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Abstract: Body condition score (BCS) is an important management tool in the modern dairy industry, and one of the basic 

techniques for animal welfare and precision dairy farming.  The objective of this study was to use a vision system to evaluate 

the fat cover on the back of cows and to automatically determine BCS.  A 3D camera was used to capture the depth images of 

the back of cows twice a day as each cow passed beneath the camera.  Through background subtraction, the back area of the 

cow was extracted from the depth image.  The thurl, sacral ligament, hook bone, and pin bone were located via depth image 

analysis and evaluated by calculating their visibility and curvature, and those four anatomical features were used to measure 

fatness.  A dataset containing 4820 depth images of cows with 7 BCS levels was built, among which 952 images were used as 

training data.  Taking four anatomical features as input and BCS as output, decision tree learning, linear regression, and BP 

network were calibrated on the training dataset and tested on the entire dataset.  On average, the BP network model scored 

each cow within 0.25 BCS points compared to their manual scores during the study period.  The measured values of visibility 

and curvature used in this study have strong correlations with BCS and can be used to automatically assess BCS with high 

accuracy.  This study demonstrates that the automatic body condition scoring system has the possibility of being more accurate 

than human scoring. 
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1  Introduction

 

The metabolizable energy stored in fat and muscle is vital to 

maintaining dairy cows.  Body weight alone is not a good 

representative of bodily energy reserves, as the relationship 

between these variables is affected by parity, stage of lactation, 

frame size, gestation, and breed[1-4].  Body condition was defined 

as the ratio of body fat to nonfat components in the body[5].  

Because direct measurements of body adiposity are difficult and 

expensive, multiple body condition score (BCS) evaluation systems 

have been developed to indicate and evaluate the relative amount of 

subcutaneous body fat or energy reserves of a live cow[6]. 

BCS evaluations can be used to determine whether a cow is in  
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the proper condition for each stage of the lactation cycle.  Using 

BCS information, appropriate dietary changes can be made to 

maximize the performance of cows[7].  Cows with unfavorable 

BCS are at high risk of metabolic and other diseases in the 

peripartum period.  At calving, BCS must be sufficient to allow 

maximal milk production and health, but excessive BCS at this 

stage may result in calving difficulties and animal losses[6].  In 

early lactation, BCS is a vital indicator of excessive weight loss, 

which can lead to metabolic disorders and should be avoided[8].  

At dry-off, parturition, and throughout the lactation cycle, BCS 

evaluations can be used to identify cows that are at risk of milk 

fever, mastitis, lameness, and infertility[9]; therefore, BCS is an 

important management tool for maximizing milk production and 

reproductive efficiency[9,10] and even preventing potential disease 

and lameness[6,11]. 

It is estimated that less than 5% of US dairy herd managers 

regularly assign BCS values to their cows[12].  Most dairy farms 

that conduct BCS in the US use a 5-point system[13].  This system 

measures the relative amount of subcutaneous fat in 0.25-point 

increments, where 1 denotes a very thin cow and 5 indicates an 

excessively fat cow[14].  The manual scoring of body condition 

requires experienced personnel with adequate training.  Although 

a well-trained scorer can score one cow in a short amount of time, 

it is time consuming to score all the cows in a large herd on daily 

basis.  Additionally, the perception of fatness and the 
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understanding of the BCS guidelines vary from person to person, 

which causes inconsistencies in data from different scorers. 

The dairy industry and research community have recognized 

the need for a quick and inexpensive but accurate technology with 

which to automatically measure body fat on cows in different 

stages of lactation.  Bewley, et al.[15] explored the possibility of 

developing an automatic BCS system based on 2D digital images.  

A total of 23 points were selected manually from each image to 

analyze the contour and shape of cows.  The study showed that 

the hook angle, posterior hook angle, and tailhead depression were 

significant predictors of BCS.  According to the above method, 

Azzaro, et al.[16] developed an application with which to extract the 

23 anatomical points.  In the study, a shape descriptor based on 

principal component analysis was built and tested.  Validation 

testing showed that the average error of the polynomial model was 

0.31 from the manual scores.  Several other studies have also been 

conducted to automate BCS evaluation based on 2D and thermal 

image processing technology[17-19].  

As three-dimensional (3D) images contain information on the 

depth dimension of the body surface of a cow, they have great 

potential to improve the accuracy of automatic BCS systems.  

