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Abstract: Breakage rate is one of the most important indicators to evaluate the harvesting performance of a combine harvester.  
It is affected by operating parameters of a combine such as feeding rate, the peripheral speed of the threshing cylinder and 
concave clearance, and shows complex non-linear law.  Real-time acquisition of the breakage rate is an effective way to find 
the correlation of them.  In addition, real-time monitoring of the breakage rate can help the driver optimize and adjust the 
operating parameters of a combine harvester to avoid the breakage rate exceeding the standard.  In this study, a real-time 
monitoring method for the grain breakage rate of the rice combine harvester based on machine vision was proposed.  The 
structure of the sampling device was designed to obtain rice kernel images of high quality in the harvesting process.  
According to the working characteristics of the combine, the illumination and installation of the light source were optimized, 
and the lateral lighting system was constructed.  A two-step method of “color training-verification” was applied to identify the 
whole and broken kernels.  In the first step, the local threshold algorithm was used to get the edge of kernel particles in a few 
training images with binary transformation, extract the color spectrum of each particle in color-space HSL and output the 
recognition model file.  The second step was to verify the recognition accuracy and the breakage rate monitoring accuracy 
through grabbing and processing images in the laboratory.  The experiments of about 2300 particles showed that the 
recognition accuracy of 96% was attained, and the monitoring values of breakage rate and the true artificial monitoring values 
had good trend consistency.  The monitoring device of grain breakage rate based on machine vision can provide technical 
supports for the intellectualization of combine harvester. 
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1  Introduction  

Combine harvester operate all over the world, harvesting 
different crops under different environmental conditions[1].  The 
working process of a combine is a complex non-linear process, 
which is influenced by a wide range of parameters, such as crop 
yield, climate, threshing and cleaning settings[2].  In order to 
optimize the internal settings of a combine harvester, it is essential 
to monitor the combine performance information from the 
harvesting process.  The main performance criteria of a combine 
harvester are grain purity, damage to kernels and processing loss[3].  
The breaking rate refers to the mechanical damage caused by the 
action on the kernel during harvesting, which is mainly formed in 
the time of threshing.  The formation mechanism is that the 
mechanical action intensity is greater than the threshing work of the 
crop.  On the one hand, the increased broken rate might make the 
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harvested grains easy to mildew and difficult to store.  On the 
other hand, the higher breakage rate reflects the waste of machine 
energy, especially the increase of threshing energy consumption.  
Many factors are affecting the kernel damage rate.  Increase in 
kernel breakage and a decrease in seed germination due to a 
decrease in forwarding speed, increase in cylinder rotation and 
decrease in clearance between cylinder and concave[4].  In 
addition, the impact and extrusion of the grain conveyor will also 
lead to kernel broke up, such as the grain lifting auger that conveys 
kernels into the grain bin.  The real-time monitoring of the grain 
breakage rate can provide the basis for the relevant operating 
parameters of the threshing system, reduce the grain breakage rate 
and the energy consumption, and improve the operational 
performance of the combine harvester. 

In the literature, some researches can be found engaging in 
grain damage auto-detection technology[5-10].  Georg et al.[8] 
developed an automatic measuring system for whole and broken 
kernels in which a digital image processing method was chosen as 
a sensor.  Jahari et al.[9] developed a machine vision system with a 
double lighting device that gives promising results to detect and 
measure undesirable objects and damaged grain in harvested grain 
paddy.  However, a real-time monitoring device for the kernel 
breakage rate is not yet developed for practical use so far.  

It was effective to install a sampling box at the grain outlet in 
the grain bin and collect materials (a mixture of whole and 
damaged kernels).  After grabbing an image of the collected 
samples of kernels, machine vision technology was utilized to 
extract the color spectrum of connected particles segmented from 
the image, and data mining technology was involved to identify 
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whole and damaged kernels and the breakage rate of combine 
harvester was obtained in real-time.  The real-time monitoring 
technology of the grain breakage rate based on machine vision 
must meet the following requirements.  First of all, it is necessary 
to ensure that kernel-sample be collected and discarded from the 
grain flow smoothly and periodically by the sampling device and 
that no blockage occurs.  Secondly, it is necessary to provide a 
closed space for the camera and the light source to generate the 
appropriate light field for the camera to grab images.  Thirdly, an 
accurate and efficient image processing algorithm should be 
developed to extract the features of connected domains of kernels 
in an image, and recognize whole and broken kernels according to 
the extracted features.   

In this paper, the structure design of a sampling box, the 
optimization design of the light source, and the recognition 
algorithm of whole-broken kernels based on the color spectrum 
were introduced.  The color spectrum of the connected domain 
was extracted in the color space HSL, and the “whole/broken 
kernel classification model” was established.  The accuracy of the 
model was verified by bench tests of about 2300 kernel particles.  

