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Abstract: The disease of banana Fusarium wilt currently threatens banana production areas all over the world.  Rapid and 

large-area monitoring of Fusarium wilt disease is very important for the disease treatment and crop planting adjustments.  The 

objective of this study was to evaluate the performance of supervised classification algorithms such as support vector machine 

(SVM), random forest (RF), and artificial neural network (ANN) algorithms to identify locations that were infested or not 

infested with Fusarium wilt.  An unmanned aerial vehicle (UAV) equipped with a five-band multi-spectral sensor (blue, green, 

red, red-edge and near-infrared bands) was used to capture the multi-spectral imagery.  A total of 139 ground sample-sites 

were surveyed to assess the occurrence of banana Fusarium wilt.  The results showed that the SVM, RF, and ANN algorithms 

exhibited good performance for identifying and mapping banana Fusarium wilt disease in UAV-based multi-spectral imagery.  

The overall accuracies of the SVM, RF, and ANN were 91.4%, 90.0%, and 91.1%, respectively for the pixel-based approach.  

The RF algorithm required significantly less training time than the SVM and ANN algorithms.  The maps generated by the 

SVM, RF, and ANN algorithms showed the areas of occurrence of Fusarium wilt disease were in the range of 5.21-5.75 hm2, 

accounting for 36.3%-40.1% of the total planting area of bananas in the study area.  The results also showed that the inclusion 

of the red-edge band resulted in an increase in the overall accuracy of 2.9%-3.0%.  A simulation of the resolutions of 

satellite-based imagery (i.e., 0.5 m, 1 m, 2 m, and 5 m resolutions) showed that imagery with a spatial resolution higher than 2 

m resulted in good identification accuracy of Fusarium wilt.  The results of this study demonstrate that the RF classifier is well 

suited for the identification and mapping of banana Fusarium wilt disease from UAV-based remote sensing imagery.  The 

results provide guidance for disease treatment and crop planting adjustments. 
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1  Introduction

 

Banana (Musa spp.) is the most popular fruit crop and is  
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widely cultivated in tropical and subtropical climatic regions.  

Fusarium wilt of banana, also called Panama disease, is a serious 

soilborne fungal disease caused by the fungus Fusarium oxysporum 

f. sp. cubense race 4 (Foc 4)[1].  Currently, this disease threatens 

banana production areas worldwide[2].  It is disseminated either 

through infected plant material, contaminated soil, tools, or 

footwear or due to flooding and inappropriate sanitation measures[2].  

The first visible signs of Fusarium wilt are yellowing or splitting of 

the oldest leaves, followed by leaf wilt and buckling, forming a 

‘skirt’ around the pseudostem before falling off[3].  At present, 

chemical treatment of infected plants is often ineffective.  Once a 

diseased plant is found, ‘timely removal’ is the best way to avoid 

the formation of a disease center[4].  Therefore, timely monitoring 

of the occurrence of banana Fusarium wilt disease is very important 

for the disease treatment and crop planting adjustments. 

Traditional ground surveys to collect crop disease data are 

expensive and time-consuming[5].  Remote sensing technology has 

become a feasible means for crop disease detection and assessment 

in the past few decades, including for detecting Fusarium head 

blight and rust infection in wheat[6-10], bacterial leaf blight in 
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rice[11,12], and grey leaf spot in maize[13].  When plants are infected 

with diseases, the leaf water, pigment content and internal structure 

undergo changes, which are reflected in the spectral signature of 

the plants[18].  Many spectral features of vegetation were found in 

the red-edge band that is related to changes in chlorophyll content 

and leaf area index[14-16], and significant changes were observed 

when bananas were infected with Fusarium wilt.  In recent years, 

various lightweight multispectral sensors that include the red-edge 

band (i.e., MicaSense RedEdge MTM) were designed specifically 

for unmanned aerial vehicle (UAV) platforms for vegetation 

monitoring[17].  With the rapid development of UAV technology, 

UAVs have been increasingly used for acquiring imagery to extract 

phenotypic information of crops rapidly due to their advantages 

(i.e., high spatial resolution, ease of operation, high flexibility, and 

acquisition of data on demand)[18-21].  Moreover, scale effects and 

scaling have become one of the most important research topics in 

remote sensing[22].  Different spatial resolution images show 

different landscape characteristics, and data with higher spatial 

resolution usually get more accurate estimates[23].  However, 

seeking very high resolution data is unnecessary and unrealistic in 

the agriculture application at a regional scale as it is expensive and 

difficult to process.  Therefore, it is very important to choose a 

suitable spatial resolution image for agricultural monitoring.  At 

present, studies using remote sensing technology to monitor 

Fusarium wilt of banana are scarce. 

