optimal subset of features 

through a 5-fold cross-validation score.  Figure 5 shows that the 

model achieved the highest cross-validation score of 89% when the 

feature set contained 17 features.  These 17 best performing 

texture features are listed in Table 2.  The implementation of this 

algorithm was done using RFECV (Recursive Feature Elimination 

with Cross-Validation) from the Sklearn package for Python3[31].  
 

Table 1  Total features (original features) extracted 

Sl. No. Feature Description Code Sl. No. Feature Description Code 

1 Mean of Texture descriptor E5L5 μE5L5 36 Skewness of descriptor Texture R5S5 θR5S5 

2 Mean of Texture descriptor E5R5 μE5R5 37 Skewness of descriptor Texture R5W5 θR5W5 

3 Mean of Texture descriptor E5S5 μE5S5 38 Skewness of descriptor Texture R5R5 θR5R5 

4 Mean of Texture descriptor E5W5 μE5W5 39 Skewness of descriptor Texture W5W5 θW5W5 

5 Mean of Texture descriptor L5R5 μL5R5 40 Skewness of descriptor Texture L5L5 θL5L5 

6 Mean of Texture descriptor L5W5 μL5W5 41 Skewness of descriptor Texture E5E5 θE5E5 

7 Mean of Texture descriptor L5S5 μL5S5 42 Skewness of descriptor Texture S5S5 θS5S5 

8 Mean of Texture descriptor R5S5 μR5S5 43 Kurtosis of descriptor Texture E5L5 γE5L5 

9 Mean of Texture descriptor R5W5 μR5W5 44 Kurtosis of descriptor Texture E5R5 γE5R5 

10 Mean of Texture descriptor R5R5 μR5R5 45 Kurtosis of descriptor Texture E5S5 γE5S5 

11 Mean of Texture descriptor W5W5 μW5W5 46 Kurtosis of descriptor Texture E5W5 γE5W5 

12 Mean of Texture descriptor L5L5 μL5L5 47 Kurtosis of descriptor Texture L5R5 γL5R5 

13 Mean of Texture descriptor E5E5 μE5E5 48 Kurtosis of descriptor Texture L5W5 γL5W5 

14 Mean of Texture descriptor S5S5 μS5S5 49 Kurtosis of descriptor Texture L5S5 γL5S5 

15 Standard Deviation of Texture descriptor E5L5 σE5L5 50 Kurtosis of descriptor Texture R5S5 γR5S5 

16 Standard Deviation of Texture descriptor E5R5 σE5R5 51 Kurtosis of descriptor Texture R5W5 γR5W5 

17 Standard Deviation of Texture descriptor E5S5 σE5S5 52 Kurtosis of descriptor Texture R5R5 γR5R5 

18 Standard Deviation of Texture descriptor E5W5 σE5W5 53 Kurtosis of descriptor Texture W5W5 γW5W5 

19 Standard Deviation of Texture descriptor L5R5 σL5R5 54 Kurtosis of descriptor Texture L5L5 γL5L5 

20 Standard Deviation of Texture descriptor L5W5 σL5W5 55 Kurtosis of descriptor Texture E5E5 γE5E5 

21 Standard Deviation of Texture descriptor L5S5 σL5S5 56 Kurtosis of descriptor Texture S5S5 γS5S5 

22 Standard Deviation of Texture descriptor R5S5 σR5S5 57 Entropy of descriptor Texture E5L5 EntropyE5L5 

23 Standard Deviation of Texture descriptor R5W5 σR5W5 58 Entropy of descriptor Texture E5R5 EntropyE5R5 

24 Standard Deviation of Texture descriptor R5R5 σR5R5 59 Entropy of descriptor Texture E5S5 EntropyE5S5 

25 Standard Deviation of Texture descriptor W5W5 σW5W5 60 Entropy of descriptor Texture E5W5 EntropyE5W5 

26 Standard Deviation of Texture descriptor L5L5 σL5L5 61 Entropy of descriptor Texture L5R5 EntropyL5R5 

27 Standard Deviation of Texture descriptor E5E5 σE5E5 62 Entropy of Texture descriptor L5W5 EntropyL5W5 

28 Standard Deviation of Texture descriptor S5S5 σS5S5 63 Entropy of descriptor Texture L5S5 EntropyL5S5 

29 Skewness of descriptor Texture E5L5 θE5L5 64 Entropy of descriptor Texture R5S5 EntropyR5S5 

30 Skewness of descriptor Texture E5R5 θE5R5 65 Entropy of descriptor Texture R5W5 EntropyR5W5 

31 Skewness of descriptor Texture E5S5 θE5S5 66 Entropy of descriptor Texture R5R5 EntropyR5R5 

32 Skewness of descriptor Texture E5W5 θE5W5 67 Entropy of descriptor Texture W5W5 EntropyW5W5 

33 Skewness of descriptor Texture L5R5 θL5R5 68 Entropy of descriptor Texture L5L5 EntropyL5L5 

34 Skewness of descriptor Texture L5W5 θL5W5 60 Entropy of descriptor Texture E5E5 EntropyE5E5 

35 Skewness of descriptor Texture L5S5 θL5S5 70 Entropy of descriptor Texture S5S5 EntropyS5S5 
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Table 2  Features selected (Best feature subset) 

