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Abstract: Unmanned aerial vehicle (UAV) chemical application is widely used for crop protection, and spraying pattern is one 
of the most important factors that influence the chemical control efficacy.  A method for UAV spraying pattern measurement 
with partial least squares (PLS) model based spectrum analysis was proposed in this study to measure the UAV spraying pattern 
more accurately.  The method involved the steps of fluorescent tracer solution spray and its droplets collection, the spectrum 
on paper strip acquiring, spectrum processing and analysis, PLS modeling.  In order to verify the applicability of the method 
and obtain the parameters of the PLS model, UAV spraying experiments were performed in the field.  Then Fluorescent tracer 
solution was sprayed and its droplets are collected by paper strip, and the original spectrum on paper strip obtained by a 
spectrometer was processed by the Savitzky-Golay and standard normalized variable (SNV) method.  The prediction model of 
coverage rate selected as the droplet deposition parameter to measure the UAV spraying pattern, was established by using PLS 
method.  To verify the superiority of the PLS model, a traditional linear regression (LR) model of coverage rate was 
established simultaneously.  The results demonstrate that the method with PLS model based spectrum analysis can measure 
the UAV spraying pattern effectively, and PLS model has a better performance of RV

2=0.94 and RMSEP=0.9446 than that of the 
LR model. 
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1  Introduction  

Unmanned aerial vehicle (UAV) is typically low cost, light 
weight and low airspeed aircraft that is developing rapidly and 
using worldwide in the plant protection.  And UAV chemical 
application is beneficial to improve the utilization of agricultural 
resources and achieve the goal of precision aerial application[1,2].  
Flight height of the UAV and complex downwash flow field of its 
rotors will directly influence the movement and pattern of the 
spraying droplets[3,4].  Therefore, the accurate measurement of 
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spraying pattern has an important significance for improving the 
control efficacy of UAV chemical application[5]. 

Many studies of equipment and technology have been 
conducted to measure spraying deposition and spraying pattern.  
One of the most common methods is using water sensitive paper 
and digital image analysis technology[6,7].  Cheng et al.[8] selected 
a Ponceau 2R solution with a mass fraction of 5% to simulate the 
spraying deposition of a growth regulator.  And the parameters 
results of droplet deposition in the target areas and non-target areas 
were analyzed by image processing software DepositScan.  
Another accurate method is the evaluation of fluorescent tracer by 
using spectrophotometers, and spraying pattern was inverted by the 
calculation of the tracer content[9-11].  Xue et al.[12] measured the 
droplet deposition on rice within the spray swath and the droplet 
drift volume sampled by polyester cards and polyester fibers.  The 
Rhodamine-B (aqueous) tracer was mixed and sprayed from 
airplane.  The Rhodamine-B on each film collector was eluted by 
deionized water, and the deposition of Rhodamine-B in the eluent 
was calculated according to the “concentration-fluorescence” 
standard curve of the Rhodamine-B standard.  But there are still 
some limitations, such as high costs, complex operation, and the 
collected data maybe damaged before analysis.  Computational 
fluid dynamics (CFD) model was gradually concentrated due to its 
intuition and accuracy[13,14].  Yuan et al.[15] studied the droplet 
deposition model of an air delivered fog sprayer in a greenhouse 
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using CFD simulation technique.  However, the results should be 
verified by experiments.  Currently, some scholars exploited 
sensors to detect droplets[16].  Droplet deposition detection system 
was developed by Zhang et al.[17] using a variable dielectric 
capacitor.  With this system, the droplet deposit volume could be 
rapidly measured in aerial spray application.  However, the sensor 
was effective for detection of rough spray, and the details need to 
be improved.  There also have been several recent developments 
to measure spray application and droplet distribution using other 
methods[18-24], remote sensing, infrared thermography, etc. 

As mentioned above, researchers have carried out many studies 
to achieve the spraying pattern measurement more efficient and 
accurate.  In this study, a method for UAV spraying pattern 
measurement with partial least squares (PLS) model based 
spectrum analysis was proposed, and field experiments were 
conducted to verify the applicability of the method. 

