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Abstract: Farmers have to finish their harvesting with high efficiency, because of time and cost.  However, farmers are 

lacking knowledge and information required for selecting suitable combine harvesters and giving the conditions of their rice 

fields, because both information factors (combine harvester and field condition) impact the field capacity.  The field capacity 

model was generated from combine harvesters with the Thai Hom Mali rice variety (KDML-105).   Therefore, this study aimed 

to determine the prediction model for effective field capacity to combine harvesters when harvesting the Thai Hom Mali rice 

variety (KDML-105).  The methods began by collecting data of 15 combine harvesters, such as field, crop, and machine 

conditions and operating times; to generate the prediction model for the KDML-105 variety.  The prediction model was then 

validated using 12 combine harvesters that were collected similarly to the model creation.  The results showed a root mean 

square error (RMSE) of 0.24 m2/s for the model.   The prediction model can be applied for farmers to select the proper combine 

harvesters and give their field conditions. 
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1  Introduction

 

Climate change is an issue that warrants study because it is a 

problem presently damaging agricultural production.  Climate 

change causes temperature changes, heavy rainstorms, serious 

drought and severe flooding[1,2], which affect Southeast Asia and 

particularly countries in the Lower Mekong region such as 

Cambodia, Laos, Vietnam and Thailand.  These countries are 

heavily impacted by floods during the annual flood season 

(June-November)[3].  The Mekong River Commission[4] reported 

that in 2000-2002, annual flooding in these countries resulted in 

1380 deaths and a loss of 650 million USD. 

In 2011, Thailand produced approximately 34.5 million tons of 

grain rice, one-third of global rice exports[5].  However, Thailand 

frequently faces severe floods that negatively affect agricultural 

activity[6].  Specifically, extreme flooding in Thailand was recorded 

in 2011, causing a severe disaster that damaged approximately  

1.6 million hm2 of rice production areas (12.5% of the country’s 

cropland) and a loss of 1.3 billion USD[7-9]. 

The factor to the loss of rice products is a short harvesting 

season, which is determined by uncontrollable variables like 
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monsoons and natural disasters[10,11].  Farmers have to work under 

time pressure to finish harvesting before oncoming monsoons and 

natural disasters.  It is thus essential to know the approximate time 

requirements for finishing a rice harvest.  Poor management of 

harvesting services results in long harvesting times, which is a key 

problem[12].  Harvesting service providers in Thailand have 

historically been controlled and managed by local agencies.  These 

agencies are usually operated using only their previous experience.  

It is routine work and they focus on profits but are not concerned 

with machine performance.  

A large number of Thai farmers do not own combine 

harvesters but instead, hire from combine providers.  In addition, 

farmers require large combines to harvest in a timely manner when 

the harvesting season comes[13].  However, most of the combine 

harvesters lose harvesting times due to turning on headlands, 

repairs and adjustment times[14] since the use of combine harvesters 

is not suitable for the field conditions.  Moreover, the farmers 

cannot control the harvesting schedule, since their choices are 

limited and they have to wait for the providers, which causes a 

delay in the harvesting time.  Nevertheless, Thai farmers are still 

lacking knowledge, information and technology for selecting 

suitable combine harvesters matching their rice field conditions.  

Knowledge of the time and cost consumptions and harvester 

capacity prior to the harvesting activity is thus essential.  This 

knowledge can be used to select the proper combine harvesters, 

which help in planning the harvest and estimate the effective field 

capacity[15].  To the best of our knowledge, there are currently no 

reports on the development of effective field capacity as a 

predictive tool for rice fields. 

Related topics have been studied by various researchers who 

developed mathematical models to predict combine harvester 
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performance.  Baruah and Panesar[16,17] predicted the power 

consumption of Indian combine harvesters for paddy and wheat 

varieties.  Jarolmasjed et al.[18] developed a mathematical model for 

header loss of the combine harvesters in Iran; the model had a 76% 

correlation coefficient.  Junsiri and Chinsuwan[19] demonstrated the 

header loss prediction model for combine harvesters in Thailand, 

with a coefficient of determination (R2) of 0.75.  Chuan-Udom and 

Chinsuwan[20] developed the threshing loss model of the combine 

harvester in Thailand; the results satisfied their hypothesis, with a 

coefficient of determination of 0.92.  Sangwijit and Chinsuwan[21] 

predicted the total loss of combine harvesters and the developed 

model gave R2 of 0.91.  Liang et al.[22] developed a threshing model 

and found that combine performance could be improved by 

analyzing and optimizing the structure and variables of the 

threshing unit.  Siska and Hurburgh[23] developed the corn breakage 

prediction model using multiple linear regression techniques, with 

R2 of 0.65.  Additionally, Maertens et al.[24], Maertens and De 

Baerdemaeker[25] and Miu and Kutzbach[26] forecasted the 

characteristics of the material moving inside combine harvesters.  

Researchers have not only focused on the harvesting loss but 

they also attended to external factors such as crop and field area[27], 

the weight of ear[28], crop properties[29,30] and weather conditions[31] 

which all had an effect on combine performance.  Moreover, 

harvesting robots were developed for strawberries[32], cucumbers[33], 

apples[34,35], sweet-peppers[36], citrus[37], and lychee[38,39].  These 

studies support the farmers’ works and solve problems in an aging 

population and decrease labor.  The robots worked without human 

decisions and could work quickly with an increase in field capacity. 