Lu and Weng[24] stated that the success of any image 

classification is not only the use of appropriate imagery but also the 

use of a suitable classification method.  Supervised algorithms are 

widely used because they are more robust than model-based 

approaches[25].  These classifiers can learn the characteristics of 

target classes from training samples and apply this information to 

the unclassified data[26].  The literature shows that a variety of 

supervised classification algorithms such as decision trees (DT), 

k-nearest neighbors (kNN) method, artificial neural networks 

(ANN), support vector machines (SVM), and random forest (RF) 

have been developed and tested for crop monitoring and/or land 

cover classification using remote sensing data[27-32].  Among these 

methods, the SVM, RF, and ANN algorithms are the most popular 

classification algorithms for remote sensing of the Earth’s 

surface[33].  

The objectives of this study are to (i) evaluate the performance 

of the SVM, RF, and ANN classifiers for classifying imagery into 

areas infested or not infested with banana Fusarium wilt, and (ii) 

assess the effect of different resolutions on the identification 

accuracy of banana Fusarium wilt disease to provide a reference for 

large-scale applications of satellite-based data.  The results will 

provide guidance for disease treatment and crop planting 

adjustments. 

2  Materials and methods  

2.1  Study area 

The study area is located in Long’an County, Guangxi 

Province, China (23°7'58.8''N, 107°43'55.2''E) (Figure 1).  It has a 

subtropical monsoon climate, characterized by year-round 

sufficient sunshine and rainfall.  The average rainfall is 1200 mm 

a year and the mean annual temperature is 20.8°C-22.4°C.  The 

soil is a sandy loam with pH 4.1, ammonium N content of     

17.0 mg/kg, available P content of 180.3 mg/kg, available K 

content of 140.8 mg/kg, and organic matter content of 17 g/kg in 

the 0-40 cm soil layer.  The field crops were bananas with the 

variety “Williams B6”.   The banana variety has a leaf number of 

34-36, the plant height is about 2.4-3.0 m, the growth period is 10- 

12 months, and the annual yield is 45 000-60 000 kg/hm2.  The 

farm was developed in September 2015 and the planting distance 

was 2.0 m by 2.6 m (planting density of 130 plants/hm2).  The 

area was harvested for the first time in November 2016.  By 

August 2018 (the time of field investigation in this study), the third 

generation of bananas had appeared in the field.  In the study area, 

nearly 40% of banana plants were infected with Fusarium wilt of 

different severity. 

 
Figure 1  Location of the study area and distribution of ground survey sites 



138   May, 2020                         Int J Agric & Biol Eng      Open Access at https://www.ijabe.org                          Vol. 13 No.3 

 

2.2  Data collection  

In this study, a total of 139 sample plots were surveyed on 7 to 

9 August 2018 to assess the occurrence of banana Fusarium wilt 

disease as ground truth data.  Each plot had at least one banana 

plant.  Figure 1 shows the distribution of ground survey sites.  

The samples were classified into two categories: healthy samples 

(total of 66) and Fusarium wilt diseased samples (total of 73).  

The classification standard adopted in this paper is mainly based on 

the ratio of yellow leaf disease area to total leaf area, which 

accounts for less than 1% is considered healthy, otherwise it is 

considered to be diseased.  Finally, a total of 100 samples were 

randomly selected for calibration and the remaining samples were 

used for validation. 

