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Detection of blood spots in eggs by hyperspectral transmittance imaging 
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Abstract: Blood spots are one of undesired inclusions in eggs, whose detection success is highly dependent on shell color.  

This research reports a method for detecting blood spots in light brown-shelled eggs on the basis of hyperspectral transmittance 

images.  The normalized spectra of intact eggs and their shells were acquired.  Five feature wavelengths of intact eggs 

selected by the successive projections algorithm and 3 absorption peak locations of eggshells were regarded as characteristic 

bands.  The k-nearest neighbor (kNN) and support vector machine (SVM) algorithms were adopted to develop detection 

models.  The latter achieved better performance.  The overall classification accuracy increased to 100% by merging 

normalized spectra of intact eggs at 5 feature wavelengths with 3 absorption peaks of eggshells as input variables of 

SVM-based model.  Moreover, a practical SVM-based model with 96.43% overall classification accuracy was established by 

replacing inputs with normalized spectra of intact eggs at characteristic bands. 
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1  Introduction

 

Blood spots appearing on the yolk or in the albumen will affect 

the quality and grade of eggs.  Different countries have different 

standards for grading eggs.  The USDA grades for shell eggs 

clearly stipulate that small blood spots aggregating not more than 

1/8 inch (3.2 mm) in diameter may be classified as B quality[1].  

China’s Ministry of Commerce promulgated that eggs of Grade AA, 

A and B shouldn’t contain blood spots, meat spots and other 

foreign matters in the industry standards for fresh egg grading in 

2011[2].  Therefore, the present detection of blood spots is 

important for egg grading.  

Traditionally, egg internal defect is examined by candling, 

which is a process that passes the egg over a bright light to make its 

interior visible.  The determination will be made by well-trained 

workers based on their observation results.  Since this method is 

labor intensive and heavily depending on the experience of the 

workers, the traditional method is hard to meet the demand of high 

accuracy and throughput.  In recent years, many advanced 

technologies were employed to develop objective methods for egg 

internal defect detection, in which imaging and spectroscopy 

attracted great attention of researchers[3].  Patel et al.[4] used a 

machine vision system to acquire the gray images of blood spot 

eggs and trained the neural network model for blood spot detection 

by the histograms generated from the images.  The detection 

accuracy of blood spotted eggs was 86.7%.  Then Patel et al.[5] 

improved this method by using a color imaging system.  The 

accuracy of the neural network model trained by histograms of red, 
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green and blue component images increased to 92.8%.  Nakano et 

al.[6] also developed a color imaging system to obtain the 

transmission images of eggs by candling.  The normalized 

chromatic component g was introduced to detect the bloody eggs 

from the normal eggs.  When the threshold of g was set to 2.9, a 

total detection accuracy of 94.2% for the white-shelled bloody eggs 

was acquired.  Besides the imaging technology, the spectroscopy 

technology was also used for detecting blood pots in eggs.  Usui 

et al.[7] applied the near infrared spectroscopy to detect blood spots 

in white-shelled eggs, established detection model by the partial 

least square (PLS) method and achieved 96.8% accuracy for 

blood-spot eggs.  Compared to white-shelled eggs with blood 

spots, brown-shelled eggs with blood spots are more difficult to be 

detected since the images of the brown shelled eggs were quite 

similar to those of the blood spots in the white shelled eggs[8].  Xu 

et al.[9] analyzed visible spectroscopy of brown-shelled eggs by the 

least squares support vector machines (LS-SVM) method and 

acquired 91.7% accuracy for blood-spot detection.  Gielen et al.[8] 

found that the absorption peak of the pigment protoporphyrin in 

brown-shelled eggs was at 589 nm, while that of hemoglobin in 

blood spots was at 577 nm.  Their absorption peak locations were 

very close, which resulted in the relative lower detection accuracy 

for brown-shelled eggs with blood spots.  In order to achieve 

higher accuracy, the influence of the protoporphyrin needs to be 

compensated.  

Hyperspectral imaging technology combines conventional 

imaging and spectroscopy techniques[10] and has shown great 

potential in detection of egg internal quality.  Zhang et al. used 

hyperspectral imaging with multivariate analysis to detect the 

freshness, bubble formation and scattered yolk of white-shelled 

eggs[11].  Smith et al.[12] measured a total of 240 white-shell table 

eggs by hyperspectral imaging in transmittance mode and a ratio of 

images at 577 nm and 565 nm were used to determine if pixels 

from the image were positive for blood.  A greater than 90% 

accuracy rate was obtained.  To the best of authors' knowledge, 

there has been no report on detecting blood spots in brown-shelled 

eggs by hyperspectral imaging. 