Therefore, the goal of this study is to develop an effective field 

capacity model generated from combine harvesters for the 

KDML-105 variety.  The model will provide useful information for 

the user in planning the proper Combine harvester matching the 

field conditions.  The model benefits the user through shorter 

harvesting times, achieving production capacity, and reducing the 

risk of rice production damage.  It can also be adapted in the future 

to an application for smartphones. 

2  Assumptions and theories 

2.1  Assumptions and scope of work 

Field shape can have an effect on the effective field capacity of 

the combine harvesters[40].  This study assumed that most fields are 

rectangular because this shape is easy for construction and water 

management.  The combine harvesters were selected in this study 

because their dimension, size and assembly parts are different from 

the western combine harvester[41].  This combine harvester is the 

commercial machines designed and for work in the ASEAN rice 

field.  Thai Hom Mali rice variety (KDML-105) was selected for 

the experiment because this variety is of high value and quality, 

favored by Thai farmers for cultivation[42].  

2.2  Theory of effective field capacity 

There are two kinds of field capacity of the combine harvester, 

namely the theoretical field capacity (TFC) and effective field 

capacity (EFC).  The equations of field capacity are shown in 

Equations (1) and (2), respectively.  

Atotal
TFC

Tth
                     (1) 

Atotal
EFC

Ttotal
                     (2) 

where, TFC is theoretical field capacity, m2/s; EFC is effective 

field capacity, m2/s; Atotal is total harvesting area, m2; Tth is 

theoretical field time, s; Ttotal is total harvesting time, s. 

The TFC can be found from the combines harvester without 

any loss times from operating times[43].  However, in practice, there 

is no combine harvester without loss times because there are 

several factors in the practical fields that affect combine harvesters’ 

behavior when harvesting such as crop, field and machine.  These 

factors cause loss times and will be combined with Tth into Ttotal.  

All operating times are the factors that the combines normally 

encounter during practical harvesting, which are as following 

situations: 

(1) The daily preparation time in the garage before leaving to 

harvest. 

(2) The transportation time for moving the combine harvester 

from the garage to the field and back from the field to the garage.   

(3) The preparation time in the field, including daily service 

time and the time before the start and finish of harvesting. 

(4) The theoretical time that does not include the non-operating 

time, which is calculated by multiplying the effective width and 

traveling speed[44]. 

(5) The headland or corners turning time of the field that 

causes the combine harvester to stop[45-47]. 

(6) The grain unloading time (not including harvesting) due to 

unloading grain when the combine is full.  Combine harvesters 

have the grain tank on top of the machine and they need to 

temporarily halt harvesting and move to the waiting truck trailer on 

the road or bunds[46].  However, this is not necessary for the 

western combine harvesters that can unload the grains while 

harvesting. 

(7) The repair, adjustment, and refueling time during the 

harvesting.  This includes any accidents that may cause the 

harvesting to stop. 

(8)  The combine harvester operator self-time. 

Some operating time activities may not cause time loss from 

harvesting, such as the times in situations (1)-(3), because these 

activities happen before the combine harvesters begin their 

harvesting.  In addition, the time in the situation (8) may also not 

result in time loss because it is out of control, unstable, and the 

combine is still not active.  On the other hand, the activities in 

situations (4)-(7) happen while the combine harvester is working in 

the field and are called the total lost time (TL).  This TL is 

separated into the headlands and corners turning lost time (Tn), the 

traveling for unloading and grain unloading time without 

harvesting (Tf), and the repair, adjustment, and refueling time 

during the harvesting (Tm).  In addition, the rice fields are enclosed 

by bunds, which are used for water and irrigation management[48].  

The combine harvester loses time for bunds crossings, which can 

be called the bunds crossing lost time (Tb).  Finally, the EFC can 

be obtained from Equation (3). 

( )

Atotal Atotal
EFC

Tth TL Tth Tn Tm Tf Tb
 

    
      (3) 

where, TL is total lost time, s; Tn is headlands and corners turning 

lost time, s; Tn is headlands and corners turning lost time, s; Tf is 

traveling for unloading and grain unloading lost time, s; Tm is 

repair, adjustment, and refueling lost time during the harvesting, s; 

Tb is bund crossing lost time, s. 

2.3 Development of the fundamental prediction model 

Equation (3) shows the equation for EFC that consists of the 

total harvesting area (Atotal), theoretical field time (Tth) and the 
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four lost times (Tn, Tf, Tm and Tb).  The developed methods for the 

prediction model of Tth, Tn, Tf, Tm and Tb will be shown in this 

section and are combined as a fundamental prediction model in the 

final section. 

The flowchart in Figure 1 shows the standard harvesting 

processes when combine harvesters are working in practical rice 

fields and possible lost times.  The Tn was calculated by combining 

the headland turning lost times (Tnt) and the corners turning lost 

times (Tnc); these lost times occur when the combines are 

harvesting.  Similarly, the traveling for unloading lost time (Tfr) 

and the grain unloading lost time (Tfs) were included in the Tf; 

these occur when the grain tank is full.  In addition, the Tth 

happens only when the combines are harvesting.  However, there is 

no Tm included in the flowchart, because this lost time will be 

included when combine harvesters stop for repairs, adjustments, 

and refueling. 