2  Materials and methods 

2.1  Experimental design 
Field experiments were conducted at National Precision 

Agriculture Research Station (40°10ʹ57ʹʹN, 116°27ʹ27ʹʹE) in China 
on June 30, 2017.  As shown in Figure 1, an 8-rotor UAV used in 
this experiment and the specifications of the UAV are shown in 
Table 1. 
 

 
Figure 1  8-rotor UAV 

Table 1  Parameters of UAV 

Parameters Technical index 

Type TTA-T8-PRO-5, Tian Tu Aviation 
Size/mm×mm×mm 2400×2200×450 
Rotor diameter/mm 500 
Tank capacity/L 10 
Average flight height/m 3 
Effective spraying swath/m 3 
Average flight speed/ m·s-1 1.5 

 

The spraying system of the UAV is consisted of water-pump, 
spraying boom, nozzles and other components.  The system uses 
the PLD-1206 type diaphragm pump operated at DC 12V and 
produced flow rates of up to 4.0 L/min, which support the 
maximum spraying pressure is 1.0 MPa.  The spray boom length 
was 2.4 m, and six LU120-02 type nozzles (Lechler GmbH, 
Germany) with 128.3 μm volume median diameter (VMD) under 
pressure 0.3 MPa[25] were equidistantly mounted on it with a 
spacing of 0.48 m. 

Fluorescent brightener RQT-C-3 was used as a fluorescent 
tracer for the spraying experiment, with a strong fluorescent signal 
and water solubility, and mixed with water to a final mass 
concentration of 1.0%.  Two tests were performed with the same 
performance parameters.  A ordinary Kraft paper strip with   
19.3 mm width and 0.3 mm thickness was adopted as droplet 
collector.  The paper strip is commercial, contains no fluorescent 
compounds itself, exhibits a degree of water absorbability and is 
easy to collect and store for the field test. 

The sampling layout is shown in Figure 2.  Paper strip was 
mounted on the shelf at a height of 1 m above the ground.  To 
quantify the spraying pattern, water sensitive paper (WSP) cards 
(Syngenta Crop Protection AG, Switzerland) with the size of    
26 mm×76 mm were placed near the paper strip.  The sample 
length of the paper strip was 5 m, which covers the effective 
spraying swath.  26 WSP cards evenly spaced 0.2 m apart were 
placed along with the paper strip and the sampling positions were 
labeled 1-26.  Paper strips and WSP cards were collected in sealed 
bags once dry. 

 
Figure 2  Sampling layout 

 

2.2  Acquiring of the spectrum on paper strip 
Fluorescent tracer sprayed on the paper strip was excited by 

ultraviolet light and emitted fluorescence which can be measured 
by a spectrometer.  To improving the spectrum acquisition 
efficiency, a device was designed.  Overall structure of the device 
is shown in Figure 3, which included ultraviolet light, spectrometer, 

sampling reel, stepper motor, and a box. 
The ultraviolet light with a wavelength range of 300-400 nm 

was applied to excite fluorescent tracer RQT-C-3, and a 
spectrometer (FLAME-S-VIS-NIR, Ocean Optics, USA) in the 
spectral scanning range of 340 nm to 1014 nm contains 2048 
wavelengths which covering the emission wavelengths of the 
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fluorescent tracer was adopted to acquire the spectral intensity 
values of the paper strip in this study.  The paper strip was wound 
onto the sample reel with 80-mm-diameter, and a two-phase hybrid 
stepper motor with a rotating speed of 30 r min-1 was used to drive 
the shafts of the sample reel.  The revolutions of the stepping 
motor could be converted to a linear distance L (m) of sample reel 
using Equation (1). 

L=40πt+0.15t2             (1) 
where, t (s) is the sampling time.  The sealed structure of the box 
with the size of 44 cm (length) × 32 cm (width) × 35 cm (height) 
was was designed to avoid the influence of ambient light.  