The overall objective of this study was to investigate the 
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possibility of detecting blood spot in light brown-shelled eggs by 

hyperspectral transmittance imaging.  The specific objectives of 

the study were (a) to select feature wavelengths from hyperspectral 

transmittance image data; (b) to establish qualitative detection 

models; and (c) to compensate the influence of the protoporphyrin 

in eggshells on the classification accuracies of detection models. 

2  Materials and methods 

2.1  Sample preparation 

A total of 98 light brown-shelled eggs were bought from a 

local mart and stored in a refrigerator at 4°C.  All the eggs were 

moved to the experimental environment 4 hours ahead of 

measurement to allow them to reach room temperature.  Then 

they were divided into 2 groups, normal group (50 eggs) and defect 

group (48 eggs).  In the normal group, 36 samples were randomly 

selected for model calibration and the rest were for model 

validation.  In previous studies, blood spot eggs were made by 

injecting 0.03-0.05 mL blood into normal eggs[9,13,14].  In this 

research, the defect samples were prepared by injecting 0.04 mL 

chicken blood mixture (1:3 mixture of 10% transparent sodium 

citrate solution and fresh chicken blood) in their albumen.  The 

sodium citrate can prevent blood clotting, which makes the 

injection easier.  Since the absorption spectrum of sodium citrate 

solution does not show distinct absorption peak at 500-700 nm, its 

addition has little influence on the spectra of defect samples at 

500-700 nm[15].  In the defect group, 34 samples were also 

randomly selected for model calibration and the others were for 

model validation.  

2.2  Data acquisition 

The hyperspectral transmittance image (HTI) acquisition 

system was shown in Figure 1, which consisted of an array charge 

coupled device (CCD) camera (C8484-05G01, Hamamatsu 

Photonics, Japan) and a line scanning spectrograph (ImSpector 

V10E-QE, Spectral Imaging Ltd., Oulu, Finland) ranging from 450 

to 1000 nm with a spectral resolution of 2.8 nm.  A 150 watt 

halogen fiberoptic light source (2900, Illumination Technologies, 

Inc., USA) with a φ6.5 mm single lightguide (9133HT, 

Illumination Technologies, Inc., USA) was used for illumination.  

An electric-driving displacement platform (TSA200-B, Zolix 

Instruments Co., Ltd., Beijing, China) with a stage was managed by 

a controller to realize line scan.  The stage with a φ25 mm central 

aperture was used for vertically placing eggs with their big end up, 

which was made of aluminum oxide and had matte black anodized 

finish surface to reduce unwanted reflection.  Four stainless steel 

posts fixed on the platform were used to support the stage and 

provide installation space for the lightguide.  The whole system 

was installed in a black chamber to avoid ambient light.  

Moreover, a computer (Inter RcoreTM2 4400@2.00 GHz, ACER, 

China) supervised the entire procedure of HTI acquisition. 

After measuring the HTI of each intact egg, the egg was 

broken from the small end for visual inspection of its internal 

quality.  The shell of big end was collected and cleaned with 

deionized water.  Its membrane was removed by manual.  After a 

further 24 h of air-drying, its HTI was measured.  For each sample, 

HTIs of intact eggs and shell fragment were both measured. 

2.3  Data processing and analysis 

The whole egg area was as the region of interest (ROI) from 

the intact egg HTIs, while the ROI of shell fragment was extracted 

manually.  Figure 2 shows the technical flowchart of the spectral 

data analysis.  During the whole processing, the mean spectra 

extracted from raw HTI of ROI was firstly corrected and 

normalized to acquire normalized spectra, which could minimize 

the influence of transmitted light intensity caused by eggshell 

thickness.  Then the feature wavelengths of intact eggs were 

selected by successive projections algorithm to reduce information 

redundancy.  Besides, the absorption peak locations of eggshell 

fragments were also extracted.  At last, 4 groups of input variables 

based on above analysis were put into two classifiers of SVM and 

kNN to establish detection models for blood spots.  The details of 

data processing and analysis were described at the following 

sections. 