Weber et al.[20] developed an automatic 3D optical system to 

estimate the backfat thickness (BFT) of cows; this system has great 

potential for scoring body condition.  The correlation coefficient 

between the observed and estimated BFT was 0.96.  Fischer, et 

al.[21] used a 3D camera to capture the surface of the rear of the cow, 

and four anatomical landmarks were identified manually from the 

surface.  The principal component analysis was applied to the 

dataset, and the coordinates of these surfaces in the principal 

component space were used to build a multiple linear regression 

model with which to assess BCS.  The system still requires some 

level of human involvement.  DeLaval[22] released an automatic 

BCS system that provides continuous and daily BCS readings[23]; 

however, the high cost of the system hinders the popularization and 

application of the BCS system. 

Spoliansky, et al.[24] developed an automatic BCS system using 

a low-cost 3-dimensional Kinect camera.  In that study, 14 

features were used to build prediction models.  When the model 

was applied, 94% of the errors were under 0.75 BCS points 

compared to manual scores, and all errors were under 1 BCS point.  

However, the models required weight information in addition to 

depth images.  Alvarez, et al.[25] used a depth camera to capture 

the image of the back of dairy cows.  After removing the 

background, the images directly input into a convolution neural 

network for training.  Finally, 1158 images were used for model 

training and 503 images were tested.  The results show that 78% 

of the samples with a BCS error less than 0.25. 

In light of the above studies, it is apparent that, because of 

either cost or accuracy, proposed automated BCS systems fall short 

of the requirements for farm daily use.  As such, there is a 

considerable need for further research to improve the practicality of 

those systems to a higher level.  Therefore, the objective of this 

study was to (1) develop a fully automatic 3D computer 

vision-based system with which to assess the BCS of cows with 

high accuracy (MAE<0.25); (2) explore the possibility of the 

automated system being more accurate than human scoring.  In 

order to obtain the information directly related to BCS from the 

depth image, four specific areas (bones or body structure) on the 

back of the cow were located automatically.  Their visibility or 

curvature was analyzed for quantitative evaluation of fatness in that 

area.  The machine learning algorithms and regression analysis 

model were constructed to score the body condition accurately.  

The stability and consistency of the system were tested and 

analyzed with the comparison of automated BCS to human scores 

on daily basis.  

2  Materials and methods 

2.1  System setup 

The data for this study were collected on the University of 

Kentucky Coldstream Dairy Research Farm.  A group of 94 

Holstein cows was milked twice a day in the morning (5:00 AM) 

and afternoon (4:00 PM).  All cows left the parlor through a 

roofed walkway and returned to the free-stall barn after milking.  

The walkway was paved with a concrete slab floor with walls on 

both sides.  The width of the walkway was 1.03 m, which 

restricted the movement of the cows. 

A PrimeSense™ Carmine 1.08 RGB+depth sensor 

(PrimeSense™, Tel Aviv, Israel) was used to capture depth images 

of each cow’s back contours as it walked through the return alley.  

The camera system was placed 3.05 m above the floor of the 

walkway, with its field of view covering the entire width of the 

walkway.  The camera was connected to a computer in the dairy 

office via a 30m active repeater USB 2.0 cable.  The images taken 

by the camera were sent to the computer and stored on the hard 

drive.  The resolution of the depth images was 320×240 pixels 

with a frame rate of 30 fps. 

As shown in Figure 1, the walls of the walkway ensured that 

the cows were always located in the middle area of the frame and 

oriented roughly parallel to the midline of the image. 

To obtain a single file for each cow, we developed software to 

record the depth images as each cow passed beneath the system.  

Four fixed lines in the image scene were used to trigger and stop 

the recording.  As the cow walked from the left to the right side of 

the scene, data recording started when the cow’s nose reached the 

fourth line.  Then, depth frames were captured continuously until 

the tail end of the cow passed the first fixed line.  At the 

beginning of the recording, the software saved the initial image 

(without a cow in it) as the background image to perform 

background subtraction later. 

 
Figure 1  Recording images when four reference lines are reached 

 

2.2  Data acquisition 

Depth images of 94 cows were obtained twice a day from April 

1st to June 7th, 2014.  Over this time, three independent human 

scorers manually scored every cow in the group once a week on the 

same day when possible or, at most, within a few days of one 

another.  The median of these three scores from one cow in one 

week was assigned as the score for the cow that week.  

Within-cow outliers were removed by comparing the BCS obtained 
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during successive weeks.  When a given BCS differed from 

preceding and subsequent scores by more than ±0.25, the score was 

removed from the dataset.  The objective of this editing technique 

was to remove individual BCS values that were clearly inconsistent 

with scores for an individual cow in a short time frame.  Because 

very fat cows were rare in the herd (less than 1.5%), cows with 

scores above 3.75 were assigned a score of 3.75 to eliminate 

outliers.  Over the two-month data collection period, a total of 94 

unique cows were examined at various stages of lactation and 

levels of body condition.  The camera recordings of each cow in a 

given week were paired with the human-evaluated BCS for that 

week.  The dataset contained 4820 images from 94 cows and their 

related BCS values from 2.25 to 3.75 (7 classes). 