 
Figure 1  Combine harvesters’ harvesting processes in practical 

fields 
 

2.3.1  Development of the prediction model for the theoretical 

field time (Tth) 

If a combine harvester has a header width (W) equal to the 

field width and harvests with a constant traveling speed (S), then 

harvesting is finished without TL.  The TFC and Tth can be found 

from Equations (4) and (5), respectively[44,49].  However, the 

combine harvesters have to take into account several variables in 

practical harvestings, such as the physical properties of the crop.  

This study used the KDML-105 rice variety as a sample, which had 

a strong effect on the Tth because of its specific physical property 

of a long stem.  This property also affected the header and 

threshing unit[19,20].  Thus, the coefficient of the theoretical field 

time (kth) was used to adjust the Tth for greater accuracy.  

Atotal
TFC W S

Tth
                   (4) 

kth Atotal
Tth

W S





                  (5) 

where, W is header width, m; S is traveling speed, m/s; kth is 

coefficient of the theoretical field time. 

2.3.2  Development of prediction model for the headland and 

corner turning lost time (Tn) 

Most farmland in the world has borders and requires farm 

harvesters to turn at the headland or corners.  The combine 

harvesters encounter a similar process, and lost time due to 

headland turning and corner turning will occur.  Therefore, the 

development of the prediction model for headland and corner 

turning lost time will be described in this section.   
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2.3.2.1  Development of the prediction model for the corner 

turning lost time (Tnc) 

 The Combine harvester working is shown in Figure 2 with the 

combine harvesters at the starting point (corner 1, CN1).  

Following this, the Combine harvester travels and harvests to 

corner 2 (CN2), but does not immediately make a headland turning 

due to a risk of damaging unharvested rice.  Therefore, the 

harvester turns left and moves to corner 3 (CN3) and 4 (CN4), 

respectively.  These trips are called “the first-round of harvesting”.  

The first harvested area is shown in Figure 2, but most combine 

harvesters normally have 2.80-3.20 m of header width.  As a result, 

the first harvested area was insufficient for turning at the headland, 

and the combine harvesters must have a second round of 

harvesting.  The procedures for the second round are similar to the 

first.  The equations for corner turning in the first and second 

rounds of harvesting (T1 and T2, respectively) are shown in 

Equations (6) and (7), respectively.  Furthermore, the Tnc is 

obtained by Equation (8).  Finally, the area of the first and second 

rounds of harvesting (Ah1 and Ah2, respectively) are shown in 

Figure 2 and both areas are obtained from Equations (9) and (10), 

respectively;    
4

1
1 11 12 13 14 1

i
T T T T T T i


              (6) 

4

1
2 21 22 23 24 2

i
T T T T T T i


             (7) 

4 4

1 1
1 2

i i
Tnc T i T i

 
                 (8) 

Ah1 = D∙W + D∙W + b∙W + b∙W = 2(D∙W) + 2(b∙W)     (9) 

Ah2 = d∙W + d∙W + bnet∙W + bnet∙W = 2d∙W + 2bnet∙W   (10) 

where, T11, T12, T13 and T14 are corners turning lost time at the 

field corner number 1, 2, 3 and 4, respectively in the first round of 

harvesting, s; 
4

1
1

i
T i

  is total corner turning lost time of the first 

round of harvesting, s; T21, T22, T23 and T24 are turning time at 

the field corner numbers 1, 2, 3 and 4, respectively, in the second 

round of harvesting, s; 
4

1
2

i
T i

  is total corner turning lost time of 

the second round of harvesting, s; Tnc is corner turning lost time, s; 

Ah1 is the area of the first round of harvesting, m2; D is total field 

length, m; b is field width of the area after the first round of 

harvesting, m; Ah2 is the area of the second round of harvesting, m2; 

d is field length after the first round of harvesting, m; bnet is net 

harvesting area width, m. 

2.3.2.2  Development of the prediction model for the headland 

turning lost time (Tnt) 

Figure 2 shows the field width of the area after the first round 

of harvesting (b), which is the difference between B and 2W (b= 

B–2W).  Next, the field length after the first round of harvesting (d) 

is the difference between D and 2W (d=D–2W).  The net 

harvesting area width (bnet) is the difference between B and 4W 

(bnet=B–4W).  Furthermore, Ah1 and Ah2 were modified as shown 

in Equations (11) and (12), respectively.  The total area of the first 

and second rounds of harvesting (Ah total) is calculated by the 

combination of Ah1 and Ah2, shown in Equation (13).  The net 

harvesting area (Anet) is computed by the difference between 

Atotal and Ah total, or can be computed by multiplying the net 

harvesting area width (bnet) by the net harvesting area length (dnet), 

shown in Equation (14).  Finally, the calculation of bnet is shown 

in Equation (15). 

Ah1 = 2D∙W + 2W∙ (B – 2W) = 2W∙ (D + B – 2W)     (11) 

Ah2 = 2W∙(D – 2W) + 2W∙(B – 4W) = 2W∙(D + B – 6∙W)    (12) 

Ah total = Ah1 + Ah2 = 2W∙(D + B – 2W) + 2W∙(D+B-6W)  (13) 

Anet = bnet∙dnet = Atotal – Ah total = Atotal – [2W∙(D + B – 2W) +  

2W∙ (D + B – 6W)]                               (14) 

[2 ( 2 ) 2 ( 6 )]Atotal W D B W W D B W
bnet

dnet

     
   (15) 

where, dnet is the net harvesting area length, m; Ah total is the area 

after the first and second round harvesting, m2; Anet is net field 

area, m2. 

