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Abstract: For the process of point cloud registration, and the problem of inaccurate registration due to errors in correspondence 

between keypoints.  In this paper, a registration method based on calibration balls was proposed, the trunk, branch, and crown 

were selected as experimental objects, and three calibration balls were randomly placed around the experimental objects to 

ensure different distances between two ball centers.  Using the Kinect V2 depth camera to collect the point cloud of the 

experimental scene from four different viewpoints, the PassThrough filter algorithm was used for point cloud filtering in each 

view of the experimental scenes.  The Euclidean cluster extraction algorithm was employed for point cloud clustering and 

segmentation to extract the experimental object and the calibration ball.  The random sample consensus (RANSAC) algorithm 

was applied to fit the point cloud of a ball and calculate the coordinates of the ball center so that the distance between two ball 

centers under different viewpoints can be obtained by using the coordinates of the ball center.  Comparing the distance 

between the ball centers from different viewpoints to determine the corresponding relationship between the ball centers from 

different viewpoints, and then using the singular value decomposition (SVD) method, the initial registration matrix was 

obtained.  Finally, Iterative Closest Point (ICP) and its improved algorithm were used for accurate registration.  The 

experimental results showed that the method of point cloud registration based on calibration balls can solve the problem of 

corresponding error of keypoints, and can register point clouds from different viewpoints of the same object.  The registration 

method was evaluated by using the registration running time and the fitness score.  The final registration running time of 

different experimental objects was not more than 6.5 s.  The minimum fitness score of the trunk was approximately 0.0001, 

the minimum fitness score of the branch was approximately 0.0001, and the minimum fitness score of the crown was 

approximately 0.0006. 
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1  Introduction

 

In recent years, plant phenotypic automated detection 

technology has played an important role in agricultural research 

and crop breeding[1].  The phenotype of plants is the result of the 

joint dynamics of genes and the environment[2].  

Three-dimensional reconstruction techniques can be used to obtain 

phenotypic parameters of plants and guide agricultural production.  

The three-dimensional imaging system for plants can be mainly 

divided into stereo laser scanning technology, stereoscopic vision 

technology and structured light technology[3].  Colaço et al.[4] used 

a two-dimensional laser and Global Navigation Satellite System 

(GNSS) receiver system to combine the convex-hull and the 
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alpha-shape algorithm to reconstruct the three-dimensional shape 

of citrus trees for improved management of agriculture.  Li et al.[5] 

employed a monocular stereo vision system combined with 

AD-Census and adaptive support-weight (ASW) algorithms to 

match images and reconstruct the three-dimensional shape of crops.  

Li et al.[6] applied structured light technology to collect point cloud 

information of growing crops, the point cloud was segmented by 

markers to reconstruct the geometric three-dimensional shape of 

the crop, and successfully detected the sprouting and bifurcation of 

crops.  At present, three-dimensional reconstruction of crops 

based on a three-dimensional point cloud is developing rapidly.  

Using a depth camera to collect point cloud information of crops 

can avoid the influence of natural light, effectively construct a 

three-dimensional model of crops, and obtain plant phenotypic 

data[7].  A Kinect V2 depth camera was exploited for 3D scanning, 

this camera has the advantages of speed, low cost, accuracy, and 

convenience, and was widely used in robotic navigation and 

localization[8], somatosensory technology[9], the medical field[10], 

the education field[11] and other fields, The scope of application has 

also been extended to the field of agricultural 3D reconstruction.  

Vázquez-Arellano et al.[12] utilized Kinect V2 to map 3D images to 

color images for 3D reconstruction of maize plants.  The 

registration operation was performed using the ICP algorithm, the 

ground point cloud was separated and the corn plants were 
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extracted using the random sample consensus (RANSAC) 

algorithm.  Gai et al.[13] employed the Kinect V2 camera to 

capture and fuse two-dimensional images and point clouds of 

indoor and outdoor crops.  The filter operation was performed by 

the cut-off filter, and the ground point cloud was separated by the 

RANSAC algorithm to reconstruct the three-dimensional model of 

the crop.  Among these operations, point cloud registration is the 

key to 3D reconstruction[14].  Today, the technology of point cloud 

automatic registration is mainly to find local features of the point 

cloud, such as normal aligned radial feature (NARF) key points[15], 

local surface patch (LSP) local feature[16], and scale-invariant 

feature transform (SIFT) key points[17], and then ICP and its 

improved algorithm are exploited for point cloud registration.  