The acquisition of the multi-spectral imagery was conducted 

using a DJI Phantom 4 quadcopter (DJI Innovations, Shenzhen, 

China) on 7 August 2018.  This UAV was equipped with a five-band 

multi-spectral camera (MicaSense RedEdge MTM, MicaSense, Inc., 

Seattle, WA, USA).  The camera has a spectral range of 400 to 

900 nm with a 47.2° field of view.  It has five spectral bands: 

blue, green, red, RE, and near-infrared (NIR).  The spectral bands 

have a ground sampling distance (GSD) of 8 cm at a flying height 

of 120 m above ground (Table 1), which were the conditions in this 

study.  The sensor has a global shutter and all bands are aligned; 

the images have 12-bit radiometric resolution and the image 

capture rate is 1 Hz.  In this study, the flight plan ensured 

cross-track and along-track overlap of 80% and a calibrated 

reflectance panel was imaged directly before and after each flight 

and used for reflectance calibration using the empirical line method.  
 

Table 1  Characteristics of the MicaSense RedEdge MTM 

multi-spectral camera 

Spectral band Center wavelength/nm Bandwidth/nm 

Blue 475 20 

Green 560 20 

Red 668 10 

Red-edge 717 10 

Near-infrared 840 40 
 

2.3  Classification algorithms 

In this study, the RF, ANN, and SVM classifiers were used to 

identify and map banana fusarium wilt disease.  

2.3.1  Support Vector Machine (SVM) 

SVM is a non-parametric supervised statistical learning 

classifier and has become increasingly popular for remote sensing 

classification[34-36].  The SVM algorithm was developed by 

Vapnik[37].  The objective is to try to find the optimal hyperplane 

in the n-dimensional classification space with the largest difference 

between the classes[33].  Polynomial and radial basis function 

(RBF) kernels are the most commonly used functions for 

classification[38-40].  A number of studies have found that the RBF 

is superior to the polynomial kernel for the classification of remote 

sensing data[40-42].  There are two parameters that need to be set 

when using an SVM classifier with the RBF kernel, i.e., the cost 

function (C) and the kernel width parameter (γ)[43].  The C 

parameter trades off the misclassification of training examples 

against the simplicity of the decision surface[44].  The γ affects the 

smoothness of the class-dividing hyperplane[29].  A high C value 

may lead to over-fitting, whereas an increase in the γ value will 

affect the shape of the class-dividing hyperplane, which may affect 

the classification accuracy results[29].  

2.3.2  Random forest (RF) 

RF is one of the most popular DT-based ensemble models and  

was first proposed by Breiman[45].  It can be described as an 

ensemble of classification trees, where each tree votes on the class 

assigned to a given sample, with the most frequent answer winning 

the vote[46].  RF is an ensemble of many independent individual 

classification and regression trees (CART) and is defined as[47]: 

{h(x, θk), k=1,2,…i…} 

where, h represents the RF classifier, x is the input variable, and {θk} 

represents the independently identically distributed random 

predictor variables, which are used for generating each CART 

tree[45].  The final response of the RF is calculated based on the 

output of all DT.  

Two parameters are required for the RF model, namely, the 

number of predictors that are considered at each fork of the tree 

(mtry) and the number of random trees assembled during model 

building (ntree)[33].  Theoretical and empirical research has 

demonstrated that the classification accuracy is less sensitive to 

ntree than to the mtry parameter[26,48].  It was reported that an 

increase in the values of mtry resulted in a higher predictive 

performance of the model and the attribution of higher importance 

to fewer variables[49].  Therefore, it is necessary to optimize the 

parameters mtry and ntree to maximize the model accuracy[50]. 

The advantages of RF are low computational burden and easy 

to determine which parameters to use[51].  Over-fitting is less of an 

issue than in a single DT and there is no need to prune the trees 

which is a tedious task[52].  Although RF has shown high accuracy 

and ability to model complex interactions among variables, it is a 

‘‘black-box’’ because the individual trees cannot be estimated 

separately[53]. 

2.3.3  Artificial neural networks (ANN) 

An ANN classifier can be described as a parallel computing 

system consisting of an extremely large number of simple 

processors with interconnections[33].  It is a mathematical model 

that is inspired by the structure and functional aspects of biological 

neural networks.  It consists of an interconnected group of 

artificial neurons and processes information using a connectionist 

approach to computation.  The ANN was originally designed as a 

pattern-recognition and data analysis tool that mimics the neural 

storage and analytical operations of the brain.  It has a distinct 

advantage in that it is non-parametric and requires little or no a 

priori knowledge of the distribution model of input data[40].  

Moreover, the ANN fits an arbitrary decision boundary to separate 

the data points and produces high classification accuracy[40,54].  