2  Materials and methods 

2.1  Developed equipment 
The grains were lifted and transported into the grain-bin by a 

grain elevator and an auger when harvesting in a field with a 
forward speed of about 1 m/s on GK 100 Lovol Gushen combine 
harvester, as shown in Figure 1a.  A large number of grains 
reached the outlet of the auger and were thrown out by the auger.  
Some grains fell into the sampling box.  Several seconds later (the 
time varies according to the flow rate of the combine), the sampling 
box was filled with grains.  The camera in the box grabbed an 
image from the visual window and sent it to the image processing 
unit, and the whole and broken kernels were recognized by the 
machine vision algorithm, and then the breakage rate was 
calculated.  

 
a. GK 100 Lovol Gushen combine harvester 

 
b. Structural diagram 

1. Grain elevator  2. Auger  3. Sampling box  4. Camera mounting bracket 
Figure 1  Diagram of grain sampling device 

The image acquisition in the combine grain bin is based on 
Mind Vision GE200GC-T global shutting camera, with a resolution 
of 1600×1200 pixels and the capture rate of 60 frames/s. 

The virtual instrument development platform LabVIEW was 
utilized, and an image processing algorithm was developed on the 
Windows system in an industrial computer which was 
DTB-1222-J1900, Dongtiantech. 
2.2  Parameters of the sampling box 

According to Chen et al.[11], when rice is harvested by a 
combine harvester, the crops are fed into the header, transported by 
the conveying trough, and then separated and cleaned by the 
threshing and cleaning units.  The light impurities are blown out 
by the airflow.  The heavy kernels are deposited and then sent into 
the grain bin through the elevator.  It is almost impossible to 
install a grain sampling device inside a combine where the contact 
force, vibration and airflow interfering with each other.  When the 
grain flow enters the grain bin from the auger, the flow rate is large.  
Therefore, installing a sampling box at the outlet of the auger in the 
grain bin will be convenient for collecting grains in real time[11].  
Jahari et al.[9] proposed an experimental prototype and claimed that 
more accurate combine harvester operation settings by monitoring 
the harvested grain as it enters the grain tank could be established 
in the future[9].  In this section, a sampling box with a transparent 
visual window and a camera inside was presented as shown in 
Figure 2a.  The camera “observed” the kernels as they flow 
through the sample cavity.  In addition, the camera needed to 
capture images in a stable environment, with no interruption of 
natural light.  Therefore, covers were used to enclose light source, 
which was fixed on the two lateral sides and the bottom, and 
meanwhile waterproof and dust-proof effects were acquired, as 
shown in Figure 2b.  

 
a. Structure diagram                                    

 
b. Cover 

1. Electromagnet  2. Choke plate  3. Visual window  4. Camera   
5. Connection seat  6. Cover  7. Sample cavity 

Figure 2  Structure diagram of sampling box 
 

The kernels are blocked by the choke plate periodically, 
forming an accumulation in the sample cavity when the grains are 
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flowing through.  After a certain period, the sample cavity is filled 
with kernels, and the camera grabs an image.  Then the 
electromagnet is electrified and the choke plate is pulled out to let 
the kernels flow out of the cavity.  At the same time, the spring is 
compressed.  When the grains in the cavity are almost flowed out, 
the electromagnet is cut off and the spring pops out, driving choke 
plate reset and sampling action continues.  

The size of the enclosed space with the camera and the light 
source inside is 180 mm×180 mm×75 mm (length×width×height).  
The size design is based on the focal length of the camera.  The 
size of the sampling cavity is 180 mm×40 mm×75 mm (length× 
width×height).  The size is based on the number of kernels 
required in an image.  The number of kernels in a single 
photograph taken by the camera is set to no less than 200.  
Therefore, the size of the visual window is designed to be      
120 mm×50 mm (length×width).  The sample cavity with the 
length and height of 180 mm×75 mm (larger than the visual 
window) provides enough installation location for the visual 
window.  The size of the sampling box is 300 mm×180 mm×   
90 mm (length×width×height, including electromagnets and 
hanging ears, as shown in Figure 2). 
2.3  Light source 

A light field can be essentially viewed as an array of images 
captured by a grid of cameras towards the scene[12].  LEDs were 
chosen as the light source of the “black box” (the enclosed space of 
the camera and the light source), to provide narrow-spectrum or 

white light.  The tiny light-emitting structure of LED beads 
formed high-brightness spots on the visual window, which was not 
conducive to image processing subsequent, and thus the surface 
light source of a long strip was chosen[13].  Since Super-rice was 
chosen as the test object, it was hoped that the broken white and 
whole yellow kernels in the visual window could reflect more light 
and be more clearly “seen” and “classified” by the camera[14,15].  
In addition, the light distribution was supposed to be homogeneous 
to avoid local over the brightness of the image caused by the 
reflection highlights of transparent visual windows[16-19].  
Therefore, it is necessary to optimize the angle and distance of the 
surface light source illuminating at the visual window[20,21]. 