With an integral time of the spectrometer and sampling time of 
100 ms, the spectrum of paper strips was acquired and saved as a 
CSV file by PC software of the spectrometer.  379 and 376 sets of 
spectrum were collected in test 1 and test 2 respectively.  The 
spectrum of three sampling points were selected on the paper strip 
near each corresponding WSP card, spectral average intensity 
values of the three sampling points were calculated and taken as the 
original spectrum of samples in each sampling position, and 
samples were denoted as Sample 1 to Sample 26 in the test 1 or 
Sample 27 to Sample 52 in the test 2. 

 
Figure 3  Overall structure of the device 

 

2.3  WSP cards analysis 
As shown in Figure 4, WSP cards were scanned with a high 

pixel resolution of 1200 dpi into digital images using a portable 
scanner.  From these WSP images, the coverage rate was 
calculated via iDAS Pro software[26].  Coverage rate was the ratio 
of the stained area covered by droplets to the sampled area on WSP 
cards, which was selected as the droplet deposition parameter to 
characterize the spraying pattern in this study.  And the coverage 
rate result of the WSP in test 1 and test 2 is shown in Figure 5. 

 

  
a. Portable scanner b. iDAS Pro software 

 

Figure 4  Image processing system for aerial application quality evaluation 
 

 
Figure 5  Coverage rate of the WSP 

3  Results and discussion 

3.1  Spectrum processing and analysis 
As shown in Figure 6a, the original spectrum of 52 samples in 

the band range of 400-600 nm on the paper strip was selected to 
demonstrate the effect of the spectrum processing method.  

The spectrum contains not only the information of the 
sampling point but also other interference components, such as 
instrument noise and stray light.  The Savitzky-Golay method was 
employed in this study to reduce the random noise of spectrum, this 
method smooth a signal locally with a low-degree polynomial 
based on the linear least squares method to a sliding window of 
data[27].  The degree of the polynomial and the length of the 

sliding window are respectively set to 2 and 15 to improve the 
reliability of the smoothed spectrum.  As shown in Figure 6b, it 
can be seen that original spectrum and smoothed spectrum have the 
same trends, and several apparent absorption peaks emerged in the 
400-600 nm region.  It was indicated that the Savitzky-Golay 
method can effectively remove the noise and the burr of the 
spectrum, and the useful information of the spectrum was 
remained. 

The standard normalized variable (SNV) method is a common 
method for eliminating baseline translation and shift caused by 
light scattering[28], and the principle of SNV is that the absorbance 
values of each wavelength point in the spectrum satisfy a certain 
normal distribution.  The standard normalized spectral Zi of raw 
spectral xi was calculated using Equation (2). 

 i
i

xZ μ
σ
−

=                (2) 

where, μ and σ are the mean and the standard deviation of the 
spectrum, as shown in Figure 6c. 

After processed by Savitzky-Golay and SNV method, the 
whole spectrum of 52 samples is shown in Figure 6d.  Ultraviolet 
light information was inevitably collected by the spectrometer 
during the spectrum acquisition, and it can be observed that the 
normalized intensity was saturated in the wavelength range of 
340-400 nm.  Therefore, the spectrum in the wavelength range of 
400-1014 nm was extracted for subsequent analysis. 
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a. Original spectrum  b. Smoothed spectrum after Savitzky-Golay 

 
c. Corrected spectrum after SNV  d. Whole spectrum 

 

Figure 6  Spectrum processing 
 

As shown in Figure 6c, the spectrum in the wavelength range 
of 400-600 nm shows a significant fluorescence effect between the 
52 samples.  The correlation analysis was analyzed between the 
coverage rate of WSP and the normalized intensity of paper strip in 
the range of 400-600 nm contains 562 wavelengths.  The results 
of the treatment were shown in Figure 7.  It is known from the 
diagram that the correlation coefficients of the 352 wavelengths in 
the wavelength range of 414-540 nm are significant and greater 
than 0.90, therefore normalized intensity in the wavelength range 
of 414-540 nm of 52 samples were selected as the inputs variables 
for PLS model.  Meanwhile, the wavelength range of 485-495 nm 
was selected and noted as C485-495 for the LR model[24]. 