Now, the combine harvester has adequate area for harvesting 

and returns to the starting point.  After that, the combine harvester 

travels straight to the headland and turns back.  This Combine 

harvester’s behavior loses time because the harvester has to lift its 

header and cannot harvest.  This behavior is thus called the 

“headland turning lost time” (Tnt), shown in Equation (16).  In 

addition, the amount of headland turning (nnt) is shown in 

Equation (17): 

Tnt ttn nnt knt                   (16) 

( ) 1
bnet

nnt
W

                   (17) 

Combining Equations (16) and (17), the final Tnt becomes 

Equation (18) as follows:  

[2 ( 2 ) 2 ( 6 )]
1

Tnt ttn knt

Atotal W D B W W D B W

d W

  

        
 

 

 (18) 

where, Tnt is headland turning lost time, s; ttn is average headland 

turning lost time, s; knt is coefficient of the headland turning lost 

time; nnt is the amount of the headland turning, in a number of 

times. 

 
Figure 2  Dimensions and behavior of combine harvesters while 

harvesting in a practical field 
 

2.3.3  Development of the prediction model for the travel and 

unloading of grain lost time (Tf) 

Most rice combine harvesters have a grain tank for storing 

grain while harvesting in the field which is unloaded once the tank 
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is full, at which point a truck trailer comes to the field and travels 

next to the combine harvester.  The combine harvester unloads the 

grain to the truck trailer and harvests continuously.  On the other 

hand, the combine harvesters utilize a different process because the 

field conditions in Thailand and ASEAN differ from the United 

States and Europe, in that they have abundant mud and 

waterlogging.  Furthermore, the truck trailer cannot come to the 

field and travel next to the Combine harvester.  Thus, the combine 

harvesters have to spend additional time unloading.  First, when the 

grain tank is full, the combine harvesters have to stop and travel to 

the truck trailer waiting on the road.  This process is called the 

“traveling to unload lost time” (Tfr).  Once the Combine harvester 

is in position for unloading, they will start to unload, which is 

called the “grain unloading lost time” (Tfr).  The development of 

the prediction model for Tfr and Tfs is described in the following 

section.   

2.3.3.1  Development prediction model for traveling to unload lost 

time (Tfr) 

When combine harvesters have a full grain tank in the field 

they cannot continue to harvest and need to unload the grain first.  

The traveling distance is uncertain and depends on the volume of 

the grain tank.  However, the approximate traveling distance can be 

calculated using the average distance between the field center and 

the unloading point (Lavg).  First, the Tfr can be found by the ratio 

of all distances that exist between traveling from the field center to 

the truck trailer (Ltotal) and the traveling speed for unloading (Sfr), 

shown in Equation (19).  However, the combine harvesters have to 

harvest all unharvested rice until the grain tank is full and then 

travel back to unload the grain once more in the practical 

harvesting.  Furthermore, the amount of traveling to unload grain 

(nfr) is found by the ratio of the total yield of the field (Ytotal) and 

the grain tank volume (ST).  Moreover, the Ytotal is found by 

multiplying the yield of a full grain tank (Y) and the Atotal; the nfr 

is shown in Equation (20).  The combine harvesters have to harvest 

under varying conditions depending on crop, field and machine.  

Therefore, the coefficient of traveling to unload (kfr) was used to 

adjust the Tfr for accuracy.  Finally, the Tfr can be found from 

Equation (21): 

(2 1)Ltotal Lavg nfr
Tfr

Sfr Sfr

 
             (19) 

Ytotal Y Atotal
nfr

ST ST


                 (20) 

2 ( )
1

Y Atotal
kfr Lavg

ST
Tfr

Sfr

  
   

           (21) 

where, Tfr is traveling to unload lost time, s; Ltotal is all distances 

between the field center to the truck-trailer, m; Sfr is traveling 

speed for unloading, m/s; Lavg is the average distance from the 

center of the field to the unloading point, m; nfr is the amount of 

time for traveling to unload, s; Ytotal is the total yield of the field, 

kg/m2; ST is grain tank volume, kg; Y is the yield of a full grain 

tank, kg; kfr is coefficient of traveling to unload lost time. 

2.3.3.2  Development of the prediction model for grain unloading 

lost time (Tfs) 

When the Combine harvester has arrived at the unloading point, 

it adjusts itself to a suitable position before starting to unload.  Tfs 

was calculated from the assumption that the combine harvester 

would unload when the grain tank is full.  The Tfs can be found by 

the ratio of the Ytotal and the grain unloading rate (R) as shown in 

Equation (22):   

Ytotal
Tfs

R
                 (22) 

where, Tfs is grain unloading lost time, s; R is grain unloading rate, 

kg/s. 

2.3.4  Development of the prediction model for repair, adjustment 

and refueling lost time during harvest (Tm) 

During harvesting, the Combine harvester may encounter 

problems caused by defects such as broken belts or other 

accessories.  Sometimes harvesters must stop for repairs, 

adjustments, or refueling[30,50].  Even though such problems do not 

occur too often, they result in extensive lost time.  There are many 

factors affecting the Tm, such as rice varieties, field conditions, 

machine conditions and driver’s experience.  The Tm can be found 

by Equation (23):  

1

n

i
Tm Tmn


                 (23) 

where, 
1

n

i
Tmn

  is the total of repair, adjustment, and refueling 

lost time during the harvesting, s. 