The long strip LEDs with blue (450-480 nm), white, red 
(650-700 nm), green (555-570 nm) and yellow (585 nm) 
wavelengths were chosen and verified in the illuminating 
experiments.  The images of a grain sample irradiated by different 
wavelength light sources were captured, as shown in Figure 3.  It 
can be seen that under the illumination of blue, red, green and 
yellow light sources, broken grains and intact grains cannot be well 
distinguished.  The contrast between broken and intact grains is 
better under white light because broken grains are white, and the 
average contrast can be relatively good by using white light.  

The shape size of the LED is 60 mm×15 mm, the luminous 
surface size is 37 mm×10 mm, the rated voltage is 12 V, the 
luminous flux is 200 lumens, the color rendering index CRI is 80.  
They were pasted at 20 mm on both sides of the visual window.  

 
1. Sampling box  2. Grains  3. Voltage source   4. PC   5. Camera   6. LED   7. Electromagnet  8. Choke plate 

Figure 3  Light illumination and installation 
 

2.4  Software 
The camera operation parameters were adjusted in order to 

capture images of good quality.  The lens was focused and the 
gain was adjusted to ensure objects could be easily distinguished 
from the background.  The color images had a 10-bit depth for the 
components.  The data were stored in a JPEG format and 
transferred to the computer.  

On the LabVIEW platform, image capturing, enhancement, 
segmentation and classification of connected particles were 
processed, and the flow diagram as shown in Figure 4.  The 
sampling box conducted two actions of sampling and discarding 
within 5 s, and the capturing period of the camera was set to 5 s.  
In every 5 s the grains were collected and discarded once, and an 

image was captured and processed.  The gray image was extracted 
through the Green channel signal of the color image.  A super rice 
grain occupies about 60×60 (pixels) image area, and the window 
size of the local threshold was set to 60×60 (pixels).  The colorful 
images of kernels were extracted by mask method, and the number 
of extracted kernels was counted and stored as N.  The color 
spectrum of each kernel was calculated, and the distances between 
the kernel spectrum and the spectrums in the “broken/whole kernel 
monitoring model” were calculated.  The kernel was classified as 
broken or whole kernels depending on the calculated distances.  
After classifying all the connected particles in an image, the grain 
breakage rate was obtained. 
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Figure 4  Flow diagram of the software 

 

2.5  Recognition model and validation 
Based on the HSL color space, a “broken/whole kernel 

recognition model” was established.  In HSL color space, H is the 
hue, which specifies the base color in a certain area; S is the 
saturation, which specifies the brightness of color; L is the 
luminance, which specifies brightness relative to white.  Color 
spectrum classification is usually divided into two steps: color 
spectrum learning and matching.  In the color spectrum learning 
stage, the learning algorithm quantifies the color information of the 
kernel image, generates the color feature vector, the so-called 
“color spectrum”.  The file composed of different kinds of image's 
color spectrum is the “color feature model”.  In the color spectrum 
matching stage, the algorithm compares the color feature vectors of 
the template in the model and the kernel image to be classified, 
calculates the Manhattan Distance between them, finally, a value is 
rated representing the difference between 0 and 1000, in which 0 
means no similarity between the chromatograms, and 1000 means 
perfect matching. 

Two steps of “color spectrum training-verification” were used 
to recognize the whole and broken kernel.  

The first step was “color spectrum training” according to the 
training image set.  223 kernel images were selected, in which 
thirty kernels were classified and marked as “broken” artificially, 
and the rest were “whole”.  The color spectrum of each image was 
calculated to form a spectrum file, which is named as “the 
broken/whole kernel monitoring model”. 

The second step was to collect some images as a test set to 
verify the accuracy of the kernel monitoring model.  In the 
laboratory, the “whole and broken” mixtures were filled into the 
sampling box and images were captured.  Artificial and machine 
vision methods were used to identify the number of connected 
domains stored as N (about 230 in an image), and classes labeled as 

broken or whole.  The number of broken grains Ba (artificial) and 
Bm (by machine vision) were counted.  As shown in Figure 5, a 
grabbed image is in the left, and the three kernel images of 
connected domains segmented from the grabbed image are in the 
right.  The three kernel images were classified as “broken kernel” 
both artificially and by machine vision, which meant the three 
kernel images were classified correctly.  The machine recognized 
the whole grain as broken, or the broken grain as a whole, which 
were considered to be wrong, and the number of errors were 
counted and stored as Nw.  After the recognition of all connected 
components, the recognition error of the machine vision algorithm 
was calculated and the monitoring accuracy of the breakage rate 
was calculated by, 

100%w
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100%aB
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α = ×                     (2) 
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1 100%α βγ
α
−
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where, N is the number of connected domains in a grabbed image; 
ηr is the recognition error of the machine vision algorithm; α is the 
breakage rate calculated artificially; β is the breakage rate 
calculated by the algorithm; γ is the monitoring accuracy of the 
breakage rate; Nw is the number of recognition errors with machine 
vision; Ba is the number of broken grains classified artificially; Bm 
is the number of broken grains classified by machine vision. 