Sl. No. Feature Description Code 

1 Skewness of descriptor Texture E5L5 θE5L5 

2 Skewness of descriptor Texture L5R5 θL5R5 

3 Skewness of descriptor Texture S5S5 θS5S5 

4 Entropy of descriptor Texture E5L5 EntropyE5L5 

5 Entropy of descriptor Texture E5R5 EntropyE5R5 

6 Entropy of descriptor Texture E5S5 EntropyE5S5 

7 Entropy of descriptor Texture E5W5 EntropyE5W5 

8 Entropy of descriptor Texture L5R5 EntropyL5R5 

9 Entropy of Texture descriptor L5W5 EntropyL5W5 

10 Entropy of descriptor Texture L5S5 EntropyL5S5 

11 Entropy of descriptor Texture R5S5 EntropyR5S5 

12 Entropy of descriptor Texture R5W5 EntropyR5W5 

13 Entropy of descriptor Texture R5R5 EntropyR5R5 

14 Entropy of descriptor Texture W5W5 EntropyW5W5 

15 Entropy of descriptor Texture L5L5 EntropyL5L5 

16 Entropy of descriptor Texture E5E5 EntropyE5E5 

17 Entropy of descriptor Texture S5S5 EntropyS5S5 

 
Figure 5  Result of recursive feature elimination technique 

 

The datasets were divided into a training dataset and a test 

dataset.  The size of the training dataset was 48 and the size of the 

test dataset was 12 in the first dataset.  In the second dataset, the 

size of the training dataset was 30 and the testing dataset was 09.  

The training dataset was used to train Random Forest (RF) 

classifier[32].  The test data was used to evaluate the performance 

of the classifier.  The selected 17 best performing features were 

highly correlated as shown in Figure 6.  The random forest 

classifier performs well when highly correlated features are present 

in the feature subset[33].  Therefore, a random forest classifier was 

selected for classification. 

 
Figure 6  Correlation matrix of the selected feature subset 

 

2.2  Random forest classifier 

The tree-based supervised learning algorithm is considered one 

of the best as it provides high accuracy and maps the non-linear 

relationships effectively.  Random Forest is the most popular 

method among data scientists as it can perform both classification 

and regression.  It also performs well in handling outliers, filling 

missing values and other essential issues in data analytics.  It 

comes under an ensemble learning model wherein a group of weak 

learners comes together to form a strong model.  In Random 

Forest multiple trees are built.  If the classification of objects is 

based on features, multiple trees are built.  Each tree gives a 

classification.  The forest goes with the majority vote.  The RF 

was implemented using RandomForestClassifier from the Sklearn 

package[31].  The following points summarize the steps involved in 

Random Forest classifier as follows 

1) First randomly m features are chosen from M features where 

m<M. 

2) Using these m features builds a node b which will be a root 

node using the best feature among m features.   This is called as 

best split approach. 

3) Make node b to have child nodes by using the same best 

split approach.  

4) Repeat the steps from one to three until ‘p’ numbers of 

nodes have been reached. 

5) Repeat the steps from 1 to 4 until ‘n’ trees have been built.  

6) Test Features are now taken and rules of each tree are 

applied to predict the class. 

7) The final prediction is done by considering the majority vote 

in the forest. 

3  Results and discussions 

3.1  Results 

This study was experimentally implemented using Matlab 

R2017a.  The images were resized to 1296×966 when working with 
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Matlab R2017a.  The evaluation Random Forest classifier is done 

quantitatively using the Confusion Matrix[34].  The confusion 

matrix gives a summary of the prediction done on a classification 

problem.  The number of correct and incorrect predictions are 

presented with a count value and separated by each class in the 

confusion matrix.  This is shown in Table 3.  This essentially 

tells how a classification model is confused while making the 

predictions.  

Table 3  Confusion matrix 

Actual Class 
Predicted Class 

Positive Negative 

Positive True positive (TP) False negative (FN) 

Negative False positive (FP) True Negative (TN) 
 

Table 3 shows the confusion matrix for a binary classification 

problem or two-class classification problem.  In this study, there 

are two classes, crop (Carrot) and weed.  If the classifier outcome 

is positive and the actual case is positive, then it is a true positive.  