N images were randomly selected from each class to build a 

training dataset.  With Mi denoting the number of images in each 

class, N is the minimum in Mi.  Through this approach, the 

training model was trained at the same level for each class, and 

overtraining for the larger classes was avoided.  Table 1 illustrates 

the number of images (Mi) among different BCS classes and the 

proportion of training data in each class.  Eventually, 952 images 

were selected for training data, i.e. 136 images from each BCS 

class (N = 136).  The BCS values of the training dataset were 

normally distributed.  The classification and regression models 

were calibrated on the training dataset, and tested on training and 

entire dataset, respectively.  
 

Table 1  Number of images and proportion of training data 

among BCS classes 

BCS 2.25 2.50 2.75 3.00 3.25 3.50 3.75 

Mi 467 1414 1662 516 308 317 136
*
 

(N·Mi
−1

)/% 29.12 9.62 8.18 26.36 44.16 42.90 100 

Note: 
*
 indicates the number of training images in each class was equal to the 

minimum among classes (N=136), i.e. 136 images were randomly selected from 

each class to build a training dataset that contains 952 images. 
 

2.3  Feature definition 

The image features used in this study were selected because 

they are potential indicators of BCS.  Body fat reserves on the 

sacral ligament were measured using the convex hull.  Surface 

curvature was used to define the sharpness of the hook and pin 

bones.  Overall back fatness was also evaluated. 

Convex hull.  As shown in Figure 2, the sacral ligament has a 

concave curve on thin cows, and the curve is less concave on fat 

cows.  As a thin cow gains fat on the sacral ligament, the concave 

parts of the curve are filled in, and the concave curve finally 

becomes a convex curve.  In this paper, the convex hull is defined 

as a convex curve that is tangent to the concave line and lies at a 

minimum distance from it; therefore, the convex hull can be a tool 

with which to simulate how the sacral ligament would look if a cow 

gained body fat.  In this study, the visibility of the sacral ligament 

was measured by the space between the convex hull and the outline 

of the sacral ligament. 

 
Figure 2  Simulation of the sacral ligaments of a thin cow and a 

fat cow and their convex hull 
 

Figure 3 illustrates the flowchart for drawing the convex hull 

of a discrete concave curve.  For a discrete concave curve 

containing P points, two points are iteratively selected from the 

curve to draw linei,j.  If linei,j is tangential to the curve, then it 

belongs to the convex hull of this curve; otherwise, the points are 

discarded, and a new pair is selected and tested. 

 
Figure 3  Flowchart of drawing the convex hull for a concave 

curve 
 

The convex hull of the sacral ligaments of a cow was 

calculated based on the above algorithm and shown in Figure 4.  

The space between the convex hull and the sacral ligament 

indicates the potential space in which the cow can carry fat reserves.  

The average distance between the convex hull and sacral ligaments 

was calculated using Equation (1) to evaluate the visibility of the 

sacral ligaments quantitatively. 

SES ASL
VSL

LSL WSL
                    (1) 

where, VSL is the visibility of the sacral ligament; SES is the area 

of the total space between the convex hull and the sacral ligament; 

LSL is the length of the sacral ligament; WSL is the width from the 

left hook bone to the right hook bone, and ASL is the average of 

WSL over the dataset; ASL/WSL is the coefficient used to eliminate 

the effect of individual size and shape on the VSL; VSL is 

independent of the height of the cow.  When the VSL is close to 0, 

the sacral ligament is barely visible.  

 
Figure 4  Space between convex hull and outline of sacral 

ligament 
 

Surface curvature.  The fat reserved on the hook bone and 

pin bone was measured by the surface curvature (SC).  The bones 

of thin cows appear sharper than those of fat cows; therefore, the 

SC of the bones is larger in thin cows. 

In this study, the SC of a piece of the surface was defined as 

the ratio of the superficial area to the shadow area of that piece of 

surface.  Therefore, the SC is independent of the height and size 

of the surface.  Figure 5 illustrates the hook bones of a thin cow 

and a fat cow.  In Figure 5a, the hook bone is sharp, and the SC is 

1.4; meanwhile, the hook bone in Figure 5b has a flat surface and 

an SC of 1.17. 
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a. Thin cow, curvature = 1.4 

 
b. Fat cow, curvature = 1.17 

Figure 5  Surfaces of hook bones on thin cows and fat cows, with 

different curvature values 
 

Back fatness.  Because the 5-point BCS system mainly 

focuses on the area of a cow’s back above the thurl, a depth 

threshold, denoted by DT, was used to segment the region of 

interest in the depth image.  For the j-th column from the back to 

the front of the cow, the height of the point on the spine in that 

column was denoted by Hspj.  The points in the depth image were 

filtered according to the rule described by Equation (2).  The 

points that deviated from the Hspi by less than DT were reserved.  

