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Abstract: Nature-inspired algorithms have been developed with biological mimicking.  Machine learning algorithms from 

artificial neurons and artificial neural networks have been developed to mimic the human brain with synthetic neurons.  This 

research can be traced back to the 1940s and has been expanded to agri-food problem solving in the last three decades.   Now, 

the research and applications have entered the stage of deep learning with more layers and neurons that have complex 

connections to extract deep features of the target.  In this paper, the developments of artificial neural networks and deep 

learning algorithms are presented and discussed in conjunction with their biological connections for agri-food applications.  

The related independent studies previously conducted by the author are summarized with the newly conducted being presented.  

At the same time, the algorithms motivated by recent bionics studies are compared and discussed for their potentials for 

agri-food production. 
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1  Introduction

 

Agriculture is the source of food.  A supply chain is formed 

from agriculture to food to become increasingly important to the 

world with diminishing resources and ever-increasing population.  

To tackle the issues to ensure global food security, it is necessary to 

develop and apply advanced technologies such as artificial 

intelligence (AI) and nature-inspired computing in agricultural and 

food engineering and sciences.  Nature-inspired computing 

associated algorithms have great potential to renovate the 

agriculture and food industry.  

In the past, especially in the last decade, various new 

nature-inspired systems have been developed through the studies of 

nature-inspired algorithms with biological mimicking that have had 

further advances for bionics engineering[1-4].  In AI, machine 

learning (ML) algorithms from artificial neural networks (ANNs) 

have been developed to mimic the human brain with synthetic 

neurons[5].  The development of ANNs can be traced back to the 

1940s and ANNs have been widely studied and applied to solve 

problems in various areas[6-11].  In the last thirty years, ANNs and 

other associated soft computing methods from ML have been 

expanded to solve problems in agriculture[12-14].  In recent years, 

research and applications of ML have entered the stage of deep 

learning (DL) with complex connections through multiple layers 

from and to various neurons[15,16].  DL algorithms are used to 

extract deep features of the target with high accuracy and robust 

system performance.  Applications of DL in agriculture have 

appeared recently[17-22].  In the meantime, by being motivated 

from recent advanced bionics studies[23], a number of 
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nature-inspired algorithms have been developed, such as the krill 

herd (KH) algorithm[24], the artificial root foraging optimization 

(ARFO) algorithm[25] and a hybrid bionic algorithm for solving the 

problems of parametric optimization[26].  With the development of 

the algorithms, implementation of them is supported by the 

platforms to intend for simple and quick use without spending time 

for implementing the algorithms from scratch[27,28]. 

In this study, the development of ML algorithms from ANNs 

to DL is presented, summarized and discussed in conjunction with 

their biological connections for agricultural applications.  In the 

meantime, the algorithms motivated by recent bionics studies are 

compared and discussed for their potentials for agriculture. 

2  Machine learning and artificial intelligence 

ML used to be not strictly categorized as a branch in “classic” 

AI.  With the appearance of DL[15], especially the success of 

AlphaGo with deep neural networks[16], ML, including DL, 

becomes an overwhelming branch of AI.  In contrast to the natural 

intelligence of humans and other animals, AI provides intelligence 

shown by machines or computerized systems with the functions of 

language and vision.  AI, as a scientific discipline, began to 

develop in the 1950s as Alan Turing proposed a test called “The 

Imitation Game”[29].  After twenty years Terry Winogard first 

operationalized Turing’s intelligent machine by creating a blocks 

world with a natural language understanding computer program, 

SHRDLU[30].  Experienced several waves of optimism and 

disappointment with “spring” and “winter”, AI finally started a new 

age with ML in the 1980s while before ML, all AI systems worked 

with hand-designed rules, i.e. man-made rules, which was hard to 

anticipate all possibilities to adapt to new situations in an assumed 

closed world.  ML develops and uses statistical techniques with 

the methods of pattern recognition and computational learning 

theory to allow computerized systems to be able to “learn”, e.g. the 

ability to progressively improve the system performance in solving 



2   July, 2020                          Int J Agric & Biol Eng      Open Access at https://www.ijabe.org                           Vol. 13 No.4 

a specific problem with data without being explicitly modeled or 

programmed[31, 32].  

3  Artificial neural networks and soft computing 

Obviously, compared with hand-designed rule AI systems, ML 

offers an “open-world” scheme to design and develop 

new-generation AI systems.  The ideas of the open world with 

learning ability were motivated biologically by human brains.  