However, due to the influence of the flying point, it is easy to form 

an incorrect correspondence relationship, resulting in the problem 

of incorrect registration.  In this paper, the Kinect V2 depth 

camera was utilized to collect point cloud data.  Considering the 

complexity of the forest environment, color information is not 

employed as additional information for point cloud registration.  

Three balls were placed around the experimental object, and point 

cloud registration was carried out according to the corresponding 

relationship of the same ball center under different viewpoints, this 

approach effectively avoided the wrong corresponding relationship.  

The registration method based on calibration balls is suitable for 

point cloud registration of forests, canopies and other crops in 

different environments, and has a wide range of applications. 

2  Materials and methods 

2.1  Theoretical background 

The sketch of the experimental scene is shown in Figure 1.  

The experimental object was placed in the center and three 

calibration balls were placed around the experimental object.  The 

placement of the calibration balls is arbitrary and the lengths of the 

calibration balls (L1, L2, L3) are different.  Using the ball center as 

the key point from each viewpoint, the system was programmed 

according to the different distances of the ball center to determine 

the corresponding relationship.  During the experiment, four 

viewpoints completely covering the experimental object were 

arbitrarily selected, and the visible portion of each ball was ensured 

to be greater than or equal to approximately 1/3 of the whole body 

at each viewpoint.  Taking viewpoint 1 and 2 as examples, the 

process of determining the corresponding ball center was analyzed 

in Figure 2.  In viewpoint 1, the balls were randomly numbered, 

and the distances between any two balls were calculated as d12, d23, 

d31 using the fitted ball coordinates.  The same method was used 

in viewpoint 2, and the calculated distance was defined as d′
 

12, d′
 

23, 

d′
 

31.  Theoretically, the distance between two ball centers from 

different viewpoints should be equal.  However, the value varied 

slightly due to the ball fitting error.  A threshold Dth was used to 

check the correspondence, which was set to 0.02 m.  The same 

progress was also conducted in viewpoints 3 and 4. 

 
Figure 1  Draft of the experimental scene 

 
Figure 2  Analyze the corresponding ball center 

 

The core issue of 3D multi-view point cloud registration is to 

find the transformation matrix between various viewpoints.  The 

transformation matrix is composed of a 4×4 matrix shown as 

Equation (1). 
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 represents the rotation matrix R, (Px, Py, 

Pz) represents the translation matrix t, (tx, ty, tz) represents the 

perspective transformation part, and s represents the scale factor of 

the transformation.  The rotation matrix R and translation matrix t 

can be solved by using three pairs of corresponding points from 

different viewpoints when the perspective transformation and 
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proportion are not involved in the registration of three-dimensional 

multi-view point clouds, the perspective transformation is 0 and the 

scale factor is 1.  Based on the principle of SVD[18], the rotation 

matrix R and the translation matrix t are derived.  Two 

corresponding point sets p={p 1, p 2…pn} and q={q1, q2…qn} are 

found in the Rd dimension space.  Assuming that the coordinates 

of the corresponding points in the source point cloud are p={p1, 

p2…pn} and the coordinates of the corresponding points in the 

target point cloud are q={q1, q2…qn}, calculating the rigid 

transformation between the source point cloud and the target point 

cloud, that is, R and t can be transformed into Equation (2).                                                              

wi>0 represents the weight of each pair of corresponding points. 
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The weighted centroid and the center vector of the point set are 

calculated and are shown as Equations (3)-(5). 
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where, ∑ is a diagonal matrix composed of singular values; and U 

and V are diagonal matrices. d×d covariance matrix is calculated 

and is shown as Equation (6).  X, Y are matrix of d×n dimensions, 

which are columns of matrix X, Y, and w represents the diagonal 

matrix, that is, W=diag(w1, w2…wn).  s performs singular value 

decomposition and is shown as Equation (7).  

  T
S U V                (7) 

The rotation matrix R and the translation matrix t of the 

corresponding point pairs in the source point cloud and the target 

point cloud are calculated by Equations (8) and (9). 
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2.2  Experimental equipment 

The parameters of the Kinect V2 depth camera used in this 

paper are shown in Table 1[19].  The computer that processes the 

point cloud information uses Intel(R) Core(TM) i5-7500 CPU @ 

3.40GHz, 8G RAM, Intel(R) HD Graphics 630 configuration. 