2.3.5  Development of the prediction model for bunds crossings 

lost time (Tb) 

The Atotal is separated by three bunds into four small fields 

(Figure 3).  Almost all drivers of this study prefer to finish their 

harvesting field by field, then cross the bund to the other fields.  

Thus the total bunds crossing time (Cb) is calculated using 

Equation (24).  However, the combined harvesters encounter other 

factors affecting the bunds crossing, such as bund height, bund 

strength, the total weight of combine harvester and driver’s 

experience in practical harvesting.  Therefore, the coefficient of the 

bunds crossing lost time (kb) is used to adjust the Tb for accuracy 

as shown in Equation (25): 

 
Figure 3  Aerial view of practical harvesting fields, separated into 

four smaller fields by the bunds 

Cb = nb – 1                  (24) 

( 1)Tb kb Cb kb nb                 (25) 

where, Cb is total bunds crossing time, s; nb is number of small 

fields; kb is coefficient of the bunds crossing lost time 

2.3.6  Fundamental prediction model of effective field capacity 

for Thai rice combine harvesters 

By combining all prediction models of Tth, Tn, Tf, Tm and Tb 

the fundamental prediction model of effective field capacity (EFC) 

for Thai rice combine harvesters is shown in Equation (26): 
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(26)

 
 

3  Methodologies 

3.1  Development of the prediction model for effective field 

capacity  

The fundamental prediction model for the EFC is shown in 

Equation (26).  However, a difference in the physical properties of 

each rice variety might affect the effective field capacity of the 

Combine harvester.  As such, the KDML-105 variety was selected 

in this study, which is the primary and most popular rice variety in 

Thailand for its high value and quality.  This study began by 

collecting data such as field, crop and machine conditions from 15 

randomly selected combine harvesters working in fields in 

November 2017.  The time parameters (Tth, Tnt, Tnc, Tfs, Tfr, Tm, 

Tb) were collected by stopwatch.  All data and time parameters will 

be used for calculating coefficients such as kth, knt, kfr and kb.  

Finally, the prediction model of effective field capacity for the 

KDML-105 variety (EFCKDML-105) is shown in Equation (32).  

3.2  Validation of the prediction model for the Thai hom mali 

rice variety 

Validation of the aforementioned model should be repeated in 

order to confirm and assess the model.  First, the data of the 12 

combine harvesters working in the field in November 2017 were 

collected.   The Root Mean Square Error (RMSE) is a technique 

used to measure the difference of effective field capacity between 

the prediction and the observational effective field capacity[51], as 

shown in Equation (27) below:  

2( )obs prdEFC EFC
RMSE

n

 
          (27) 

where, RMSE is the root mean square error; EFCobs is observed 

effective field capacity, m2/s; EFCprd is predicted effective field 

capacity, m2/s;  n is the total number of combine harvesters. 

The R2 as shows the proportion of the variance in the 

independent variable that can be explained by the variance in the 

observed data, as shown in Equation (28) 
2

2

2

( )
1

( )

obs prd

obsobs

EFC EFC
R

EFC EFC

 
 

 
            (28) 

where, obsEFC  is mean of measured value (observe data). 

The bias, which is the mean difference between the observed 

data and predicted data by effective field capacity model, which 

describes the overall accuracy of the calibration equation, as shown 

in Equation (29) 
2( )obs prdEFC EFC

bias
n

 
             (29) 

4  Results  

4.1  Development of the fundamental prediction model of 

effective field capacity 

Equation (26) presents the fundamental prediction model of the 

EFC contained by the theoretical field time (Tth) and the total lost 

time during harvesting (TL).  Additionally, the TL was calculated 

by the turning time on the headlands or corners of the field (Tnt and 

Tnc), the traveling for unloading and grain unloading time without 

harvesting (Tfs and Tfr), the repair, adjustment, and refueling time 

during the harvesting (Tm) and the bunds crossing lost time (Tb).  

First, the Tth includes parameters of Atotal, W, S and kth.  Second, 

the Tn was calculated using tnt, knt, Atotal, W, D, d, 
4

1
1

i
T i

  and 

4

1
2

i
T i

 .  Third, the Tf was determined from kfr, Lavg, Ytotal, 

Atotal, ST, Y and R.  Tm is the sum of repair, adjustment, and 

refueling time when the combine is required to stop during 

harvesting.  Finally, the Tb consists of kb and nb.  The coefficients 

(kth, knt, kfr and kb) were used to refine the fundamental prediction 

model and can be changed when predicting other rice varieties, as 

is true for Tnc, Tm and R. 

4.2  Development of the prediction model of effective field 

capacity for the Thai hom mali rice variety 

 Table 1 shows the data of field, crop and machine conditions 

collected from the 15 combine harvesters.  The averages of the 

field parameters (Atotal, B, D, d, Lavg and nb) are 8727.19 m2, 

45.69 m, 192.74 m, 186.35 m, 96.37 m and 1.47, respectively.  

Moreover, the averages of machine parameters (W, ST, S, tnt and 

R) are 3.19 m, 2420.00 kg, 1.73 m/s, 11.28 s and 10.46 kg/s, 

respectively, and the average crop parameter (Y) is 0.40 kg/m2.  