With this motivation, ML was developed into the nature-inspired 

paradigms or algorithms represented by ANNs. 

The development of ANNs started designing the artificial 

neuron to mimic the characteristics of the biological neuron.  The 

human nervous system is built of cells called neurons.  Figure 1 

shows the structure of a pair of typical biological neurons.  In the 

structure, dendrites extend from the cell body of one neuron to the 

cell body of the other neuron and other neurons, where they 

neurons receive signals through synapse at the connection point.  

On the receiving side of the synapse, these inputs are conducted to 

the cell body, where the inputs are summed, some of which are 

tending to excite the cell while others to inhibit it to fire.  When 

the cumulative excitation in the cell body exceeds a threshold, the 

cell fires and sends a signal down the axon to other neurons.  

 
Figure 1  Biological neuron[33] 

 

Of course, the description above is just the basic function of 

biological neurons.  The real neurons work with many 

complexities and exceptions.  ANNs only simplifies and models 

the basic functions.  Figure 2 shows the structure and calculation 

of the artificial neuron to mimic the first-order characteristic of the 

biological neuron.  In the artificial neuron a set of inputs, x1, x2, ···, 

xn, are applied, each of which represents the output of another 

neuron.  Then, each of the inputs, xi is multiplied by its 

corresponding weight, wi, which is analogous to a synaptic strength, 

and all the multiplications i.e. the weighted inputs, wi*xi, are 

summed to determine the activation level of the neuron.  With the 

weighted sum the output of the neuron, z, is produced by an 

activation function.  The function can be a simple linear threshold 

function.  In order to more accurately simulate the nonlinear 

transfer characteristics of the biological neuron a number of 

nonlinear activation functions were used for artificial neurons.  

Among them the sigmoidal function has been mostly used, which is 

expressed as: 
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Figure 2  Artificial neuron 

A group of artificial neurons are connected in a way to mimic 

the behavior of biological neurons in the human brain with the web 

of connectivity and interactivity, which formulates so-called 

artificial neural network (ANN).  There are different ANNs with 

different connectivity of neurons.  Figure 3 shows feedforward, 

recurrent and feedback, fully connected, auto-associative and 

hetero associative ANNs.  Among them, the feedforward ANN is 

the most widely used in pattern recognition.  In 1986 a series of 

results about backpropagation (BP) training algorithm for 

multilayer feedforward ANN was published[34,35].  In 1989 the 

multilayer feedforward ANN with one hidden layer was proven as 

the universal approximator for any continuous function[36,37].  

These works lead to a wave of machine learning based on statistical 

models.  Studies indicated that the BP algorithm could train a 

feedforward ANN model to learn from a quite amount of data 

samples to extrapolate or predict unknown events.  People found 

that this statistics-based machine learning method has a lot of 

advantages over the man-made rule-based systems. 

 
a. Feedforward b. Recurrent and feedback c. Fully connected 

 
d. Auto associative  e. Hetero associative 

 

Figure 3  Typical ANNs 
 

The BP algorithm is a supervised learning algorithm.  That is 

that the net optimization is based on the known desired output.  

However, in reality, the desired output is often unknown and the 

system optimization is based on self-organizing.  The training 

algorithms in this category without known desired output are 

unsupervised learning algorithms, which are more and more 

developed and used although in 1982 Kohonen already established 

the self-organizing feature mapping network[38].   

With the success of the BP neural networks, radial basis 

function networks and support vector machine (SVM) appeared to 

be developed and used widely with great success as well[39,40].  

Soft computing is a computational approach to learning and 

machine intelligence[41].  It differs from conventional (hard) 

computing in that it is tolerant of imprecision, uncertainty, partial 

truth, and approximation.  