Table 1  Kinect V2 relevant parameters 

Feature Value 

Infrared (IR) camera resolution 512 × 424 pixels 

RGB camera resolution 1920 × 1080 pixels 

Field of view 70 × 60 degrees 

Frame rate 30 frames per second 

Operative measuring range between 1.4 mm (@ 0.5 m range) 

Object pixel size (GSD) and 12 mm (@ 4.5 m range) 
 

The experiment exploited the software tool program 

development kit Kinect for Windows SDK provided by Microsoft 

Corporation and the application programming interface API.  

Based on the Point Cloud Library (PCL) library[15], the point 

cloud acquisition program was used to collect the point cloud of 

the experimental object.  According to the relevant literature, 

when the Kinect V2 is between 0.5-3 m away from the 

experimental object, the error of the horizontal and vertical 

viewing angles is less than 2 mm[20].  To ensure the accuracy of 

the Kinect V2, the experimentally set image acquisition distance 

d is approximately 2.2 m, as shown in Figure 1.  The 

experimental objects used are a trunk, branches, and a crown, and 

the relevant parameters of the experimental objects are shown in 

Figure 3.  The indoor and outdoor environment of the 

experiment is shown in Figure 4. 

2.3  Experimental method 

The flow chart of the registration is shown in Figure 5.  The 

point cloud registration method based on the calibration ball was 

used to first remove the background noise by point cloud filtering 

and then performed the European clustering to extract the 

experimental object and remove the outliers.  The point cloud 

registration method based on calibration balls was divided into two 

stages: coarse registration and fine registration.  The point cloud 

coarse registration process is shown in Figure 6.  And the aim was 

to obtain the initial registration matrix by using the corresponding 

relationship of the ball centers from different viewpoints.  The 

point clouds collected at viewpoint 1-4 were considered as the first 

to fourth frame (F1 – F4), respectively.  And the merged point 

clouds were defined as M1, M2, and M3, respectively.  F1 was the 

target point cloud while F2 was the source point cloud.  A merged 

point cloud M1 can be obtained by registering F2 to F1, which 

would be considered as the target point cloud and F3 was employed 

as the source point cloud for the next registration.  All the rest 

were determined in the same way.  A complete 3D point cloud of 

the object (M3) was established through the whole progress.  Fine 

registration was a comparative analysis using ICP, Iterative Closest 

Point NonLinear (NL_ICP), and Iterative Closest Point with 

Normals (N_ICP).  
 

 
Figure 3  Experimental object 
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Note: a, b, c are indoor scenes; d, e, f are outdoor scenes. 

Figure 4  Experimental scenes 
 

 
Figure 5  Point cloud processing 

 
Figure 6  Point cloud coarse registration process 

 

2.4  Point cloud preprocessing 

The Kinect V2 depth camera has a large field of view, and the 

point cloud contains more noise.  It is necessary to filter the point 

cloud after the acquisition.  PassThrough filter[21] is to remove 

noise points from the point cloud which are not within a specific 

range by setting the upper and lower limits.  According to the 

coordinate system characteristics of the Kinect V2 depth camera 

and range of accuracy[20], 0.5 and 2.5 m from the camera to the 

object were respectively set as the lower and upper distance limits 

for PassThrough filtering.  The filtered point cloud is shown in 

Figure 7.  From filtered point cloud, the ball, the experimental 

object and the ground point cloud are not separated, so the 

algorithm is needed for segmentation and clustering.  In this 

paper, the European clustering[22] based on the RANSAC principle 

was used to segment the ground, cluster the point clouds, and 

segment the experimental objects and three balls.  At the same 

time, the outliers of the segmented objects were removed by the 

K-means method[23], to avoid affecting the registration operation.  

When the registration method based on the calibration ball was 

performed, the initial registration matrix should be obtained by 

using the ball center.  Therefore, the ball center should be fitted 

from different viewpoints, and the correlation coefficients such as 

the ball center and the radius of the ball can be obtained according 

to the random sampling consistency of RANSAC in PCL[24]. 

 

   
a. Trunk in an indoor experimental environment b. Branches in an indoor experimental environment c. Crown in an indoor experimental environment 

   
d. Trunk in an outdoor experimental environment e. Branches in an outdoor experimental environment f. Crown in an outdoor experimental environment 

 

Figure 7  Filtered point cloud 
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2.5  Point cloud registration and point cloud smoothing 

Coarse and fine registrations were two parts of the point cloud 

registration method based on calibration balls.  Coarse registration 

was to obtain the initial registration matrix from the SVD method 

according to the corresponding relationship of ball centers in 

different viewpoints.  The ICP algorithm[25] and its improved 

algorithm were employed for fine registration.  The initial 

registration matrix is ensured that the point cloud has a good initial 

position[26], which is conducive to the fine registration of the point 

cloud.  After registration, point clouds were smoothed using a 

smoothing algorithm based on the least-squares method[27]. 