The coefficient of the Tth (kth) was found using Equation (30) and 

calculated with the average Atotal, W, S, Tth.  Second, the 

coefficient of the Tnt (knt), found in Equation (31), was calculated 

using the average Tnt, Atotal, W, D, B, d, tnt and nnt.  Next, the 

coefficient of the Tnt (kfr) in Equation (32) was calculated using 

the average Lavg, Tfr, Y, Atotal and ST.  Last, the coefficient of Tb 

(kb), found in Equation (33), was calculated using the average nb 

and Tb.  The coefficients of kth, knt, kfr and kb were 1.72, 3.85, 

0.96 and 72.94, respectively.   Finally, the averages of Tnc, Tm and 

R were 148.42 s, 258.24 s and 10.46 kg/s, respectively.  

Furthermore, Table 2 shows the observed data of the 15 combine 

harvesters.  The collected theoretical field time (Tth) and lost times 

during harvesting (Tnt, Tnc, Tfs, Tfr, Tm and Tb) show that the 

average Tth was 2645.51 s and the averages of Tnt, Tnc, Tfs, Tfr, 

Tm and Tb were 401.80 s, 148.42 s, 394.67 s, 306.95 s, 258.24 s 

and 34.04 s, respectively.  In conclusion, the prediction model of 

effective field capacity to combine harvesters when harvesting the 

KDML-105 variety is shown in Equation (34). 

Tth W S
kth

Atotal

 
                   (30) 

[2 ( 2 ) 2 ( 6 )]
1

Tnt
knt

Atotal W D B W W D B W
tnt

d W


        

  
 

                        

(31) 

2 ( )
1

Tfr Sfr
kfr

Y Atotal
Lavg

ST




  
  
 

          (32) 

1

Tb
kb

nb



                  (33) 

 



July, 2020   Doungpueng K, et al.  Selection of proper combine harvesters to field conditions by an effective field capacity prediction model   Vol. 13 No.4   131 
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          (34) 

where, EFCKDML-105 is a prediction model of effective field capacity for Combine harvester when harvesting the KDML-105 variety, m2/s. 
 

Table 1  Observed data of field, crop and machine conditions for the development of the fundamental prediction model 

No. 

Field Machine Crop 

Atotal/m
2
 B/m D/m d/m Lavg/m nb/field(s) W/m ST/kg S/m·s

-1
 tnt/s nnt/times R/kg·s

-1
 Sfr/m·s

-1
 Y/kg·s

-1
 

P1 9948.07 38.71 260.35 253.71 130.18 1.00 3.32 2500.0 2.09 27.60 6.30 9.49 197.00 0.20 

P2 5858.50 29.15 194.50 187.86 97.25 1.00 3.32 2500.00 1.96 11.58 3.91 12.63 542.00 0.24 

P3 12157.24 36.99 171.51 165.43 85.76 1.00 3.04 2300.0 1.37 16.23 18.43 8.52 461.00 0.19 

P4 16081.82 52.89 317.32 310.88 158.66 1.00 3.22 2500.0 0.90 17.68 10.47 5.10 91.00 0.32 

P5 8305.78 74.89 110.99 104.71 55.50 1.00 3.14 2000.0 1.50 8.90 17.64 10.93 212.00 0.25 

P6 1912.42 28.54 71.50 65.22 35.75 1.00 3.14 2000.0 1.50 8.00 2.97 11.84 61.80 0.25 

P7 5331.97 66.72 90.93 84.65 45.46 2.00 3.14 2000.0 1.50 8.47 12.20 15.15 297.00 0.25 

P8 6379.31 53.65 125.12 118.60 62.56 1.00 3.26 2500.0 2.23 5.67 9.91 8.04 148.00 0.47 

P9 8877.49 53.38 164.44 157.92 82.22 1.00 3.26 2500.0 1.70 6.19 11.06 8.09 112.00 0.44 

P10 11093.63 54.61 212.98 206.46 106.49 2.00 3.26 2500.0 2.43 6.74 10.55 11.20 166.00 0.44 

P11 5796.55 20.54 297.70 291.18 148.85 2.00 3.26 2500.0 2.46 7.13 0.91 10.68 165.00 0.78 

P12 13548.77 48.35 263.53 257.01 131.77 2.00 3.26 2500.0 2.05 8.89 10.52 9.27 183.00 0.78 

P13 11374.57 41.81 311.67 305.57 155.84 4.00 3.05 2500.0 1.23 14.94 6.74 4.36 1588.00 0.27 

P14 11666.09 51.42 222.18 216.18 111.09 1.00 3.00 3000.0 1.72 10.21 12.15 15.63 379.00 0.63 

P15 2575.58 33.75 76.33 69.87 38.16 1.00 3.23 2500.0 1.24 11.00 4.85 16.03 63.00 0.50 

Avg 8727.19 45.69 192.74 186.35 96.37 1.47 3.19 2420.0 1.73 11.28 9.24 10.46 311.05 0.40 

 Coefficient 

 kth knt kfr kb 

 1.72 3.85 0.96 72.94 

 

Table 2  Observed operating times for the development of the fundamental prediction model 