In the 1980s various rule-based expert systems were developed 

to bring up a wave of AI research and development.  Examples 

are the expert systems for crop fertilization and economic 

forecasting method selection[42].  In the early 1990s, Kohonon 

self-organizing feature mapping network was originally developed 

and applied for unsupervised ultrasonic signal classification for 

beef grading[43] and accordingly a counter propagation network to 

model a particleboard manufacturing process[44,45].  A Ph.D. 

research developed multi-layer feedforward neural networks with 

backpropagation training algorithm to identify the multiple input 

and multiple output relationship of a snack food frying process unit 

operation and recurrent neural network with backpropagation 

through time training algorithm to characterize the dynamics 
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between the inputs and outputs of the unit operation, and based on 

modeling the neural network process models were inversed through 

numerical optimization to design and implement model predictive 

controllers to handle the nonlinearity and input-output time lags of 

the process[46-50].  Figure 4 shows the closed loop of neural 

network modeling and control for the snack food frying process 

unit operation.  In the late 1990s for meat quality evaluation 

wavelet textural features were developed for quantitative ultrasonic 

elastographic image analysis[49,51].  With the wavelet textural 

features multilayer feedforward neural networks were developed 

through investigating the efficiency of the training processes and 

the generalization of the networks using the gradient descent and 

Levenberg-Marquardt optimization algorithms in backpropagation 

and weight-decay was added in the Levenberg-Marquardt 

backpropagation to improve the generation of the neural network 

models[49,52].  In the late 2000s, all fundamental and associated 

ANN architectures and training algorithms were reviewed and the 

further ANN development related to support vector machine (SVM) 

was discussed in conjunction with applications in food science and 

engineering, soil and water relationship for crop management, and 

decision support for precision agriculture[12].  Then, ANNs were 

put into consideration as the major force of soft computing to 

emulate the human mind along with fuzzy logic, genetic algorithms, 

Bayesian inference, and decision tree[13].  In 2013 a group of 

scientists discussed challenges and issues in conducting 

agroecological studies from a statistical point of view, including 

neural networks[53]. 

 
y – process output vector; ŷ – one-step ahead or multi-step ahead process output  

prediction vector; y
s
 – process output reference vector; û – inversed process 

input vector from controller 

Figure 4  Closed loop of neural network modeling and control for 

the snack food frying process unit operation 
 

In recent years, a study was conceived and initialized a study 

using machine learning algorithms of naive Bayes, random forest 

and SVM to assess soybean injury from dicamba, an herbicide used 

to control broadleaf weeds in crop fields, through hyperspectral 

imaging[54].  Studies were conducted using machine learning 

algorithms of K-nearest neighbor, random forest, and a genetic 

algorithm coupled with an SVM to create a spectral library to 

enhance crop classification and growth status monitoring[55], using 

K-nearest neighbor and SVM for classification of broilers to 

analyze their behaviors[56], and using SVM classification of 

unmanned aerial vehicle (UAV) color images to monitor cotton 

budding[57]. 

4  Deep learning 

ANNs before the 2000s can be tentatively categorized as 

shallow learning in machine learning.  Then, the most successful 

ANNs are the ones with the architecture of multilayer feedforward 

and the supervised training algorithms of BP.  In 2006 Hinton and 

Salakhutdinov started the concepts of DL by illustrating that the 

ANNs with many hidden layers have strong ability of feature 

learning and the difficulty of deep ANNs’ training can be overcome 

by layer-wise pre-training[15].  Although the previous ANNs 

mostly succeeded with supervised training, the layer-wise 

pre-training of Hinton and Salakhutdinov’s work was conducted 

through unsupervised learning.  However, DL did not gain its 

popularity until AlphaGo was announced[16] and beat a number of 

top Go players in the world.  From shallow ANNs to deep ANNs 

the network structure becomes much more complicated with a lot 

of more layers and neurons (Figure 5).  Also, deep ANNs provide 

their ability to learn data representations mostly in an unsupervised 

manner and generalize to unseen data samples using hierarchical 

representations.  Deep ANNs are leading another wave of 

machine learning to advance AI technology. 

 
a. Shallow 

 
b. Deep 

Figure 5  ANN network structure 
 

In the past few years, DL has been rapidly studied, developed 

and applied[58].  There are a number of DL models such as Deep 

Belief Network[59], Convolutional Neural Network (CNN)[60], and 

Stacked Autoencoder[61].  CNNs have transformation invariance in 

translation, angle of view, size, or illuminance so that they are 

widely used in pattern recognition and image analysis.  CNNs are 

biologically inspired variants of multilayer perceptrons.  They are 

designed to emulate the behavior of the visual cortex.  The CNN 

models mitigate the challenges posed by the multilayer feedforward 

architecture by exploiting the strong spatially local correlation 

present in natural targets and images.   

With these characteristics, CNNs are the most widely used 

deep ANNs so far. LeCun et al. (1989) first proposed a CNN[62].  