Otherwise, the points were discarded.  The information that was 

unrelated to BCS in the depth image was filtered through this 

process. 

,

,

1

0

i, j j

i j

i j j

H Hsp DT
Mask

H Hsp DT

 
 

 
            (2) 

where, Maski,j indicates whether the point will be reserved (Mask = 

1) or discarded (Mask = 0); Hspj is the height of the point on the 

spine in j-th column, and Hi,j is the height of the point in the ith row 

and j-th column.  DT was set as 100 in the study. 

Thin cows had visible thurls with additional points classified 

as belonging to the thurl area.  Therefore, the visibility of the thurl 

(VTH) can be evaluated by calculating the ratio of the area of the 

image after and before image cropping using Equation (3). 

1
after

before

APH
VTH

APH
                  (3) 

where, APHafter and APHbefore are the area of the region from pin 

bone to hook bone after and before the image cropping, 

respectively.  The methods for locating the pin bone and hook 

bone will be presented in the following sections.  VTH is 

independent of the height and size of the cow. 

2.4  Image processing 

Background subtraction.  The first 1200 camera depth 

frames without cows were used to build the background image.  

The background image was then continuously updated to avoid 

potential error from any single background image.  The number of 

frames for building the background was set to 1200 to ensure that 

the depth-frame sequence contained at least one depth frame that 

included the floor and walls of the scene.   Background 

subtraction and threshold processing were performed to obtain pure 

depth data of cow.  After background subtraction, the depth value 

of each pixel on the cow body was converted into the distance to 

the floor by adding the height of the camera, which was 3050 mm. 

Image rotation.  During the movement of cows, the deviation 

between the body axis and the horizontal axis of the image may 

occur, which has a great influence on the subsequent image 

processing.  Therefore, the body axis of the cow needs to be 

detected and corrected.  The spine of the cow was detected by 

calculating the highest point in each column in the depth image.  

A line was fitted to the group of points.  The image was rotated 

according to the angle between the x-axis and the fitted line.  The 

symmetry of the rotated cow was tested by calculating the overall 

difference between the left and right of the cow as defined by the 

line of symmetry[24]. 

Image crop.  A width threshold was used to eliminate the tail 

from the depth image.  Measuring from the back to the front of the 

cow, if the width of the pixels in each column was less than a 

certain threshold, the pixels in this column were set as 0 to remove 

the tail. 

Hook bone and sacral ligament detection.  The contour of 

the back of the cow was divided into left and right parts by a 

symmetry line.  As shown in Figure 6, points A and B, farthest 

away from the symmetry line, indicate the ends of the hook bones 

on the left and right sides of the cow’s outline, respectively.  The 

x-coordinates of points A and B indicate the x-coordinates of the 

hook bones.  The hook bones are the bumps on the left and right 

sides in the curve of the sacral ligament.  

 
Figure 6  Detection of sacral ligaments and hook bones on 

cropped image 
 

The y-coordinate and size of the bump were determined by 

analyzing the slope of the sacral ligament along with that of the 

convex hull.  By combining the x-coordinate of the sacral 

ligament and the y-coordinate with the size of the bump, the hook 

bones in the depth image were detected, as shown in Figure 6.  

The surface curvatures of left and right hook bones were calculated 

and the average value of them was denoted by CHB. 

The sacral ligaments were isolated by connecting points A and 

B and extracting the slice on the line from the depth image.  After 

the sacral ligaments were extracted from the depth image, the 

visibility of it was calculated as VSL using Equation 1. 

Removal of tailhead and detection of pin bones.  The 

tailhead caused a discontinuous change in the depth image and had 

a major influence on the analysis of the pin bone; therefore, it was 



July, 2020           Zhao K X, et al.  Automatic body condition scoring system for dairy cows based on depth-image analysis           Vol. 13 No.4   49 

necessary to remove the tail head from the depth image.  Figure 7 

illustrates the slice containing the tailhead and pin bones.  As 

shown in Figure 7, the tailhead caused two drop points, D1 and D2, 

in the slice.  At points D1 and D2, the distances between the 

convex hull and the slices were the maximum values, which were 

denoted as M1 and M2, respectively.  The points between D1 and 

D2 were set to 0 to remove the tailhead.  From the back to the 

front of the cow, M1 and M2 decreased.  If the mean of M1 and M2 

was smaller than a predetermined threshold, the slice was defined 

as the end of the tailhead, as shown in Figure 7.   