 
Figure 7  Results of correlation coefficient analysis 

 

3.2  PLS modeling for UAV spraying pattern measurement  
The establishment of PLS modeling followed the steps of 

outlier detection, variable selection, and PLS modeling. 
3.2.1  Outlier detection 

Outliers arise due to mechanical faults, changes in system 
behavior, fraudulent behavior, human error, instrument error or 
simply through natural deviations in populations[29].  When 
incorporated into PLS model, outliers may lead to erroneous results 

with respect to statistical analysis, and reduce the performance of 
the model significantly.  So the detection of outliers is one of the 
most important steps during the PLS model.  Monte Carlo 
sampling approach was selected as the method for outlier detection 
and elimination, which was proposed to obtain the distribution of 
prediction error of each sample[30,31].  The main procedures of this 
method are as follows:  

a. Determine the number of latent variables, calibration 
samples and test samples. 

b. Select calibration and test sets randomly from the whole 
dataset, which was used to build a prediction model and obtain the 
prediction errors for samples in the test set. 

c. Pretreat calibration data. 
d. Implement PLS regression using the non-linear iterative 

partial least squares (NIPALS) algorithm. 
e. Predict the test samples. 
f. The mean (MEAN) and standard deviation (STD) of the 

prediction errors of each sample were employed to diagnose 
outliers.  

The number of Monte-Carlo sampling and sampling ratio is set 
to 1000 and 0.7, respectively.  The result of MEAN and STD of 
prediction errors of 52 samples is shown in Figure 8, Sample 14, 
Sample 15, and Sample 41 with the MEAN greater than 4 and the 
STD greater than 2 were determined to be outliers and removed 
before modeling.  49 normal samples were retained for further 
modeling.  33 samples are selected as modeling sets, and 16 
samples are selected as validation sets. 
3.2.2  Variable selection using Random Frog algorithm 

To simplify the model and improve the accuracy of a 
predictive model greatly, Random Frog (RF) algorithm was 
implemented for characteristic variable selection as a general 
strategy[32].  And PLS is used as a modeling method in RF 
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algorithm.  The steps of RF algorithm are as follows:  
a′. A subset of variables V0 consisting of the number of 

variables Q was initialized randomly. 
b′. A candidate variable subset V* was proposed based on the 

original subset of variables, and its variables number is a random 
number Q*.  PLS model is established.  The regression 
coefficient of each variable in this PLS model is recorded.  
Afterwards, the Q* variables which have the largest absolute 
regression coefficients in PLS model are retained and collected as a 
candidate subset V*.  V* was accepted as V1 with a certain 
probability.  Then V0 was replaced using V1.  These iterations 
are repeated until N loops have finished. 

c′. Finally a selection probability of each variable is computed 
which can be used as the measurement of variable importance.  
The variable is more likely selected with a large value of 
probability. 

The operation of selecting characteristic variable was 
conducted on the modeling set.  As shown in Figure 9, the 
normalized intensity of 12 wavelengths with the probability greater 
than 0.3, including 414.34 nm, 419.45 nm, 427.09 nm, 429.64 nm, 
435.81 nm, 446.68 nm, 505.15 nm, 507.99 nm, 513.67 nm,  
516.15 nm, 521.47 nm, 521.82 nm, were selected as the sensitive 
variable of the PLS model by iterative modeling. 

 
Figure 8  Mean/standard deviation plot of prediction errors 

 

 
Figure 9  Results using RF algorithm 

 

3.2.3  Modeling using PLS regression algorithm 
Unlike LR, PLS regression provides an approach based on 

principal components analysis (PCA) to analyze data with strongly 
collinear correlated, noisy, and even incomplete variables in both X 
and Y[33].  In which, the precision of the model parameters is 
improved along with the increasing number of relevant variables 
and observations.  And the matrix of predictor variables X and the 
matrix of response variables Y was pretreated firstly.  A PLS 
model was established by the PLS regression NIPALS algorithm, 
and the regression coefficients that link X and Y were get. 