ANNs have successfully been applied to remote sensing in many 

fields[33,55-57]. 

2.4  Data processing and accuracy assessment 

The classifications of the banana plants infested or not 

infested with Fusarium wilt were performed using the SVM, RF, 

and ANN classifiers with the calibration samples.  In order to 

evaluate the contribution of the inclusion of the red-edge band to 

the identification accuracy of banana Fusarium wilt, two 

classification schemes using the input data with or without the 

red-edge band were used.  In order to assess the classification 

accuracy of images with different spatial resolution, the original  

8 cm resolution UAV imagery was resampled to generate images 

with 0.5 m, 1 m, 2 m, and 5 m resolution.  Image resolution is 

closely related to acquisition costs and these resolutions were 

selected because they were similar to those of mainstream and 

easily accessible satellite imagery products (i.e., 0.5 m resolution 

WorldView series imagery, 1 m resolution GF-2 imagery, 2 m 

resolution GF-6 imagery, 5 m resolution RapidEye imagery) for 

agricultural applications.   

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11021/1102103/Integration-and-operation-of-a-sUAS-based-multi-modal-imaging/10.1117/12.2517022.full#T1
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After training, the validation samples were used for an 

accuracy assessment; a confusion matrix was developed and the 

overall accuracy and the Kappa coefficient were calculated[58,59].  

The overall accuracy is the sum of the correctly classified plots 

divided by the total number of plots.  A Kappa value of 1 

represents a perfect agreement, whereas a value of 0 represents no 

agreement.  The data processing and classifications were 

conducted in ENVI 5.3 (Exelis Visual Information Solutions, Inc., 

Broomfield, CO, USA) and “RandomForest” package[60].  The 

distribution maps of banana Fusarium wilt were created in ArcGIS 

10.2 (ESRI, Inc., Redlands, CA, USA).  

3  Results 

3.1  Accuracy assessment of different classifiers for extracting 

Fusarium wilt disease 

In this study, the verification samples were used to determine 

the classification accuracy of banana Fusarium wilt with different 

classifiers (Table 2).  The results showed that the SVM, RF, and 

ANN classifiers exhibited good performance for identifying 

Fusarium wilt disease in UAV-based multi-spectral imagery.  All 

classifiers achieved comparable overall accuracies, which were 

higher than 90%.  The SVM had the highest accuracy (overall 

accuracy = 91.4% and Kappa coefficient = 0.80), followed by the 

ANN (overall accuracy = 91.1% and Kappa coefficient = 0.79) and 

RF (overall accuracy = 90.0% and Kappa coefficient = 0.77).  

However, the RF algorithm required much less training time.  The 

training times of the SVM and ANN were 11.6 and 2.0 times 

longer, respectively than that of the RF (Table 3).  Overall, the 

comprehensive performance of the RF was superior to those of the 

SVM and ANN for identifying banana Fusarium wilt disease with 

acceptable accuracy.  Furthermore, the performances of the input 

data with and without the red-edge band were compared.  The 

results showed that the inclusion of the red-edge band increased the 

identification accuracy of banana Fusarium wilt in this study.  The 

increases in the overall accuracy were 2.9%, 2.9%, and 3.0% for 

the SVM, RF, and ANN algorithms, respectively. 
 

Table 2  Identification accuracy of banana Fusarium wilt for 

the pixel-based method using the SVM, RF, and ANN 

classifiers 

Classifier 

Red-edge band included Red-edge band excluded Contribution of  

red-edge band  

for overall  

accuracy/% 

Overall 

accuracy/% 

Kappa 

coefficient 

Overall 

accuracy/% 

Kappa 

coefficient 

SVM 91.4 0.80 88.5 0.75 2.9 

RF 90.0 0.77 87.1 0.72 2.9 

ANN 91.1 0.79 88.1 0.73 3.0 
 

Table 3  Computational cost of the use of the SVM, RF, and 

ANN classifiers with the inclusion of the red-edge band 

Classifier Training time 

SVM 10 h and 24 min 

RF 54 min 

ANN 1 h and 50 min 
 

3.2  Simulation of the resolution of satellite-based imagery 

In order to assess the accuracy of images with a different 

spatial resolution for identifying banana Fusarium wilt, the original 

UAV imagery was chosen to resample to generate images with  

0.5 m, 1 m, 2 m, and 5 m resolution.  RF classifier was used 

because it was superior to SVM and ANN classifiers for banana 

Fusarium wilt identification in general.  Table 4 lists the results of 

the identification accuracy of locations of infested or non-infested 

plants using the RF algorithm with different resolution imagery.  