 
Figure 7  Detection of pin bones and removal of the tailhead by 

convex hull analysis 
 

The areas separated by the removed tailhead on the left and 

right sides were the left pin bone and right pin bone, respectively.  

The surface curvatures of left and right pin bones were calculated 

and the average value of them was denoted by CPB.  For fat cows, 

the pin bones are entirely hidden, and the length of the tailhead is 

dramatically shorter than in thin cows.  In this study, if the length 

of the tailhead of a cow was less than 50 mm, then the pin bones of 

this cow were considered entirely hidden, and CPB was set as 1.  

For a specific cow, before any further calculations, the length of the 

tail head was multiplied by ASL/WSL, which was defined in 

Equation (1), to eliminate the effect of individual cow size. 

2.5  Prediction models 

For each selected depth image, the image processing generated 

four features (i.e. VTH, VSL, CHB, and CPB) according to the 

methods described above.  The distribution of those four features 

among BCS classes were analyzed by plotting their boxplot, and 

analysis of variance (one-way ANOVA) was used to test for 

differences in measured features with regard to the BCS class.  

The decision tree learning method was used to build a classification 

model to predict BCS values based on features.  Linear regression 

and a backpropagation (BP) neural network were used to build 

regression models for continuous BCS evaluation.  The features 

and the BCS values were normalized to a range of 0 to 1 before 

they were applied to the regression models. 

Decision tree learning.  Decision tree learning[26] was 

utilized to classify the four feature variables into seven BCS levels 

(2.25 to 3.75 with 0.25 interval) according to the given scores.  

This predictive model maps a group of observations of an item to 

the target value of the item.  In these tree structures, leaves 

represent class labels and branches represent conjunctions of 

features that lead to those class labels by using if-then rules.  The 

goal of training is to find the optimal criteria for the if-then rule in 

each branch of the tree.  In the prediction phase, the trained model 

takes several variables from one observation as input, and a path 

from the root node to a leaf node is determined by comparing the 

variables and the criteria of the if-then rule in each branch.  The 

class label that the leaf node represents is the output of the model. 

Linear regression.  The linear regression model operated by 

assuming that the larger the four features were, the thinner the cow 

was.  When the four features were all 0, the cow was expected to 

have had a high body condition score.  It was assumed that the 

human evaluator scored the cow based on the highest body 

condition score in the herd and then reduced the score by 

perceiving the sharpness of the thurl, sacral ligament, hook bone, 

and pin bone.  Based on that assumption, a model for BCS 

regression was designed as follows: 

BCS=µ–w1×VTH–w2×VSL–w3×CHB–w4×CPB      (4) 

where, µ was the highest score in the herd and w1, w2, w3, and w4 

were the scores that were subtracted from µ due to the sharpness of 

the thurl, sacral ligament, hook bone, and pin bone, respectively.  

VTH and VSL are the visibility of the thurl and sacral ligament, 

respectively.  CHB and CPB are the curvature of the hook bone 

and pin bone, respectively. 

BP neural networks.  The BP neural network is a multilayer 

feedforward network that is trained according to an error BP 

algorithm.  This method is one of the most widely used neural 

network models[27].  A BP network can be used to learn and store 

mapping relations in an input-output model, and there is no need to 

disclose the mathematical equation that describes these mapping 

relations[28].  Due to this characteristic, the BP network is a 

feasible way to regress the relationship between the inputs and 

output, regardless of whether it is linear or nonlinear.  In the 

network in this study, the input layer contains four neurons for each 

feature and two hidden layers with five neurons in each one.  The 

output of the model is the body condition score that is predicted by 

the input features.  The neurons were fully connected to each 

other in the different layers.  The transfer functions of the hidden 

layers and output layer were ‘tansig’ and ‘purelin’ respectively.  

The maximum epoch of training was set as 100.  The learning rate 

and training goal were 0.1 and 0.0004, respectively. 

2.6  Model Evaluation 

The decision tree model was evaluated on the entire dataset 

(DE) and the training dataset (DT) with 3-, 5-, and 10-fold 

validation.  K-fold validation was not applicable to the DE because 

the numbers of samples in different classes of the DE were not even.  

The linear regression and BP network model were built based on 

the DT and tested on the DE.  The three models were evaluated by 

the mean absolute error (MAE), the rate of correct classifications 

(only for the decision tree model), and the rates of predicted scores 

within 0.25 and 0.5 BCS points of manual scores.  The correlation 

(R2) between the results of the model and the target BCS values 

was also calculated to evaluate the two regression models. 