To determine the number of principal components of the PLS 
model and avoid the impact of redundant information on the model, 

10-fold cross validation algorithm was applied.  As shown in 
Figure 10, the tendency of root mean square error of cross 
validation (RMSECV) was obtained.  RMSECV has the minimum 
value of 0.7870 when the number of latent variables is 7.  So that 
PLS model was established with 7 numbers of latent variables.  
The value of coverage rate was the outputs of the PLS model.  As 
shown in Figure 11, the modeling determination coefficient RC

2 
reached to 0.98, the root mean square error of modeling (RMSEC) 
was 0.5098.  The validation determination coefficient RV

2 reached 
to 0.94, the root mean square error of validation (RMSEP) was 
0.9446. 

 
Figure 10  Tendency of RMSECV with increasing variables 

 
Figure 11  PLS model for UAV spraying pattern measurement 

 

3.3  Comparison between the result of PLS and LR model 
In order to compare and validate the performance of PLS 

model, a traditional LR model for UAV spraying pattern 
measurement was established.  Based on the average spectral 
intensity value C485-495 and coverage rate of the WSP, 34 sets of 
data selected from 52 samples were used to establish the LR model.  
The remaining 18 sets of data were used to validate the models.  
The value of coverage rate was represented as y, and C485-495 was 
represented as x.  The LR model expressed as Equation (3): 

y = –5.1975+12.5694x                (3) 
As shown in Figure 12, the RC

2 reached to 0.88 and the 
RMSEC was 1.5109, the RV

2 reached to 0.88 and the RMSEP was 
1.9404. 

 
Figure 12  LR model for UAV spraying pattern measurement 
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Comparison results between WSP, LR model and PLS model in 
test 1 and 2 are shown in Figure 13.  The coverage rate of WSP, 
LR model and PLS model is shown in Table 2. 

The result indicated that both the LR model and PLS model 
can predict the value of coverage rate and measure the UAV 

spraying pattern.  Compared with the LR model, the RMSEC and 
RMSEP of PLS model are reduced by 1.0011 and 0.9958, the RC

2 
and RV

2 are increased by 0.10 and 0.06, respectively.  Therefore, 
PLS model is superior to the LR model with the higher correlation 
coefficient and the lower root mean square error. 

 
  a. Test 1  b. Test 2 

 