No. Tth/s 

Tn Tf 

Tm/s Tb/s 

Tnt/s Tnc/s Tfs/s Tfr/s 

P1 1864.20 276.0 109.00 280.00 196.80 0.00 0.00 

P2 2041.20 614.0 109.00 198.00 541.80 0.00 0.00 

P3 3050.00 779.0 197.00 357.00 460.80 226.20 0.00 

P4 5560.80 601.0 146.00 864.00 91.20 1752.00 0.00 

P5 2544.20 347.0 72.00 367.00 211.80 0.00 0.00 

P6 748.00 112.0 79.00 0.00 0.00 0.00 0.00 

P7 3151.20 576.0 120.00 132.00 297.00 291.00 64.80 

P8 1192.60 136.0 63.00 423.00 148.20 64.20 0.00 

P9 2420.80 161.0 107.00 503.00 112.20 0.00 0.00 

P10 2033.02 283.0 147.00 670.98 166.20 0.00 82.80 

P11 1296.20 57.0 158.33 384.00 165.00 106.80 69.00 

P12 3227.40 391.0 213.00 819.00 183.00 28.80 52.80 

P13 5848.80 1255.0 435.00 574.00 1588.00 1203.00 241.20 

P14 3976.00 296.0 108.00 192.00 379.20 61.80 0.00 

P15 728.20 143.0 163.00 156.00 63.00 139.80 0.00 

Avg. 2645.51 401.8 148.42 394.67 306.95 258.24 34.04 

 

4.3  Validation of the prediction model of effective field 

capacity for the Thai hom mali rice variety 

Table 3 shows the data of field, crop and machine conditions 

from the 12 combine harvesters in November 2017, and Table 4 

shows the observed operating times.  The observed effective field 

capacities of the 12 combine harvesters (EFCobs) were calculated 

using Equation (3) and the results are shown in Table 4.  The 

EFCobs ranged from 1.37 m2/s to 2.30 m2/s.  Furthermore, the 

parameters in Tables 3 and 4 were inserted into Equation (34) and 

used to predict the EFCobs as shown in Table 5.  The EFCprd ranged 
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from 1.33 m2/s to 2.36 m2/s.  Finally, the EFCprd and the EFCobs 

were validated with an RMSE of 0.24 m2/s, an R2 of 0.63 and bias   

0.01 m2/s as presented in Table 6 and Figure 4. 

 

Table 3  Observed data of field, crop and machine conditions for validation of the prediction model 