3  Results 

3.1  Correlations and distribution of features 

Correlations were calculated between BCS and the four 

features (visibility of thurl, visibility of sacral ligament, curvature 

of hook bone, and curvature of pin bone) and are shown in Table 2.  

All four features were negatively correlated with BCS (p<0.01).  

The visibility of the sacral ligament (r = −0.86) had the strongest 
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correlation with BCS, followed by the curvature of the pin bone  

(r = −0.85) and the curvature of the hook bone (r = −0.75).  The 

visibility of the thurl (r = −0.73) had the weakest correlation with 

BCS among the four predictive features.  The four features were 

positively correlated with each other (p<0.01).  Among the 

features, the correlation between the visibility of the sacral 

ligament and the curvature of the pin bone was the strongest (r = 

0.74), while the correlation between the visibility of the thurl and 

the curvature of the hook bone was the weakest (r = 0.50).  Other 

correlations among the features ranged from 0.62 to 0.70. 
 

Table 2  Correlations among BCS and the features of the thurl, 

sacral ligament, hook bone, and pin bone 

Item BCS VTH VSL CHB CPB 

BCS 1.00 −0.73 −0.86 −0.75 −0.85 

VTH −0.73 1.00 0.70 0.50 0.67 

VSL −0.86 0.70 1.00 0.64 0.74 

CHB −0.75 0.50 0.64 1.00 0.62 

CPB −0.85 0.67 0.74 0.62 1.00 

Note: All p-values were <0.01. 
 

Figure 8 illustrates the distribution of the features among BCS 

levels in the entire dataset (DE).  As shown in the figure, all the 

features gradually decreased as the BCS values increased of cows.  

Most features among BCS levels are significantly different between 

grouped data except for VTH values in BCS 3.5 and 3.75, CHB 

values in BCS 3 and 3.25, as well as CHB values in BCS 3.5 and 

3.75.  Two groups of data cannot be distinguished from each other 

if they are not significantly different.  However, other features in 

these BCS groups (i.e. VSL and CPB) are significantly different, 

and provide great variability that can classify and predict these 

BCS values.  Distributions and medians of VTH values in BCS 2.5 

and 2.75 are close.  However, the result of ANOVA test shows 

they are significantly different and come from the different normal 

populations, which means their variance is quite different and can 

provide variability for classification and regression.  Compared to 

the other features, the VSL showed an improved linear relationship 

with the BCS and reduced interclass overlap.  The VSL of a fat 

cow ranges from 2 mm to 6 mm, which indicates that the sacral 

ligament is barely visible. 

The CHB and pin bones ranged from 1 to 1.5.  The CHB 

dropped sharply as BCS increased from 2.25 to 2.75, while the 

tendency became flat for BCS values greater than 3, which showed 

that there was a nonlinear relationship between the CHB and BCS.  

The CPB had a similar tendency for BCS values from 2.25 to 2.75 

and those from 3 to 3.5.  However, the drop from 2.75 points to 3 

points was considerable. 

 
a. Thurl  b. Sacral ligament 

 
c. Hook bone  d. Pin bone 

 

Figure 8  Distribution of features by BCS. Different letters indicate data groups being significantly different (P<0.001) 
 

Table 3  Classification results of the decision tree learning 

model based on different validation data 

Validation data 
Correct 

classification/% 

≤0.25 BCS 

points/% 

≤0.5 BCS 

points/% 
MAE 

3-fold (DT) 57.67 94.85 99.47 0.12 

5-fold (DT) 58.72 94.22 99.47 0.12 

10-fold (DT) 62.92 95.38 99.68 0.11 

Entire data (DE) 61.81 95.48 99.65 0.11 
 

3.2  Results of decision tree learning 

Table 3 illustrates the classification results of decision tree 

learning using 3-, 5-, and 10-fold cross-validation based on the 

training (DT) and the entire dataset (DE).  As shown in Table 3, the 

accuracies of 3-, 5-, and 10-fold cross-validations were similar, but 

the model achieved the highest accuracy when using 10-fold 

cross-validation, with which 95.38% and 99.68% samples were 

classified within 0.25 and 0.5 BCS points, respectively, of the 

manual scores.  The accuracy of classifications was improved by 
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5.25% by increasing the K value from 3 to 10.  When the decision 

tree was trained on DT and tested on DE, the result was not 

significantly different from that with 10-fold cross-validation on 

DT. 