Figure 13  Comparison results between WSP, LR model and PLS model 
 

Table 2  Coverage rate of WSP, LR model and PLS model 

Sample Coverage rate of 
WSP/% 

Coverage rate of PLS 
model/% 

Coverage rate of LR 
model/% Sample Coverage rate of 

WSP/% 
Coverage rate of PLS 

model/% 
Coverage rate of LR 

model/% 

Sample 1 0.00 0.00 0.00 Sample 27 0.00 0.14 0.00 

Sample 2 0.00 0.22 0.00 Sample 28 0.69 0.72 0.00 

Sample 3 0.00 0.01 0.00 Sample 29 0.00 0.00 0.00 

Sample 4 0.00 0.00 0.00 Sample 30 0.36 0.00 0.46 

Sample 5 0.00 0.05 0.00 Sample 31 0.82 1.59 1.37 

Sample 6 0.00 0.25 0.00 Sample 32 2.03 1.44 3.62 

Sample 7 0.00 0.53 0.39 Sample 33 2.54 3.53 4.67 

Sample 8 0.00 0.18 0.54 Sample 34 7.59 8.51 9.38 

Sample 9 0.03 0.36 0.48 Sample 35 7.98 7.93 9.72 

Sample 10 2.35 1.75 4.11 Sample 36 8.22 5.97 7.87 

Sample 11 8.81 8.53 6.03 Sample 37 7.58 8.66 9.26 

Sample 12 10.16 10.51 8.25 Sample 38 3.93 2.47 4.59 

Sample 13 8.52 7.84 7.78 Sample 39 1.64 0.76 2.04 

Sample 14 16.21 outlier 10.25 Sample 40 10.51 10.49 9.52 

Sample 15 2.52 outlier 7.59 Sample 41 8.73 outlier 9.80 

Sample 16 3.69 3.53 4.51 Sample 42 4.22 4.58 2.96 

Sample 17 12.42 11.56 8.44 Sample 43 7.59 8.21 10.65 

Sample 18 10.86 10.70 9.95 Sample 44 0.49 1.08 0.54 

Sample 19 12.67 12.67 11.26 Sample 45 0.00 0.00 0.00 

Sample 20 2.69 3.46 4.63 Sample 46 0.00 0.00 0.00 

Sample 21 0.10 0.70 0.02 Sample 47 0.00 0.00 0.00 

Sample 22 0.00 0.61 0.16 Sample 48 0.00 0.00 0.00 

Sample 23 0.00 0.00 0.00 Sample 49 0.00 0.12 0.11 

Sample 24 0.00 0.00 0.00 Sample 50 0.00 0.95 0.00 

Sample 25 0.00 0.26 0.04 Sample 51 0.00 0.00 0.00 

Sample 26 0.00 0.00 0.00 Sample 52 0.00 0.31 0.00 

Note: Sample 14, 15, and 41 were outliers determined by Monte Carlo sampling approach in the result of PLS model 
 

4  Conclusions 

In this study, a method with PLS model based spectrum 
analysis was proposed to measure the UAV spraying pattern more 
accurately, and spraying experiments were conducted in the field to 
verify the effectiveness of the method.  The main conclusions are 
as follows:  

(1) The method involved the steps of fluorescent tracer 
solution spray and its droplets collection, the spectrum on paper 

strip acquiring, spectrum processing and analysis, PLS modeling.  
And the method can measure the UAV spraying pattern effectively. 

(2) Due to the influence of the instrument instability and the 
interference of scatter, the original spectrum contains random noise 
and baseline translation.  Therefore, Savitzky-Golay method was 
chosen for reducing the noise of the original spectrum.  And SNV 
method was chosen for eliminating the scattering effects caused by 
the overlap of droplets and paper strips background.  Spectrum 
processing was benefited for the futher spectrum analysis and PLS 
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modeling. 
(3) PLS model was established based on the normalized 

intensity of 12 sensitive wavelengths, and LR model was 
established based on the average spectral intensity value of 
485-495 nm.  The result indicates that the PLS model for UAV 
spraying pattern measurement has more accuracy than that of the 
LR model with a better performance of RV

2=0.94, RMSEP=0.9446. 
(4) The method with PLS model based spectrum analysis 

provides a new way for the measurement of UAV spray pattern.  
However, only some preliminary researches for this method were 
conducted in this study and the accuracy of UAV spraying pattern 
measurement could be affected by many factors, such as the 
fluorescent tracer solution concentration, the influences of sprayed 
chemicals on the excitation and emission wavelengths of the 
fluorescent tracer, and the integral time of the spectrometer.  In 
future work, further experiments are required to study as many 
influencing factors as possible to optimize the model for UAV 
spraying pattern measurement, so that the measurement model can 
satisfy the evaluation requirements for the high robustness and 
detection accuracy in different complex conditions. 

 
Acknowledgements 

This study was supported by Zhang Ruirui's Beijing Nova 
Program (No.Z181100006218029), National Natural Science 
Foundation of China (31601228), BAAFS' Innovation Ability 
Construction Program 2018 (No.KJCX20180424), National Key 
R&D Program of China (2016YFD0200701-2). 
 

[References] 
[1] Zhou Z Y, Zang Y, Luo X W, Lan Y B, Xue X Y.  Technology 

innovation development strategy on agricultural aviation industry for plant 
protection in China.  Transactions of the CSAE, 2013; 29(24): 1–10. 