This CNN was improved for hand-writing character 

recognition[63,64].   Until the appearance of AlexNet[55], deep 

CNNs began rapid development in theoretical studies and practical 

applications.  It is noted that this CNN uses a new activation 

function to reduce the computation, speed up training convergence 

and mitigate overfitting[65]: 

ReLU(x) = max(0, x)              (2) 
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where, ReLU stands for rectified linear unit and its derivative is the 

sign function: 

1,  if 0
( )

0,  otherwise

x
ReLU x


  


             (3) 

AlexNet was modified and improved with ZFNet[66] and 

GoogLeNet[67], VGG[68], residual network[69] and their variants 

advanced greatly deep CNN techniques.  Currently, the studies are 

being conducted to improve deep CNNs and optimize their training 

processes in the convolution layer, pooling layer, activation 

function, loss function, network architecture and data regularization 

with the structure of a typical CNN as shown in Figure 6. 

 
Figure 6  Structure of a CNN, consisting of convolutional, pooling, 

and fully-connected layers[70] 
 

In recent years more and more journal articles on DL have 

been published.  Figure 7 shows the journal publications in the 

world on DL up to 2015.  In 2017 AlphaGo Zero was 

announced[71] by advancing AlphaGo by learning from scratch to 

totally beat AlphaGo which strongly depends on prior human 

knowledge, which preludes a new wave of deep learning research, 

development and applications.  

 
a. Deep learning   

 
b. Deep learning (cited publications) 

Source: US Office of Science and Technology Policy/White House 

Figure 7  (a) Journal articles mentioning “deep learning” or “deep 

neural network” by nation; (b) Journal articles cited at least once, 

mentioning “deep learning” or “deep neural network”, by countries 

DL requires massive computation.  The web network 

structures of deep ANNs need a graphic processing unit (GPU) 

specialized for high-performance computing.  With the rapid 

development of DL and AI, a number of GPU-based DL computing 

frameworks have been created for high-performance DL system 

computing and operation.  The examples include TensorFlow 

(Google), Theano (Université de Montréal), PyTorch (Facebook), 

Torch (New York University/Facebook) and Caffe (University of 

California, Berkeley).  The tensor processing unit (TPU) is a chip 

designed by Google for machine learning workloads.  Compared 

to GPU TPU has faster speed and much more memory.  Actually, 

TPU, GPU and even CPU all can be used for deep learning.  

However, which DL models fit each of TPU, GPU and CPU, 

respectively, is an issue to consider.  Wang et al. (2019)[72] 

designed a type of software named ParaDnn for benchmark testing 

of DL parametrization to help determine TPU, GPU, or CPU for 

different DL models. 

The success of DL is built on a great amount of data and the 

state-of-the-art supercomputing power allows training of scalable 

large neural networks for better performance with more data than 

shallow ANNs in ML that will stay with more data.  However, the 

amount of data in reality often could not match the algorithm to be 

successful.  In the case of limited data more data have to be 

created by augmenting the limited data, for example, turn, shift, 

scale, rotate and cut an image.  Data augmentation can be done 

offline for relatively small data sets and online dynamically in the 

computing program for relatively large data sets. 

With the development of ML new models have been developed 

to improve and enhance general ML and DL training and analysis.  

Examples are the general adversarial network (GAN)[73], deep 

transfer learning[74], and AutoML[75].  

DL has been widely developed and applied in agriculture to 

expect the improved performance of monitoring, estimation and 

analysis.  Various DL architectures and models have been used in 

agriculture and CNN is dominated in most of the research and 

applications[19,20,76].  

Deep CNN was tested for classifying the images of corn, 

cotton and soybean leaves collected in the fields.  Nine leaves of 

each crop were collected from the fields and half of them were kept 

in coolers and half were left in the lab room, respectively, within  

1 d after the field collection and the images were taken with a 

portable digital camera with the time within 24 h at 15 m, 1 h, 2 h, 

3 h, 4 h, 5 h, 6 h, and 24 h, which generated 144 images of each 

crop.  Figure 8 shows two representative leaf images of each crop 

over the time within 24 h.  The purpose of the test was to classify 

the leaves regardless of the time during 24 h.  In the project, a 

CNN was created (Figure 9 and Table 1) using TensorFlow in a 

Python NumPy program (NumPy_CNN.py calls 

TensorFlow_leaves.py) to conduct leaf classification.  With data 

augmentation, each crop was doubled with the images, half for 

training and a half for testing of the CNN network.  Figure 10 

illustrates the implementation of the CNN for leaf classification.  