3.3  Results of regression 

The BCS regression model was fitted to a training dataset (DT), 

and the result was as follows: 

BCS=3.94–0.35×VTH–0.71×VSL–0.67×CHB–0.72×CPB  (5) 

The parameters in the model showed that the highest 

theoretical score in the herd was 3.94 and that a sharp thurl, sacral 

ligament, hook bone, and pin bone will reduce the BCS by 0.35, 

0.71, 0.67, and 0.72, respectively.  The R2 of the regression was 

0.88 (p<0.01) as shown in Table 4.  The BP network took 12 

epochs to finish the training on the DT.  The linear regression and 

BP network were tested on DT and the DE; the results are shown in 

Table 4.  

For the same model, the rates of predicted scores within 0.25 

and 0.5 BCS points were not significantly different when using DT 

and DE as testing data.  However, the R2 was reduced by 0.08 and 

0.07 in the linear regression model and BP network, respectively, 

when they were tested on DE.  In general, the BP network 

achieved higher accuracy than linear regression regarding all the 

performance indicators, especially the proportion of results within 

0.25 BCS points of manual scores; in this respect, the BP network 

was over 5% more accurate than linear regression. 
 

Table 4  Performance of the linear regression model and BP 

network 

Model & testing dataset 
≤0.25 BCS 

points/% 

≤0.5 BCS  

points/% 
MAE R

2
 

Linear regression (DT) 85.61 99.58 0.14 0.88 

Linear regression (DE) 86.14 99.69 0.14 0.80 

BP network (DT) 92.65 99.68 0.12 0.91 

BP network (DE) 91.68 99.88 0.12 0.84 
 

The correlations between the camera and manual BCS values 

were analyzed to evaluate the regression models; the results are 

shown in Figure 9.  The two regression models were similar in 

overall performance, but the predicted scores from the BP network 

were more concentrated than those from linear regression.  

Positive drift of the predicted scores versus the manual scores was 

found at BCS 3 in the linear regression model with DT and DE, as 

well as BCS 2.25 in the BP network model.  The predicted scores 

for BCS 3.75 showed negative drift in both models with DT and 

DE. 

 
a. Linear regression (DT)  b. BP network (DT) 

 
c. Linear regression (DE)  d. BP network (DE) 

 

Figure 9  Predicted BCS versus human BCS 
 

3.4  Predicted scores for individual cows 

Figure 10 illustrates the MAE and standard deviation of the 

BCS error of each cow during the study period (sorted by MAE) 

when the BP network was used as a prediction model.  The 

average MAE was 0.11, and all cows had MAEs lower than 0.25.  

The average standard deviation was 0.069, where 95% of the SD 

values of cows were less than 0.1. 

Figure 11 illustrates four patterns of camera scores versus 

manual scores in four selected cows.  In Figure 11a, the predicted 

scores were close to the manual score during the study period, and 

the MAE was 0.02.  The result in Figure 11b was the most 

common case among cows, where all the intervals were less than 

0.25 and the average MAE of the cow was 0.13.  Figure 11c 

illustrates the cow with the maximum MAE (0.22) in Figure 10.  
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In Figure 11d, the cow had an abortion, and its BCS dropped from 

3 to 2.5 in the first 21 days of lactation 2; the predicted scores 

tracked that change successfully and even found the change earlier 

than the manual score changed, with an MAE of 0.09.  

 

Figure 10  MAE and standard deviation of the BCS predicted by the BP network for each individual cow (sorted by MAE) 

 

a. Cow# = 1, MAE = 0.02  b. Cow# = 50, MAE = 0.13 

 

c. Cow# = 94, MAE = 0.22  d. Cow# = 14, MAE = 0.09 
 

Figure 11  Different patterns of camera scores versus manual scores among cows 
 

3.5  Discussion 

Our work describes a method for scoring the body condition of 

cows with high accuracy.  The system was developed and tested 

based on longitudinal data (2 months) from 94 cows.  Four 

features were extracted from depth images, and three models were 

used to predict the scores based on these features.  Compared to 

previous studies, this study improved the percentage of predicted 

scores within 0.25 BCS points of manual scores, raising this 

proportion to 90% using a decision tree and a BP network model 

with a fully automatic system.  

The four features identified in this study all have strong 

positive correlations with BCS.  A linear model was built to 

demonstrate the weights of the features when the human assigned 

the scores.  The model partly explained the human scoring 

procedure and demonstrated the theoretical highest score in the 

herd.  Due to the nonlinear characteristics of the features, the 

accuracy of the linear model was lower than that of the BP network 

model, which is able to regress linear and nonlinear relationships.  