The above process was repeated ten times and about 2300 
connected domains were classified artificially and by machine 
vision, and the recognition accuracy and monitoring accuracy were 
validated. 

 
Figure 5  Grabbed image and kernel images (partly) 

3  Results and discussion 
A total of 232 kernel images were segmented from the grabbed 

image in Figure 5.  The kernels in the connected domains could be 
clearly seen and identified (kernels in the middle of the rectangular 
images), as shown in Figure 6.  It took 5-6 min to identify all the 
kernels in a grabbed image artificially, while about 3 s to recognize 
the kernels by machine vision.  Parts of the results were shown in 
Table 1 in which “1” represents a whole kernel and “0” a broken 
one.  Comparing the classification results of 232 kernel images 
artificially and by machine vision, seven were classified incorrectly, 
225 were classified correctly, and the recognition accuracy of the 
machine vision algorithm was 97.0%.  Figure 6 shows 22 kernel 
images, and the corresponding results of artificial and machine 
vision were listed in Table 1.  These 22 machine vision 
classifications are all correct. 
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Figure 6   Segmented kernel images (partly) 

 

Table 1  Comparison results of classification artificially and 
by machine vision (partly) 

No. Artificial Machine Right? No. Artificial Machine Right?

1 1 1 yes 12 0 0 yes 

2 1 1 yes 13 1 1 yes 

3 1 1 yes 14 1 1 yes 

4 1 1 yes 15 1 1 yes 

5 1 1 yes 16 1 1 yes 

6 1 1 yes 17 1 1 yes 

7 1 1 yes 18 1 1 yes 

8 0 0 yes 19 1 1 yes 

9 1 1 yes 20 1 1 yes 

10 1 1 yes 21 1 1 yes 

11 1 1 yes 22 0 0 yes 
 

In order to verify the accuracy of the algorithm ten images 
were captured, and the recognition results of Machine-Vision were 
compared with the actual artificial results, and the error of machine 
vision recognition ηm was calculated, as shown in Table 2.  The 
results of artificial recognitions were taken as the true values, and 
the number of error classifications by machine vision were counted 
and stored.  Errors were divided into two groups: one was to 
misidentify a broken kernel as a whole one, the other a whole 
kernel as a broken one.  Table 2 shows that the recognition error 
of each image was less than 4% for the breakage rate from 6% to 
14%, which is to say that the recognition accuracy is no less than 
96%. 

Table 2  Verification of recognition accuracy 

Artificial Error number Recognition error Monitoring breakage
No. 

B W B -> W W -> B % AV DV 

1 21 225 2 0 0.81 8.54 7.72 

2 18 213 5 1 2.60 7.79 6.06 

3 33 205 2 4 2.52 13.87 14.71 

4 24 200 3 5 3.57 10.71 11.61 

5 17 215 0 7 3.02 7.33 10.34 

6 20 205 4 4 3.56 8.89 8.89 

7 27 204 3 5 3.46 11.69 12.55 

8 23 190 2 2 1.88 10.80 10.80 

9 16 219 1 3 1.70 6.81 7.66 

10 22 199 4 3 3.17 9.95 9.50 

Note: B-Broken kernel; W-Whole kernel; AV- Artificial Value; DV- Detection 
Value. 

 

Furthermore, the monitoring accuracy of the breakage rate was 
verified.  The breakage rates by artificial and machine vision 
methods were compared, and monitoring accuracy of the breakage 
rate was obtained, as shown in Figure 7.  It can be seen from 
Figure 7 that the breakage rate obtained by machine vision has a 
good trend correlation with the true value of artificial recognition. 

 
Figure 7  Results of monitoring accuracy 

4  Conclusions  

A real-time monitoring device for the rice kernel breakage rate 
based on machine vision was developed, including a sampling box, 
light source, camera, image processing and software.  The 
sampling box was installed at the grain outlet in the grain bin, 
where grain samples were collected in real-time and periodically.  
The camera fixed inside the sampling box grabbed the images of 
the grains.  The image processing algorithm extracted the color 
spectrums of kernel images in HSL space to identify the broken 
and whole kernels, and the breakage rate was calculated.  The 
recognition error was less than 4% for the breakage rate from 6% to 
14%, and the monitoring value of the breakage rate has a good 
trend correlation with the artificial value. 
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