Table 2 is the confusion matrix of CNN testing results for leaf 

classification, which indicates that the CNN can classify the leaves 

of the three crops regardless of the time during 24 h when the vigor 

of the leaves decayed in general but the model still can be adjusted 

to further improve the classification, which may indicate that 

straight use of CNN might not be suitable for this problem, and a 

more suitable DL scheme may be needed.  At present CNN almost 

becomes the synonym of DL for new people in this field.  A lot of 

applications claim the use of DL to simply apply CNN.  However, 
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the straight use of CNN often cannot achieve what expected from 

DL for a lot of problems.  When solving a problem, the specific 

characteristics of the problem should be carefully identified and 

analyzed.  On this basis, a “use-inspired” DL approach can be 

developed to seek a most suitable method and understanding in DL 

by situating the research in a domain of application to 

simultaneously inform progress in DL and solve problems in 

particular use cases.  This is what this research doing to advance 

the DL research to solve this specific problem and other similar 

problems at the same time to not only classify the leaves regardless 

of the time but also further detect the change of the leaves with 

time with deep feature extraction to formulate the time series of the 

leaf images. 

Recently CNNs were evaluated for cage-free floor egg 

detection[77].  This study developed vision-based floor-egg 

detectors using three variants of CNN, single shot detector, faster 

region-based CNN (faster R-CNN), and region-based fully 

convolutional network (R-FCN), which have been widely used for 

object detection and recognition[78,79], and the three detectors were 

evaluated their performance on floor egg detection under simulated 

cage-free environments. 
 

Table 1  CNN architecture for leaf classification 

Layer Kernel Size Output 

Input - 420×420×3 

Resize 128×128×3 128×128×3 

Conv 1 3×3×32 128×128×32 

Pool 1 2×2×1 64×64×32 

Relu 1 - 64×64×32 

Conv 2 3×3×32 64×64×32 

Pool 2 2×2×1 32×32×32 

Relu 2 - 32×32×32 

Conv 3 3×3×64 32×32×64 

Pool 3 2×2×1 16×16×64 

Relu 3 - 16×16×64 

Flat 1 - 1×1×16384 

Fc 1 1×1×256 1×1×256 

Relu 4 - 1×1×256 

Fc 2 1×1×6 1×1×6 

Softmax - 1×1×6 
 

 
Figure 8  Two representative leaf images of each crop over the time within the 24 h 

 
Figure 9  CNN for leaf classification 
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Figure 10  Implementation of the CNN for leaf classification 

 

Table 2  Confusion matrix of CNN testing for leaf 

classification 

Actual 

Classified 

Corn Cotton Soybean 

Corn 100 (69%) 12 (8%) 32 (22%) 

Cotton 40 (28%) 92 (64%) 12 (8%) 

Soybean 4 (3%) 40 (28%) 100 (69%) 
 

5  Bionics motivated algorithms 

Bionics is a scientific discipline that investigates to apply 

nature-inspired biological methods and systems to the study and 

design of advanced technology and engineering systems.  The 

word, Bionics, was coined by Dr. Jack E. Steele in 1958 with 

meaning “like life” when he was working at the Aeronautics 

Division House at Wright-Patterson Air Force Base in Dayton, 

Ohio.  Bionics engineering is to develop and implement the 

advanced technology and engineering systems from bionics studies.  

Classic examples of bionics in engineering include sonar, radar, 

and ultrasound imaging imitating animal echolocation.  

With the development of bionics more and more algorithms 

have been developed for complex computational applications by 

getting ideas from observing how nature behaves to solve complex 

problems.  Although compared to ML the research on designing 

and developing nature-inspired algorithms is still very young, there 

are some successful nature inspired computing and complex 

systems for understanding and designing more such systems with 

novelty in AI.  Nature-inspired algorithms are principal among 

metaheuristic algorithms that are found to be more powerful than 

the conventional methods that are based on formal logic or 

mathematical programming[80,81]. 

Ganomi and Alavi (2012)[82] illustrated that a group of 

algorithms inspired by biology have been developed and are 

divided into three main categories[83]: 

(1) Evolutionary algorithms, 

(2) Swarm intelligence, and 

(3) Bacterial foraging algorithms. 