The results showed that the overall accuracy and Kappa coefficient 

decreased with a decrease in the resolution.  When the imagery 

with the red-edge band was used, the overall accuracies for the  

0.5 m, 1 m, and 2 m resolution were 87.0%, 84.7%, and 84.6%, 

respectively and the Kappa coefficients were 0.71, 0.67, and 0.66.  

The overall accuracy and Kappa coefficient were lowest for the   

5 m resolution imagery, with an overall accuracy of 70.6% and a 

Kappa coefficient of 0.41.  The results also showed that the 

inclusion of the red-edge band increased the identification accuracy 

of banana Fusarium wilt for the different resolutions.  The 

increases in the overall accuracy were 1.9%, 1.7%, 1.8%, and 4.7% 

for the 0.5 m, 1 m, 2 m, and 5 m resolution imagery, respectively.  
 

Table 4  Identification accuracy of banana Fusarium wilt 

using the RF classifier for images with different resolutions 

Spatial  

resolution 
/m 

Red-edge band included Red-edge band excluded Contribution of  

red-edge band  

for overall  
accuracy/% 

Overall 
accuracy/% 

Kappa 
coefficient 

Overall 
accuracy/% 

Kappa 
coefficient 

0.5 87.0 0.71 85.1 0.69 1.9 

1 84.7 0.67 83.0 0.63 1.7 

2 84.6 0.66 82.8 0.62 1.8 

5 70.6 0.41 65.9 0.32 4.7 
 

3.3  Mapping the distribution of banana Fusarium wilt  

Based on discriminant models of banana Fusarium wilt 

established by SVM, RF and ANN algorithms in different 

resolutions, the spatial distributions of banana Fusarium wilt 

infected regions in the study area were mapped.  Figure 2 shows 

the maps of the spatial distribution of banana Fusarium wilt 

infected regions using SVM, RF and ANN classifiers with the red 

edge band.  As can be seen in Figure 2, all the maps presented 

similar distributions trend with regard to the occurrence of banana 

Fusarium wilt disease.  The results in Table 5 show the areas of 

the healthy regions and Fusarium wilt infected regions for the input 

data with the red-edge band, the areas of Fusarium wilt disease 

were in the range of 5.21-5.75 hm2, accounting for 36.3%-40.1% of 

the total planting area of bananas in the study area.  Figure 3 

shows the maps of banana Fusarium wilt infected regions obtained 

from imagery with 0.5 m, 1 m, 2 m, and 5 m resolution.  It is 

observed that the maps exhibit the same overall distribution of 

banana plants infected with Fusarium wilt.  However, the maps 

with 0.5, 1, and 2 m resolution (Figures 3a to 3c) show local details 

better than the map with 5 m resolution (Figure 3d). 

 
a. SVM                            b. RF      

 
c. ANN  

Figure 2  Maps of the spatial distribution of banana Fusarium wilt 

infected regions in the study area using SVM, RF and ANN 

classifiers with the inclusion of the red-edge band 
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Table 5  Areas of Fusarium wilt infected regions obtained by 

the SVM, RF and ANN classifiers with the inclusion of the 

red-edge band 

Classifier 
Healthy area 

/hm
2
 

Diseased area 

/hm
2
 

Percentage of diseased  

area/% 

SVM 9.12 5.22 36.4 

RF 8.58 5.75 40.1 

ANN 9.13 5.21 36.3 
 

 
a. RF_0.5 m                        b. RF_1 m   

 
c. RF_2 m                         d. RF_5 m 

 
Figure 3  Maps of the spatial distribution of banana Fusarium wilt 

infected regions in the study area using RF classifier with the 

inclusion of the red-edge band for different resolution images 

4  Discussion 

The results of this study indicated that the SVM, RF, and ANN 

classifiers used on the UAV-based multi-spectral imagery have 

good potential to identify and map banana Fusarium wilt disease.  