3  Results and discussion 

The results of the indoor and outdoor trunk registration are 

shown in Figure 8.  The number of point clouds in the registration 

process is shown in Figure 9a.  The program running time is 

shown in Figure 9b.  The fitness score is the sum of the squared 

distance of the source and target point clouds provided in PCL.  

The quality of the registration results by different methods of the 

same object can be judged according to the value of the 

corresponding fitness score.  The smaller the score, the better the 

registration result.  However, there is no comparability for the 

registration results of different experimental objects using their 

fitness scores[28].  The fitness score of the trunk is shown in Table 

2.  Figure 9a shows that the number of point clouds is increasing 

because of superimposed registration.  At the same time, from 

Figure 9b, we can conclude that the registration time of each 

registration method is increasing because of the increase in the 

number of point clouds.  To simplify the analysis process and 

evaluate the accuracy and time of model registration, the running 

time and fitness score of the fourth frame registration to the first, 

second and third frames were analyzed.  The evaluation method of 

the branch and crown registration results was consistent with the 

trunk.  In the indoor scenes, for the trunk, the final registration time 

can reach 0.429 s, the corresponding method is the N_ICP method.  

The minimum fitness score of registration can reach 9.12E-05, and 

the corresponding registration method is NL_ICP.  In the outdoor 

scene, for the trunk, the final registration time can be as short as 

0.448 s, and the corresponding registration method is N_ICP.  The 

fitness score can be as small as 8.64E-05, and the corresponding 

registration method is NL_ICP.  From the above trunk registration 

results, both indoor and outdoor conditions, the registration method 

N_ICP can achieve the shortest registration time, and the 

registration method NL_ICP can attain the minimum fitness score. 
 

 
a b c 

 
d e f 

Note: a, b, c are in an indoor experimental environment; d, e, f are in an outdoor experimental environment; a, d registration using ICP method;        

b, e registration using NL_ICP method; c, f registration using N_ICP method. 

Figure 8  3D model of the trunk 

 

a. A trunk point cloud number variation  b. Running time of each step of various registration methods 
 

Note: SI: source_indoor; TI: target_indoor; SO: source_outdoor; TO: target_outdoor; II: indoor_ICP; INLI: indoor_NL_ICP; INI: indoor_N_ICP;     

OI: outdoor_ICP; ONLI: outdoor_NL_ICP; ONI: outdoor_N_ICP.  The same below. 

Figure 9  Registration evaluation 
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Table 2  Trunk fitness score 

Algorithms in different 

environments 

Conversion direction 

V2 to V1 V3 to V1 V4 to V1 

II 0.005319 0.002181 0.000169 

OI 0.002912 0.003947 0.000182 

INLI 0.005833 0.001721 9.12E-05 

ONLI 0.003142 0.003155 8.64E-05 

INI 0.003767 0.002313 0.000223 

ONI 0.002869 0.003386 0.000111 
 

The results of the branch registration indoors and outdoors are 

shown in Figure 10.  The number change of points in point clouds 

in the registration process is shown in Figure 11a, the running time 

of the program is shown in Figure 11b, and the fitness score of tree 

registration is shown in Table 3.  Figures 11a and 11b, show that 

the registration time of point clouds increases with the increase of 

the number of points in the point clouds in the registration process.  

In indoor scenes, for the branch, the final registration time can 

reach 1.125 s, the corresponding registration method is N_ICP.  

The minimum fitness score can reach 0.001956, and the 

corresponding registration method is NL_ICP.  In the outdoor 

scene, for the branch, the final registration time can be as short as 

1.375 s, the corresponding registration method is N_ICP, and the 

fitness score of the three registration methods is 0.000153, 

0.000149, and 0.000143, respectively.  There is no big difference 

in the value.  From the above experimental results, both indoor 

and outdoor environments, N_ICP achieved the shortest 

registration time, and NL_ICP performed a good fitness score in 

indoor and outdoor environments, with a wide range of applications. 
 

 
a b c 

 
d e f 

Note: (a) (b) (c) are in an indoor experimental environment; (d) (e) (f) are in an outdoor experimental environment; (a) (d) registration using ICP method; 

(b) (e)registration using NL_ICP method; (c) (f) registration using N_ICP method.  