The evolutionary algorithms are inspired by the genetic 

evolution process.  Among them, a genetic algorithm (GA)[84], as 

mentioned above as a soft computing technique, is the most used 

one.  Others include genetic programming (GP)[85], evolutionary 

strategy (ES)[86] and differential evolution (DE)[87].  These 

population-based stochastic search algorithms work with 

best-to-survive criteria to optimize.  The evolutionary algorithms 

have been remarkably improved over the last decades.  Examples 

are Stud genetic algorithm (SGA)[88] and multi-stage genetic 

programming[82] for improved GP non-linear system modeling.  In 

2008, Simon[89] has proposed a new evolutionary algorithm, 

namely biogeography-based optimization (BBO).  The BBO 

algorithm is used for global recombination and uniform crossover 

which are inspired by the GA literature. 

In swarm intelligence particle swarm optimization (PSO)[90] 

and ant colony optimization (ACO)[91] are well known.  These 

algorithms are based on the simulation of the collective behavior of 

animals.   PSO is a population-based method inspired by the 

social behavior of bird flocking or fish schooling.  The ACO 

algorithm is inspired by the collective foraging behavior of ants. 

The bacterial foraging algorithms emulate the bacterial 

foraging behavior for new bio-inspired optimization 

approaches[83,92].  Examples are computing systems of microbial 

interactions and communications (COSMIC)[93] and rule-based 

bacterial modeling (RUBAM)[94]. 

However, these nature-inspired metaheuristic methods have the 

problem of the parameter adaptation.  Valdez[3] surveyed mainly 

the PSO, Gravitational Search (GS), and ACO algorithms for 

modifications using fuzzy logic to solve this problem and obtain 

better results than the original methods.  A study was conducted 

to use a multi-layer perceptron and PSO in modeling and predicting 

the germination rate of two common bean cultivars as a function of 

distinct temperatures[95]. 

Other bio-inspired algorithms include, but not limited to, bees 

algorithm[96], firefly algorithm[1,80,97], krill herd algorithm[24], 

artificial root foraging optimization (ARFO) algorithm[25]. 

6 Agricultural perspectives of the discussed 

algorithms 

ANNs and associated soft computing techniques have been 

widely used in crop production management, irrigation 

management, soil analysis, precision agricultural system integration 

and pesticide application control[13].  Deep learning has been 
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developed for agriculture uses, especially for identification of 

weeds, land cover classification, plant recognition, fruits counting 

and crop type classification[20].  Metaheuristic algorithms have 

been developed for agricultural land use optimization in economic 

crop planning, water resources management, nature conservation in 

the landscape, and multifunctional agricultural landscape using 

genetic algorithms, PSO, ACO, etc.[98].  It can be believed that 

with the requirement to advanced agricultural operations into 

intelligent and automatic smart stages nature-inspired algorithms 

will play more and more important roles for sustainable agri-food 

production. 

However, quite often complicated methods do not necessarily 

work better.  Each application has different characteristics and 

each algorithm has its own limitation no exception of 

naturally-inspired algorithms.  For example, DL is limited in high 

data and computing requirements and poor interpretability.  In 

practice, the selection of data analysis methods should be based on 

the characteristics of data and application.  Confirmation of the 

validity of the results is essential to all methods.  Any research 

that proposes to use naturally-inspired algorithms requires 

sufficient justification for compelling reasons to use these 

algorithms over other methods and conducts a benchmark 

comparison to show naturally-inspired algorithms are better; 

otherwise, this research is only one-sided and biased and hard to 

make the sense in practical application. 

7  Conclusions  

In this study, the research status and applications of 

nature-inspired algorithms, including ML algorithms from ANNs to 

DL and the algorithms motivated by bionics studies, are presented, 

summarized and discussed in conjunction with their biological 

connections for agri-food systems applications.  Within the context, 

with recent progress reports, classic literature are also included and 

analyzed to provide insight into the roots of the technologies to 

capture the intricate nature of the technologies.  

With the coming spring of AI, it can be believed that ML, 

especially DL algorithms, will be greatly studied, developed and 

applied for solving problems in various areas of interests, including 

in agri-food system analysis for decision support.  Agri-food system 

environment and management are dominated by uncertainty with 

complex interactions of various uncontrollable factors.  This paper 

is expected to offer a headstart for scientists and engineers not only to 

use current science-based nature-inspired algorithms but also to 

develop use-inspired algorithms with the problems in agri-food areas 

to deal with those issues conventional approaches cannot solve well.  
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