No. 
Field Machine Crop 

Atotal/m
2
 B/m D/m d/m Lavg/m nb/field(s) W/m ST/kg S/m·s

-1
 tnt/s nnt/times R/kg·s

-1
 Sfr/m·s

-1
 Y/kg·s

-1
 

V1 22191.55 81.14 279.36 272.72 139.68 2.0 3.32 2500.0 1.96 15.63 18.42 10.46 0.27 0.24 

V2 2190.22 34.04 65.58 59.30 32.79 1.0 3.14 2000.0 1.50 9.06 4.89 10.46 2.28 0.25 

V3 4309.91 55.80 85.09 78.81 42.55 1.0 3.14 2000.0 1.50 9.49 9.90 10.46 0.20 0.25 

V4 7737.23 55.88 141.73 135.21 70.87 1.0 3.26 2500.0 2.06 7.96 11.09 10.46 0.52 0.44 

V5 5165.28 49.71 99.42 92.90 49.71 1.0 3.26 2500.0 2.32 6.87 10.20 10.46 0.24 0.44 

V6 8839.24 61.33 148.22 141.70 74.11 1.0 3.26 2500.0 2.57 6.69 12.59 10.46 0.16 0.56 

V7 4659.93 49.33 96.45 89.93 48.23 1.0 3.26 2500.0 2.23 5.97 8.99 10.46 0.51 0.47 

V8 12718.13 44.27 256.42 250.28 128.21 2.0 3.07 2500.0 1.44 10.63 10.94 10.46 0.68 0.42 

V9 5040.77 47.77 126.34 120.20 63.17 1.0 3.07 2500.0 1.44 14.50 7.27 10.46 0.67 0.59 

V10 2293.94 31.81 83.56 77.42 41.78 1.0 3.07 2500.0 1.44 16.52 3.32 10.46 3.87 0.59 

V11 2436.1 33.17 71.96 65.50 35.98 1.0 3.23 2500.0 1.24 10.75 4.88 10.46 2.40 0.50 

V12 6757.57 47.63 143.00 136.84 71.50 1.0 3.08 2200.0 1.14 14.58 9.82 10.46 0.38 0.56 
 

Table 4  Observed operating times for validation of the prediction model 

No. Tth/s 
Tn Tf 

Tm/s Tb/s 
EFCobs 

/m
2
·s

-1
 

Tnt/s Tnc/s Tfr/s Tfs/s 

V1 7113.38 625.0 287.0 514.8 613.02 1127.82 21.0 2.15 

V2 1018.00 154.0 75.0 0.0 0.0 0.00 0.0 1.76 

V3 1708.00 389.0 79.0 216.0 212.0 428.00 0.0 1.42 

V4 2208.00 223.0 91.0 135.0 283.0 418.00 0.0 2.30 

V5 1246.00 158.0 85.0 210.0 316.0 526.00 0.0 2.03 

V6 1787.20 214.0 62.0 457.8 588.0 1045.80 0.0 2.13 

V7 1246.80 209.0 62.0 94.2 298.0 392.20 0.0 2.02 

V8 4188.00 457.0 166.0 189.0 487.0 676.00 46.2 2.05 

V9 2022.20 348.0 85.0 94.8 232.0 326.80 0.0 1.62 

V10 954.20 413.0 85.0 0.0 0.0 0.00 0.0 1.58 

V11 1033.20 129.0 165.0 0.0 0.0 0.00 0.0 1.84 

V12 3482.80 379.0 96.0 190.2 295.0 485.20 0.0 1.37 

Table 5  Predicted operating times for validation of the prediction model 

No. Tth/s 

Tn Tf 

Tm/s Tb/s 
EFCobs 

/m
2
·s

-1
 

Tnt/s Tnc/s Tfr/s Tfs/s 

V1 5865.75 1,109.09 148.42 1,617.11 511.31 258.27 72.94 2.32 

V2 802.33 170.72 148.42 3.43 52.33 258.27 0.00 1.53 

V3 1578.83 362.13 148.42 16.03 102.98 258.27 0.00 1.75 

V4 1982.27 340.52 148.42 220.84 323.53 258.27 0.00 2.36 

V5 1176.78 269.95 148.42 162.48 215.98 258.27 0.00 2.31 

V6 1818.00 324.46 148.42 1,305.59 475.21 258.27 0.00 2.04 

V7 1105.70 206.93 148.42 68.94 210.76 258.27 0.00 2.33 

V8 4965.06 448.26 148.42 586.38 506.48 258.27 72.94 1.82 

V9 1967.88 406.54 148.42 123.74 282.29 258.27 0.00 1.58 

V10 895.54 211.68 148.42 0.78 128.46 258.27 0.00 1.40 

V11 1045.18 202.33 148.42 3.55 116.42 258.27 0.00 1.37 

V12 3325.39 551.77 148.42 447.32 363.30 258.27 0.00 1.33 

 

Table 6  Root mean square error (RMSE) of the observed and predicted effective 

No. EFCobs/m
2
·s

-1
 EFCprd/m

2
·s

-1
 EFCobs-EFCprd R

2
 RMSE/m

2
·s

-1
 Bias/m

2
·s

-1
 

V1 2.15 2.32 -0.17 

0.63 0.24 0.01 

V2 1.76 1.53 0.23 

V3 1.42 1.75 -0.33 

V4 2.3 2.36 -0.06 

V5 2.03 2.31 -0.28 

V6 2.13 2.04 0.09 
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V7 2.02 2.33 -0.31 

V8 2.05 1.82 0.23 

V9 1.62 1.58 0.04 

V10 1.58 1.4 0.18 

V11 1.84 1.37 0.47 

V12 1.37 1.33 0.04 
 

 
Figure 4  Relationship of the observed and predicted effective 

5  Discussion 

Equation (26) presents the coefficients (kth, knt, kfr and kb) 

used to refine the prediction model and their effect on EFC.  This 

study used the KDML-105 rice variety as sample variety, and since 

the coefficients for each variety differ, other varieties should be 

studied for further research.  The KDML-105 variety normally has 

a specific physical property, such as long stems and grains that 

easily fall from the ear.  These specific physical properties affected 

the Tm of combine harvesters.  Most combine harvesters would 

have to stop harvesting because the long stem of KDML-105 

would jam the header unit.  The driver experience affected the Tnc 

because the drivers’ decisions affected the turning at the land 

corners.  Meusel et al.[52] had evaluated the combine harvester 

operators with a combine simulator and the results found that the 

behavior of drivers influenced the lost times and effective field 

capacity.  Not only driver experience but also field area affected the 

Tnc.  Amiama et al.[27] studied the influence of field areas on lost 

times and concluded that there was a correlation between lost times 

and field areas.  Furthermore, R is also influenced by the age of 

combine harvesters because most of the combine harvesters have 

been used for a long time, causing a decrease in combine harvester 

performance[53].   

Figure 5 shows the percentage of Tth and total lost times (TL).   

The 12-validated combine harvester spent 64% and 36% of its time 

for the Tth and TL, respectively.  However, the effective field 

capacity of combine harvesters decreased because of the effect of 

the TL.  The TL was combined by 6 lost times (Tnt, Tnc, Tfs, Tfr, 

Tm and Tb) and Figure 6 shows the analysis of each lost time 

percentage.  The TL can be separated into two groups, namely the 

major effect lost times and the minor effect lost times.  The Tm, Tfs 

and Tnt constitute the major effect group and greatly impacted the 

effective field capacity, since each contributed 34%, 23% and 21% 

to the lost time, respectively.  These lost times were influenced by 

the experiences of drivers and the age of combine harvesters[52].  

On the other hand, the percentage of the minor effect group was 

Tnc, Tfr and Tb and these had 8%, 13% and 1% of lost time, 

respectively.  These lost times were influenced by the field areas 

and yield, but they did not have a strong impact on the effective 

field capacity[27].  Finally, further research should be focused on 

how to decrease the lost times such as Tm, Tfs and Tnt.  

Furthermore, the model performance for other rice varieties should 

be studied as well. 

 
Figure 5  Operating times analysis of the 12-combine harvesters 

that were used for the development and validation of the prediction 

model 

 
Figure 6  Analysis of the percentages of lost times of the 

12-combine harvesters 

6  Conclusions 

The effective field capacity prediction model was validated 

using 15 combine harvesters, and then validated using 12 combine 

harvester to ensure predicting accuracy.  Finally, the results show 

the root mean square error (RMSE) between the observed and 

predicted effective field capacity; the RMSE was 0.24 m2/s.  The 

RMSE is nearly zero, meaning that the mean the prediction model 

for the KDML-105 variety can be applied for estimating field 

capacity.  The model could be used for selecting proper combine 

harvesters with their field condition, reducing harvest times, and 

achieving production capacity.  However, other rice varieties 

should be studied for further research since the difference in 

physical properties in rice can cause effective field capacity 

change. 
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