 
Figure 1  Hyperspectral imaging system in transmittance mode for 

eggs 

 
Figure 2  Flowchart of data processing and analysis 

 

2.3.1  Data preprocessing 

In order to acquire relative HTIs, raw data must be corrected 

using the following equation[16]:  
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                    (1) 

where, TR is the relative HTI; TS and TT are the raw HTIs of the 

sample and the reference; and D is the dark image.  In this study, 

the Teflon panels with 25 mm and 15 mm thickness were used on 

the stage in Figure 1 as the reference for intact egg and shell 

fragment, respectively. 
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After the correction, the mean relative transmittance spectra 

(RTS) of both intact eggs and shell fragments were extracted from 

their relative HTI.  And the spectral range was narrowed to 

500-700 nm for minimizing the noise resulting from sodium citrate 

solution, and then normalized to [0,1] using Equation (2).  The 

normalized spectra were used for the following data analysis.  All 

the data preprocessing and analysis were performed in Matlab.   

min

max min

i
i

X X
X

X X


 


                (2) 

where, Xi′ is the normalized spectral value at the wavelength i; Xi is 

the raw spectral value at the wavelength i; Xmin and Xmax are the 

minimum and maximum values of Xi, respectively.  

2.3.2  Selection of characteristic bands 

The high information redundancy in hyperspectral image data 

will lead to convergence instability in classification models, which 

can be reduced by selection of the most informative spectral bands.  

The successive projections algorithm (SPA) uses a simple 

projection operation in vector space to obtain a subset of variables 

with small collinearity[17].  It is a forward variable selection 

algorithm for multivariate calibration.  SPA's variable selection 

principle is that the selected new variable is among all remaining 

variables.  One of which has the largest projection value on the 

orthogonal subspace of the previously selected variable[18].  This 

method begins with one wavelength and calculates the projection 

on the unselected wavelength for each iteration and introduces the 

wavelength of the largest projection vector into the wavelength 

combination until it is cycled N times.  Detailed instruction of 

SPA see Ref.[17].  In this research, the SPA was employed to select 

feature wavelengths from normalized spectra of intact eggs 

(denoted as Bands A).  Besides, the absorption peak locations of 

eggshells were regarded as another group of characteristic bands 

(denoted as Bands B). 

2.3.3  Development of detection models 

The k-nearest neighbor (kNN) algorithm is a non-parametric 

method, which is sensitive to the local structure of the data[19].  

The choice of k has a great influence for classification.  One 

popular way for choosing the empirically optimal k is via bootstrap 

method[20].  The support vector machines (SVM) is another 

supervised learning algorithm for linear and non-linear 

classification, which consists in finding the optimum separating 

hyperplan between classes due to the identification of the most 

representative training samples[21].  It is widely used to analysis 

multispectral and hyperspectral images and shows many 

advantages in solving small samples, non-linear and high 

dimensional pattern recognition[22].  In this research, both kNN 

and SVM algorithms were adopted to establish the detection 

models with different inputs. 

Firstly, the kNN- and SVM-based models for blood spots 

detection were created on the basis of the normalized spectra and 

selected feature wavelengths of intact eggs by SPA (denoted as 

M1-M4), respectively.  Subsequently, in order to reduce the 

influence of the pigment protoporphyrin in light-brown eggshells 

on the detection accuracy of blood spots, normalized spectra of 

intact eggs at the feature wavelengths (Bands A) were merged with 

the absorption peaks of eggshells (Bands B) to establish accurate 

detection models by means of kNN and SVM algorithms (M5 and 

M6).  Since nondestructive measurement of eggshell spectra is 

impossible at present, it is necessary to find a method to take place 

of eggshell spectra for model development.  Therefore, the 

normalized spectra of intact eggs at the same wavelengths as the 

absorption peak locations of eggshell spectra served as the inputs of 

kNN- and SVM-based practical detection models (M7 and M8).  

The performances of these models were compared and evaluated 

by their classification accuracies.  Good models have higher 

classification accuracies. 

3  Results and discussions 

3.1  Color information 

The Red Green Blue (RGB) images were formed from HTIs of 

intact eggs at 661 nm (Red), 554 nm (Green), 450 nm (Blue) 

wavelength.  Then, The RGB values were converted to L*a*b* 

values (Table 1) by Matlab 7.14.0 software (The Math Works, Inc., 

Natick, Mass., USA).  In Table 1, the values of b* were all 

positive, which showed the realistic egg color were yellowish.  

Besides, the color of the egg was mostly reddish.  It illustrated 

that the egg samples were brownish. 
 