Figure 10  3D model of branches 

 
a. Branch point cloud number variation  b. Running time of each step of various registration methods 

 

Figure 11  Registration evaluation 



204   January, 2020                        Int J Agric & Biol Eng      Open Access at https://www.ijabe.org                         Vol. 13 No. 1 

 

Table 3  Branch fitness score 

Algorithms in different 

environments 

Conversion direction 

V2 to V1 V3 to V1 V4 to V1 

II 0.017419 0.001261 0.00201 

OI 0.00222 0.000688 0.000153 

INLI 0.01744 0.001226 0.001956 

ONLI 0.002154 0.000705 0.000149 

INI 0.018284 0.001631 0.002609 

ONI 0.002194 0.000699 0.000143 
 

The registration results of the crown indoors and outdoors are 

shown in Figure 12.  The number of point cloud changes in the 

registration process is shown in Figure 13a, the running time of the 

program is shown in Figure 13b, and the fitness score of crown 

registration is shown in Table 4.  As shown in Figures 13a and 

13b, the registration time of the point clouds increased with the 

increase of the number of point clouds in the point clouds in the 

registration process.  In indoor scenes, for the crown, the 

minimum registration time can reach 3.056 s.  The corresponding 

registration method is N_ICP.  The fitness score of registration is 

0.0006179, 0.0006175 and 0.0006534, respectively.  The values 

are basically similar.  In outdoor scenes, for the crown, the final 

registration time can reach 2.638 s, the corresponding registration 

method is N_ICP.  The fitness score is 0.0006563, 0.0006601 and 

0.0006374, respectively, with similar values.  From the above 

experimental results, N_ICP can achieve the shortest registration 

time in both indoor and outdoor environments for the crown.  ICP 

and its improved algorithm have no significant impact on the 

registration results. 

Figures 9b, 11b, and 13b show that during the registration 

process, the NL_ICP registration method consumed longer than 

other registrations, both indoors and outdoors.  Since the NL_ICP 

applied the Levenberg-Marquardt algorithm to optimize the 

registration results after registration, the run time will increase. 
 

 
a b c 

 
d e f 

Note: (a) (b) (c) are in an indoor experimental environment; (d) (e) (f) are in an outdoor experimental environment; (a) (d) registration using ICP method; 

(b) (e) registration using NL_ICP method; (c) (f) registration using N_ICP method. 

Figure 12  3D model of the crown 

 
a. Crown point cloud number variation  b. Running time of each step of various registration methods 

 

Figure 13  Registration evaluation 
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Table 4  Crown fitness score 

Algorithms in different 

environments 

Conversion direction 

V2 to V1 V3 to V1 V4 to V1 

II 0.0022078 0.0012034 0.0006179 

OI 0.0025886 0.0018664 0.0006563 

INLI 0.0022133 0.0012077 0.0006175 

ONLI 0.0025782 0.0018702 0.0006601 

INI 0.0021832 0.0013533 0.0006534 

ONI 0.0025796 0.0018675 0.0006374 
 

4  Conclusions 

A point cloud registration method based on three calibration 

balls for 3D crop modelling was developed and validated in this 

research.  According to this method, the interval of the viewpoints 

for collecting point cloud data could reach up to approximately 90°, 

which can solve the problems of low registration accuracy due to 

large viewing angle interval and elaborate data collection in the 

process of point cloud registration.  Three objects such as trunk, 

branch, and crown were used for the registration in both indoor and 

outdoor environments.  The results demonstrated that there was no 

significant difference in fitness score and running time in both 

indoor and outdoor conditions.  The fitness score of ICP, NL_ICP 

and N_ICP ranged from 0.0000864 to 0.002609, in which NL_ICP 

achieved the best registration accuracy (0.002609).  Meanwhile, 

the running time of the three algorithms varied from 0.429 to 6.45 s 

and N_ICP consumed the shortest running time (0.429 s).  For the 

same object whether indoor or outdoor, the proposed method 

performed steady robustness because there were no obvious 

differences in fitness score and running time using the three 

algorithms based on the calibration balls.  It can be concluded that 

the developed method based on calibration balls was suitable for 

point cloud registration in both indoor and outdoor conditions, and 

can be considered as an effective means providing 3D point cloud 

data to crop modelling. 
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