If the classifier outcome is negative but the actual case is positive, 

it is a false negative.  If the classifier outcome is negative and the 

actual case is negative, then it is a true negative.  If the classifier 

outcome is positive but the actual case is negative, then it is a false 

positive.  Table 4 shows the evaluation parameters for the 

confusion matrix for a binary classification problem[35].  
 

Table 4  Evaluation parameters for the confusion matrix 

Evaluation parameter Formula Describes 

Accuracy 
(TP+TN)/(TP+TN+ 

FP+FN) 

The ability of the classifier to 

correctly label the class 

Recall/ 

Sensitivity 
TP/(TP+FN) 

Compares positives with ones that 

should have been positives. 

Precision TP/(TP+FP) 
Gives us how many of the positively 

predicted were indeed positives 

Specificity TN/(FP+TN) 
How effective a classifier in 

identifying the negatives 

F1-score 
2TP/(2TP +  

FP + FN) 

Relates the real positives with those 

given by the classifier 

 

Table 5  Classification result in a confusion matrix for the first 

dataset 

Actual Class 
Predicted Class 

Weed Crop 

Weed 12 0 

Crop 1 11 
 

3.2  Discussions 

Plant leaves have different natural textures.  The texture of a 

plant leaf refers to smoothness or roughness on the surface of the 

leaf. These natural textural features were very well extracted from 

the images using micro-structure properties like level, ripple, edge, 

spot, and wave provided by the Laws’ masks.  In addition, Laws’ 

texture masks capture the leaf venation very well which is an 

important parameter in plant discrimination.  In this research work, 

discrimination of carrot crop and weed was made using Laws’ 

texture masks.  An accuracy of 95% was obtained for the first 

dataset which is greater when compared to the accuracy obtained 

by Haug et al.[24] for the same dataset. 100% accuracy was 

achieved for the second dataset as shown in Figure 7.  This shows 

that textural features using Laws’ masks could be an important 

feature for discrimination of different types of plants in computer 

vision applications.  Time taken to extract textural features using 

the Laws’ method was approximately 500 s. This can be further 

reduced using parallel processing.  

 
Figure 7  Classifier result obtained in classifying carrot crop and 

weed  
 

3.3  Evaluation using receiver operating characteristics (ROC ) 

curve 

ROC curve is used in machine learning to depict the 

performance of a classifier visually.  It is a graph of false-positive 

rate (FPR) against the true-positive rate (TPR).  The area under 

the ROC curve commonly referred to as AUC is another measure 

used to assess the performance of the given classifier[35,36].  It 

gives us the discriminative ability of the given classifier.  That is, 

it gives us the probability with which the classifier will rank a 

randomly chosen positive instance.  For example, if we get an 

AUC value as 0.8, then it means that a randomly chosen positive 

instance has a higher score than for a negative instance 80% of the 

time.  If most of the time classifier cannot clearly distinguish 

between the groups, we have AU as 0.5, for a random classifier.  

For the best classifier, we have AUC as 1.  Thus, this area gives 

us the predictive accuracy of a classifier model.  Higher the value 

of AUC, the better the model is.  Figure 8 shows the ROC curve 

for the first dataset with 0.912 as AUC value.  Figure 9 shows the 

ROC curve for the second dataset with 1 as AUC value.   

 
Figure  8  ROC curve for the first carrot and weed dataset 

 
Figure 9  ROC curve for second carrot and weed dataset 

 

Even though the results are promising, more and more crop 

and weed datasets have to be created so that each new method of 

discrimination of crop and weed can be tested and evaluated.  

Eventually, this may lead to the development of a general crop and 

weed discrimination model which can be used in the realization of 

robotic weeding.  
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4  Conclusions 

Plants have varying degrees of smoothness on the surface of 

their leaves.  These naturally occurring textures also define the 

vein structure of the leaves.  This naturally occurring texture of 

the leaves in digital images is well captured by the Laws’ texture 

masks.  Thus, it can be used as a feature for discrimination of 

Carrot crop and weeds.  Even though the accuracy of above 94% 

showed that texture features extracted using Laws’ texture masks 

could be a significant feature for the discrimination of carrot crop 

and weed, this research output can be solidified only by further 

research on larger datasets belonging to the variety of crop and 

weed. 

Research in discrimination of crop and weed using machine 

vision techniques is lagging due to the lack of publicly available 

benchmarks datasets.  More and more crop and weed datasets 

should be made available to encourage research in this direction.  

As a part of our future research, we intend to evaluate the efficacy 

of texture features obtained by the Laws’ texture masks in 

computer vision-based plant discrimination or identification on 

large plant datasets consisting of several species along with parallel 

processing to reduce the processing time.  
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