[2] Huang Y B, Thomson S J, Hoffmann W C, Lan Y B, Fritz B K.  
Development and prospect of unmanned aerial vehicle technologies for 
agricultural production management.  Int J Agric & Biol Eng, 2013; 6(3): 
1–10. 

[3] Tang Q, Zhang R R, Chen L P, Xu M, Yi T C, Zhang B.  Droplets 
movement and deposition of an eight-rotor agricultural UAV in downwash 
flow field.  Int J Agric & Biol Eng, 2017; 10(3): 47–56. 

[4] Li J Y, Lan Y B, Wang J W, Cheng S D, Huang C, Liu Q, et al.  
Distribution law of rice pollen in the wind field of small UAV.  Int J 
Agric & Biol Eng, 2017; 10(4): 32–40. 

[5] Jensen P K, Olesen M H.  Spray mass balance in pesticide application: A 
review.  Crop Protection, 2014; 61: 23–31. 

[6] Zhu H, Salyani M, Fox R D.  A portable scanning system for evaluation 
of spray deposit distribution.  Computers and Electronics in Agriculture, 
2011; 76(1): 38–43. 

[7] Ferguson J C, Chechetto R G, O'Donnell C C, Fritz B K, Hoffmann W C, 
et al.  Assessing a novel smartphone application-SnapCard, compared to 
five imaging systems to quantify droplet deposition on artificial collectors.  
Computers and Electronics in Agriculture, 2016; 128: 193–198. 

[8] Chen S D, Lan Y B, Li J Y, Zhou Z Y, Jin J, Liu A M.  Effect of spray 
parameters of small unmanned helicopter on distribution regularity of 
droplet deposition in hybrid rice canopy.  Transactions of the CSAE, 2016; 
32(17): 40–46. 

[9] Zhang S C, Xue X Y, Qin W C, Sun Z, Ding S M, Zhou L X.  Simulation 
and experimental verification of aerial spraying drift on N-3 unmanned 
spraying helicopter.  Transactions of the CSAE, 2015; 31(3): 87–93. 

[10] Wang L, Lan Y B, Hoffmann W C, Fritz B K, Chen D, Wang S M.  
Design of variable spraying system and influencing factors on droplets 
deposition of small UAV.  Transactions of the CSAM, 2016; 47(1): 
15–22. 

[11] Wang X N, He X K, Song J L, Wang Z C, Wang C L, Wang S L, et al.  
Drift potential of UAV with adjuvants in aerial applications.  Int J Agric 
& Biol Eng, 2018; 11(5): 54–58. 

[12] Xue X Y, Tu K, Qin W C, Lan Y B, Zhang H H.  Drift and deposition of 

ultra-low altitude and low volume application in paddy field.  Int J Agric 
& Biol Eng, 2014; 7(4): 23–28. 

[13] Duga A T, Delele M A, Ruysen K, Dekeyser D, Nuyttens D, et al.  
Development and validation of a 3D CFD model of drift and its application 
to air-assisted orchard sprayers.  Biosystems Engineering, 2017; 154: 
62–75. 

[14] Zhang B, Tang Q, Chen L P, Zhang R R, Xu M.  Numerical simulation of 
spray drift and deposition from a crop spraying aircraft using a CFD 
approach.  Biosystems Engineering, 2018; 166: 184–199. 

[15] Yuan X, Qi L J, Ji R H, Zhang J H, Wang H, Huang S K.  Analysis on 
features of air-velocity distribution and droplets deposition pattern for 
greenhouse air-assisted mist sprayer.  Transactions of the CSAM, 2012; 
43(8): 71–77. 

[16] Kesterson M A, Luck J D, Sama M P.  Development and Preliminary 
Evaluation of a Spray Deposition Sensing System for Improving Pesticide 
Application.  Sensors, 2015; 15(12): 31965–31972. 

[17] Zhang R R, Chen L P, Lan Y B, Xu G, Kan J, Zhang D Y.  Development 
of a deposit sensing system for aerial spraying application.  Transactions 
of the CSAM, 2014; 45(8): 123–127. 