Table 1  Color information of egg samples 

Color Parameter L* a* b* 

Maximum 62.24 50.43 62.03 

Minimum 28.85 –1.52 33.29 

Standard deviation 5.51 10.24 5.86 
 

3.2  Spectra interpretation  

The mean RTS of normal (50) and defect (48) samples with 

standard deviation (SD) were shown in Figure 3a.  In order to 

avoid the impact of the sodium citrate solution on blood spots 

detection, the RTS of all samples in the range of 500-700 nm were 

extracted and normalized to [0,1] using equation (2) (Figure 3b).  

The mean RTS of defect (48) samples were similar to those of 

normal ones.  The relative transmittance of all light brown-shelled 

eggs gradually increased with wavelength in the range of 500-  

700 nm.  Intact eggs presented one distinct absorption peak at 

642.72 nm and two flat terraces at 500-540 nm and 574-585 nm.  

The data process for eggshells was the same as that for intact 

eggs.  The mean RTS of eggshells with standard deviation were 

displayed in Figure 4a.  The normalized spectra in the range of 

500-700 nm of eggshells with standard deviation were shown in 

Figure 4b.  Three absorption peaks of light brown-shelled 

eggshells located at 539.3, 590.1 and 644.0 nm were observed, 

which was due to the pigment protoporphyrin in the shell.  Similar 

results were also obtained by other researchers for the brown 

shelled eggs[8].  

Comparing the results shown in Figure 3a with 4a, it was 

found that intact eggs had significant difference with eggshells in 

the SW-NIR range.  This was due to that eggs contained a lot of 

protein while eggshells mainly contained calcium carbonate.  

Relative to normalized spectra of eggshells shown in Figure 4b, 

normalized spectra of intact eggs showed only one pronounced 

absorption peak at about 642 nm.  It meant that intact egg with 

light brown shell didn’t present the peaks at around 539 and    

590 nm.  In other studies, white eggs had no absorption peak in 

the range of 500-700 nm, but brown-shelled eggs did[8].  

Therefore, the number of absorption peaks of intact egg might be 

caused by its shell color.  The absorption peaks might become 

more and more distinct with the increasing of shell color.  

3.3  Feature extraction 

It was important to reduce the redundant formation in 

normalized spectra of intact eggs.  In this study, the 5 feature 

wavelengths were extracted by SPA from normalized spectra of 

intact eggs at 500-700 nm, which were 549.16, 564.01, 578.91, 

597.6 and 633.91 nm (Figure 5).  The selected wavelengths 
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contained the characteristic absorption band of hemoglobin in 

blood spots at 578.91 nm.  Other characteristic bands were located 

in the range of 540-640 nm and reported to have the potential of 

predicting egg freshness[23].  

 
a.  b. 

 

Figure 3  Relative transmittance spectra (RTS) (a) and normalized spectra of intact eggs with and without blood spots (b) 

(SD: Standard deviation) 
 

 
a.  b. 

 

Note: SD: Standard deviation. 

Figure 4  Relative transmittance spectra (RTS) (a) and normalized spectra of eggshells (b) 
 

 
Figure 5  The 5 feature wavelengths extracted by successive 

projections algorithm (SPA) from normalized spectra of intact eggs 
 

3.4  Blood spot detection models 

The results for blood-spot detection models developed by kNN 

and SVM algorithms with different input data were shown in Table 

2 and 3.  By comparing these tables, it was indicated that the 

SVM-based models achieved better performance than the 

kNN-based models.  The classification accuracies of kNN-based 

models (M1, M3, M5 and M7) had similar changing trend with 

those of SVM-based models (M2, M4, M6 and M8).  In the case 

of SVM-based models, 100% overall classification accuracy of 

model M6 were achieved by using normalized spectra of intact 

eggs at the 5 feature wavelengths coupled with the 3 absorption 

peaks of eggshells as input variables (Inputs 3).  When the input 

variables only included normalized spectra of intact eggs at the 5 

feature wavelengths (Inputs 2), the overall classification accuracy 

of model M4 reduced to 85.71%.  Moreover, when the inputs 

were changed into whole normalized spectra of intact eggs (Inputs 

1), the classification accuracy of models M2 were 96.43%, which 

was still lower than that of model M6 and cost more computing 

time.  Above results also confirmed that the influence of the 

protoporphyrin in eggshells on the classification accuracies of 

detecting blood spots could be compensated by adding normalized 

spectra of eggshells to input variables of detection models.  

However, it was impossible to nondestructively acquire spectra of 

eggshells in practical production.  Therefore, Inputs 2 with 

normalized spectra of intact egg at the same wavelengths as the 
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absorption peak locations of eggshells served as input variables for 

developing practical detection model M8, whose overall 

classification accuracy degraded from 100.00% to 96.43%.  