The results showed that 95.48% of the samples were scored within 

0.25 BCS points of the manual score using a decision tree learning 

model, which is a higher accuracy rate than that of the linear 

regression model (86.14%) or the BP network (91.68%).  This 

demonstrates that the decision tree is more feasible for 

classification than other models if the data are treated as 

categorical. 

In this study, the hook bone and pin bone were detected, and 

their curvatures were used as indicators of fatness.  Bewley et al. 

(2008) used 2D digital images to analyze the outline of the backs of 
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cows and generate hook and tailhead descriptions related to BCS.  

The results showed that the hook angle, posterior hook angle, and 

tailhead depression were significant predictors of BCS.  In our 

study, angle descriptions were not involved in the model because 

the edge of the entity in the depth image had a great influence on 

the 3D points that were close to the outline, which reduced the 

accuracy of the angles calculated from the outline in the 3D image.  

The descriptions of the sacral ligament and thurl were explored in 

this study because these two areas are frequently evaluated in the 

existing BCS system[14]. 

Additional researchers also developed automatic BCS systems 

based on 2D[16,19] and thermal[17,18] image processing technology.  

However, it is difficult to accurately detect specific anatomical 

points of a cow and extract fatness-associated features closely 

related to BCS based on two-dimensional image data alone.  The 

3D images used in this study not only provided depth information 

but also made it possible to measure the physical traits of the cow 

without additional image calibration.  Weber, et al.[20] developed 

an automatic 3D optical system with which to estimate the backfat 

thickness (BFT) of cows.  The correlation between the observed 

and estimated BFT values was 0.96, which demonstrated the 

feasibility of using 3D images to measure the body fat reserves of a 

cow.  It would be worthwhile to study the relationship between 

BFT and BCS to build a model predicting the latter from the 

former.  Fischer et al.[21] used a 3D camera to capture the surface 

of the hindquarters of cows, and four anatomical landmarks were 

identified manually from the surface to predict BCS.  However, 

that study still involved manual processing.  Spoliansky et al. also 

used 3D images of backs to calculate the relative heights of 

different parts of the cows, and the height information was 

combined with weight and age to build a model with which to 

predict BCS.  In our study, the model was based only on depth 

images and required no additional information, which makes this 

system easy to implement in commercial applications.  

Sandgren and Emanuelson[23] reported the validation results 

from a commercial camera system; a total of 95% of the cows were 

scored within 0.25 BCS points of manual scores, with 99% of the 

scores having a standard deviation of less than 0.1.  The result of 

our study showed that all cows were scored within 0.25 BCS points 

compared to the manual scores, and 95% of the cows had a 

standard deviation of less than 0.1.  Therefore, our system 

exhibited similar performance to the reported commercial camera.  

However, the commercial camera used daily rolling average scores 

from seven-day periods as the output, which can improve the 

consistency of the output scores.  Rolling average operation will 

greatly reduce the dynamic tracking performance of the scoring 

system, which makes the system insensitive to abnormal changes in 

a short time.  The system proposed in this paper can ensure high 

precision and good tracking performance without rolling average. 

The manual scores were categorical data.  However, the 

fatness of a cow may fall between two categorical values.  

Therefore, the difference between the predicted scores and manual 

scores may be caused by the difference between the actual BCS 

and the manual BCS in some cows.  A prior study also showed 

that the MAE of a well-trained expert was 0.25.  Thus, the 

standard deviation of the predicted scores could be a good indicator 

for evaluating the performance of the automatic BCS system when 

the MAE of the system is lower than 0.25. 

The region of the short ribs is another anatomical feature 

associated with the fatness of a cow.  This area was ignored in the 

current study because the end of the short rib area is invisible on a 

fat cow, which made it difficult to determine and analyze that area.  

Future studies should focus on detecting the short rib area and 

analyzing the fat reserved on it to further improve the accuracy of 

the system. 

4  Conclusions 

Specific areas that are related to BCS, including the thurls, 

sacral ligaments, hook bones, and pin bones, can be accurately 

located through depth-image processing and the use of convex 

hulls.  Measured values of the visibility and curvature of the four 

areas were strongly correlated with manually assigned BCS values.  

When the BP network was used, the system can score each cow 

within 0.25 points compared to the target BCS during the 

two-month study period (i.e. MAE of each individual cow is less 

than 0.25); meanwhile, the averaged MAE and SD of all cows were 

0.11 and 0.069, respectively.  The result shows that the system has 

high precision and good tracking performance, which demonstrates 

that the automatic system has the possibility of being more accurate 

than human scoring.  Future studies should focus on analyzing the 

short rib area to provide an additional fatness-related feature and 

further improve accuracy.  
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