All classifiers yielded similar classification results with an overall 

accuracy higher than 90%, but the RF algorithm required less 

training time.  The training time of the SVM and ANN were 11.6 

and 2.0 times longer, respectively than that of the RF.  The high 

computational cost is a bottleneck of SVM applied to large scale 

problems[61].  Some studies have shown that ANNs have a 

reputation for being hard to use and to optimize, which is true of 

most implementations that require the user to set all 

parameters[26,33].  Therefore, the comprehensive performance of 

the RF was superior to those of the SVM and ANN for identifying 

banana Fusarium wilt disease within acceptable accuracy.  Some 

researchers have also demonstrated that the RF requires the setting 

of fewer parameters and is faster to implement than the SVM and 

ANN classifiers[26,33,62,63]. 

We also simulated the most common resolutions of 

satellite-based imagery (such as 0.5 m resolution WorldView series 

imagery, 1 m resolution GF-2 imagery, 2 m resolution GF-6 

imagery, 5 m resolution RapidEye imagery) to assess the effects of 

imagery with different spatial resolution on the identification 

accuracy of banana Fusarium wilt disease.  The results showed 

that imagery with a spatial resolution higher than 2 m had better 

classification accuracy (overall accuracy >80%).  When the 

resolution decreased to 5 m, the classification accuracy decreased 

to 70.6%.  This might be related to the plant spacing of bananas 

(2.0 m by 2.6 m) in the area.  When the resolution is higher than  

2 m, the image pixels can be considered as pure pixels or nearly 

pure pixels, i.e., a single pixel corresponds to a single spectral 

signature.  When the resolution is 5 m, the image pixels are mixed 

pixels, i.e., a single pixel contains several banana plants and has a 

mixture of spectral features.  Therefore, satellite-based imagery 

with a resolution higher than 2 m has good potential for identifying 

and mapping banana Fusarium wilt disease. 

The results showed that the inclusion of the red-edge band 

resulted in 2.9%-3.0% increases in overall accuracy for the 0.08 m 

resolution imagery.  This is attributed to the fact that the leaf 

chlorophyll content of the banana plants decreases significantly as 

the infection of Fusarium wilt progresses[64], and the red-edge 

region is highly sensitive to changes in chlorophyll[16,65].  The 

changes in the red-edge band have been used as an indicator of 

vegetation stress[9].  However, the imagery obtained by the 

MicaSense RedEdge MTM sensor only has five spectral bands, 

which cannot fully reveal the differences in spectral characteristics 

between healthy and diseased plants.  Hyperspectral data should 

be used for further studies on the sensitivity of certain bands to 

Fusarium wilt of bananas.  In addition, differences in the spectral 

characteristic between Fusarium wilt and other yellowing 

phenomena caused by other stresses (i.e., drought stress and 

nutrition deficiency) should also be examined. 

5  Conclusions 

This study evaluated the performance of SVM, RF, and ANN 

classifiers used with UAV-based multi-spectral imagery to identify 

the locations that were infested or not infested with banana 

Fusarium wilt.  The results showed that the SVM, RF, and ANN 

classifiers were well suited to identify and map banana Fusarium 

wilt with UAV-based multi-spectral imagery.  The overall 

accuracies of the SVM, RF, and ANN were 91.4%, 90.0%, and 

91.1%, respectively, for the pixel-based approach.  The RF 

algorithm required far less training time than the SVM and ANN 

algorithms.  The maps generated by the SVM, RF and ANN had 

similar distributions trend with regard to the occurrence of 

Fusarium wilt disease.  The areas of occurrence of Fusarium wilt 

disease were in the range of 5.21-5.75 hm2, accounting for 

36.3%-40.1% of the total planting area of bananas in the study area.  

The results also showed that the inclusion of the red-edge band 

resulted in increases in the overall accuracy of 2.9%-3.0% for the 

0.08 m resolution imagery.  A simulation of the resolutions of 

satellite-based imagery (i.e., 0.5 m, 1 m, 2 m, and 5 m resolutions) 

showed that imagery with a spatial resolution higher than 2 m 

resulted in good identification accuracy of Fusarium wilt.  The 

results of this study indicate that the RF has good potential for 

identifying and mapping banana Fusarium wilt disease from 

UAV-based remote sensing imagery; this provides guidance for 

disease treatment and crop planting adjustment. 
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