However, this result was still better than that of model M4 only 

using normalized spectra of intact eggs at the 5 feature wavelengths.  

For kNN-based models, the highest classification accuracy of 

82.14% was achieved by using either Inputs 1 or Inputs 3, while 

the lowest classification accuracy of 71.43% were obtained by 

using Inputs 2. 
 

Table 2  Classification results for the validation set by 

k-nearest neighbor (kNN) algorithm with different inputs 

Model 
Input 

variables 

Number of 

inputs 

Number of misclassified 

eggs Overall 

classification 

accuracy 

k  

value 
Normal 

(total:14) 

Defect 

(total:14) 

M1 Inputs 1
a
 162 5 0 82.14% 4 

M3 Inputs 2
b
 5 3 5 71.43% 1 

M5 Inputs 3
c
 8 1 4 82.14% 9 

M7 Inputs 4
d
 8 1 5 78.57% 1 

Note: 
a
 Inputs 1: whole normalized spectra of intact eggs at 500-700 nm. 

b
 Inputs 2: normalized spectra of intact eggs at the feature wavelengths selected 

by SPA. 
c 
Inputs 3: Inputs 2 with the absorption peaks of eggshells (Bands B). 

d 
Inputs 4: Inputs 2 with normalized spectra of intact eggs at Bands B. 

 

Table 3  Classification results for the validation set by support 

vector machines (SVM) algorithm with different inputs 

Model 
Input 

variables 

Number 

of inputs 

Number of misclassified eggs 
Overall 

classification 

accuracy 
Normal 

(total:14) 

Defect 

(total:14) 

M2 Inputs 1
a
 162 0 1 96.43% 

M4 Inputs 2
b
 5 0 4 85.71% 

M6 Inputs 3
c
 8 0 0 100.00% 

M8 Inputs 4
d
 8 0 1 96.43% 

Note: 
a
 Inputs 1: whole normalized spectra of intact eggs at 500-700 nm. 

b
 Inputs 2: normalized spectra of intact eggs at the feature wavelengths selected 

by SPA. 
c 
Inputs 3: Inputs 2 with the absorption peaks of eggshells (Bands B). 

d 
Inputs 4: Inputs 2 with normalized spectra of intact eggs at Bands B. 

 

3.5  Discussion 

The mean RTS of eggshells had significant difference with 

intact eggs in the SW-NIR range.  There were three absorption 

peaks of light brown-shelled eggshells, which was due to the 

pigment protoporphyrin.  Taking this into consideration could 

help improve the predictive power of the model.  It could be 

found in this research that model M6 merged normalized spectra of 

intact eggs at the 5 feature wavelengths with the 3 absorption peaks 

of eggshells as inputs had the best result compared with other 

models.  However, it was impossible to nondestructively acquire 

spectra of eggshells.  For the purpose of nondestructive detection, 

the absorption peaks of eggshells were replaced by normalized 

spectra of intact egg at the same wavelengths as input variables for 

developing practical detection models.  The accuracy of model 

M8 was 96.43% which was same as Model M2.  Whereas, model 

M8 had fewer input variables and less computing time, which 

meant that model M8 had certain application value. 

4  Conclusions 

This preliminary results obtained from this research 

demonstrates that this hyperspectral transmittance imaging method 

could detect blood spots in light brown-shelled eggs. 

(1) This research found 8 feature wavelengths to establish the 

model.  Among these wavelengths, there were three absorption 

peaks located at 539.3, 590.1 and 644.0 nm that were observed 

from normalized spectra of light brown-shelled eggshells.  

Besides, the 5 feature wavelengths were extracted by SPA from 

normalized spectra of intact eggs at 500-700 nm, which were 

549.16, 564.01, 578.91, 597.6 and 633.91 nm.  Among them, the 

wavelength 578.91 nm was the characteristic absorption band of 

hemoglobin in blood spots. 

(2) This research established 8 models by kNN and SVM.  

Relative to kNN-based model, the SVM-based model yielded better 

performance.  The accuracy of SVM-based model was 100% and 

96.43%, which used normalized spectra of intact eggs at the 5 

feature wavelengths with the 3 absorption peaks of eggshells and 8 

feature wavelengths of intact eggs as inputs respectively. 

This paper reports the preliminary results in detecting blood 

spots in light brown-shelled eggs by hyperspectral transmittance 

imaging.  More comprehensive studies are necessary to verify 

and/or improve the developed methods for different amount of 

blood in light brown-shelled eggs. 
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