[18] Zhang H H, Lan Y B, Lacey R, Hoffmann W C, Martin D E, Fritz B, et al.  
Ground-based spectral reflectance measurements for evaluating the 
efficacy of aerially-applied glyphosate treatments.  Biosystems 
Engineering, 2010; 107(1): 10–15. 

[19] Lv M Q, Xiao S P, Tang Y, He Y.  Influence of UAV flight speed on 
droplet deposition characteristics with the application of infrared thermal 
imaging.  Int J Agric & Biol Eng, 2019; 12(3): 10–17. 

[20] Bae Y, Koo Y M.  Flight attitudes and spray patterns of a roll-balanced 
agricultural unmanned helicopter.  Applied Engineering in Agriculture, 
2013; 29(5): 675–682. 

[21] Zhang D Y, Lan Y B, Wang X, Zhou X G, Cheng L P, Li B, et al.  
Assessment of aerial agrichemical spraying effect using 
moderate-resolution satellite imagery.  Spectroscopy and Spectral 
Analysis, 2016; 36 (6): 1971–1977. 

[22] Zheng Y J, Yang S H, Lan Y B, Hoffmann C, Zhao C J, Chen L P, et al.   
A novel detection method of spray droplet distribution based on LIDARs.   
Int J Agric & Biol Eng, 2017; 10(4): 54–65. 

[23] Zhang R R, Wen Y, Yi T C, Cheng L P, Xu G.  Development and 
application of aerial spray droplets deposition performance measurement 
system based on spectral analysis technology.  Transactions of the CSAE, 
2017; 33(24): 80–87. 

[24] Wen Y, Zhang R R, Cheng L P, Huang Y B, Yi T C, Xu G, Li L L, 
Andrew J H.  A new spray deposition pattern measurement system based 
on spectral analysis of a fluorescent tracer.  Computers and Electronics in 
Agriculture, 2019; 160: 14–22. 

[25] Yang X W, Zhou J Z, He X Q, Herbst A.  Influences of nozzle types on 
pesticide deposition and insecticidal effect to wheat aphids.  Transactions 
of the CSAE, 2012; 28(7): 46–50. 

[26] Xu G, Chen L P, Zhang R R.  An image processing system for evaluation 
of aerial application quality.  International Conference on Intelligent 
Information Processing.  ACM, 2016. 10.1145/3028842.3028895 

[27] Hou P G, Li N , Chang J, Wang S T, Song T.  Research on analysis of oil 
in water based on the joint optimization of Savitzky-Golay smoothing and 
IBPLS models.  Spectroscopy and Spectral Analysis, 2015; 35(6): 
1529–1533. 

[28] Kamruzzaman M, Makino Y, Oshita S.  Rapid and non-destructive 
detection of chicken adulteration in minced beef using visible near-infrared 
hyperspectral imaging and machine learning.  Journal of Food 
Engineering, 2016; 170(7): 8–15. 

[29] Hodge V J, Austin J.  A Survey of Outlier Detection Methodologies.  
Artificial Intelligence Review, 2004; 22(2): 85–126. 

[30] Cao D S, Liang Y Z, Xu Q S, Li H D, Chen X.  A new strategy of outlier 
detection for QSAR/QSPR.  Journal of Computational Chemistry, 2010; 
31(3): 592–602. 

[31] Li H D, Xu Q S, Liang Y Z.  libPLS: An integrated library for partial least 
squares regression and linear discriminant analysis.  Chemometrics and 
Intelligent Laboratory Systems, 2018; 176: 34–43. 

[32] Li H D, Xu Q S, Liang Y Z.  Random frog: an efficient reversible jump 
Markov Chain Monte Carlo-like approach for variable selection with 
applications to gene selection and disease classification.  Analytica 
Chimica Acta, 2012; 740: 20–26. 

[33] Wold S, Sjöström M, Eriksson L.  PLS-regression: a basic tool of 
chemometrics.  Chemometrics and Intelligent Laboratory Systems, 2001; 
58(2): 109–130. 

 


