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Abstract: The loss-on-drying method has been widely used as a standard approach for measuring the moisture content of 
high-moisture materials such as solid and semi-solid foods.  Loss-on-drying method provides reliable results, whilst usually 
labor-intensive and time-consuming.  This paper presents a novel algorithm for predicting the moisture content of meats based 
on the loss-on drying method.  The proposed approach developed a drying kinetics model of meats based on Fick’s Second 
Law and designed a prediction algorithm for meat moisture content using the least-squares method.  The predicted results were 
compared with the official method recommended by the Association of Official Analytical Chemists (AOAC).  When the 
moisture content of meat samples (beef and pork) was varied from 69.46% to 74.21%, the relative error of the meat moisture 
content (MMC) calculated by the proposed algorithm was 0.0017-0.0117, the absolute errors were less than 1%.  The testing 
time was about 40.18%-56.87% less than the standard detection procedure. 
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1  Introduction  

Food quality issues related to meat products, such as the illegal 
production of water-injected meat, are attracting a growing public 
awareness from consumers, industries, and governmental 
regulators[1].  Due to the temptation of high profits as well as 
technical difficulties in identifying the water-injected meat, the 
scandal conditions as mentioned above remain serious[2].  Meat 
moisture content (MMC) plays an important effect on the quality of 
meat products, such as color, flavor, and tenderness[3,4].  In recent 
years, near-infrared spectroscopy[5], ultra-high-performance liquid 
chromatography-tandem mass spectrometry[6], and multispectral 
imaging analysis[7] have been developed and applied to identify the 
water-injected porcine meats.  However, these technologists 
mentioned above are high costs in testing and difficult for 
commercialization[8].  In this case, an effective and low-cost 
technique for meat moisture detection is highly needed. 

For meat and poultry products, the Loss-on-drying (LOD) 
method has been approved for official detection purposes according 
to the international standards recommended by the Association of 
Official Analytical Chemists (AOAC) 985.14-2005[9] and 
International Organization for Standardization (ISO) 1442-1997[10].  
LOD method permits the simultaneous analyses of large numbers 

                                                 
Received date: 2020-02-14    Accepted date: 2020-04-21 
Biographies: Jie Xu, PhD, Postdoc Researcher, research interests: food Science, 
microbiology and engineering, Email: xu.4037@osu.edu; Haijun Lin, PhD, 
Professor, research interests: intelligent detection and information fusion system, 
Email: linhaijun801028@126.com; Jinyuan Lin, MS, Professor, research 
interests: intelligent detecting and information fusion system, Email: 
Jinyuan@163.com 
*Corresponding author: Jing Ling, PhD, Associate Professor, research 
interests: intelligent detection and information fusion, School of Physics and 
Electronic-Electrical Engineering, Ningxia University, Yinchuan, Ningxia 
750021, China.  Tel: +86-15209508892, Email: lingjing0519@163.com. 

of samples and does not require equipment calibration[11]. 
The LOD method provides reliable results, however, 

complaints about the labor-and time-intensive procedures have 
been described[12].  Generally, there are two ways to improve the 
detection efficiency of the traditional LOD method.  One is 
enhancing the heating efficiency during drying, and the other one is 
using intelligent information processing technology to forecast the 
measurement results[12,13].  Enhancement of heating efficiency can 
be achieved via other drying techniques, such as infrared and 
microwave drying.  Compared with the conventional drying 
methods, infrared drying has a higher drying rate, which is able to 
reduce the length of drying time with a lower energy cost.  The 
higher drying rate of infrared drying over conventional methods 
contributes significant time and energy savings[14].  For 
microwave drying, the major disadvantages lie in the difficulty in 
temperature control of the final products and the poor temperature 
uniformity during drying[15].  Moreover, carbonization along the 
sample corner or edges during microwave drying will result in an 
inaccuracy of moisture content detection[15].   

Recent developments in information fusion algorithm have 
brought an innovative approach for moisture content measurement 
of vegetables and fruits[16].  The artificial neural network (ANN) 
algorithm widely used in the estimation of the moisture content 
during the drying process is a backpropagation (BP) neural network 
learning algorithm[17,18].  The BP algorithm has been used to 
predict the moisture content of potato[19], microwave-dried 
durian[20], and tomato[21].  This algorithm is easy to fall into the 
local optimal value and affects the convergence speed of the 
algorithm, which improves the real-time performance and 
measurement accuracy[22].  The selection of the hidden layer 
number, the number of hidden layer nodes, the incentive function 
and the training algorithm are all based on experimental design, 
and can only be obtained by experimental calculation, resulting in 
redundancy to the network and invisibly adding the amount of 
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research work and programming calculation[23]. 
To simulate an infrared drying process, several empirical or 

semi-empirical models have been developed to simulate the drying 
kinetics of various vegetables and fruits[24-26].  However, little 
information is available regarding the use of the drying model for 
the detection of meat moisture content based on the LOD method.  
Therefore, the objectives of this study were: (1) to establish a 
mathematical model for describing the infrared drying process of 
meat samples (pork and beef) based on Fick’s Second Law and to 
verify its adaptability, (2) to develop a prediction and fusion 
algorithm for meat moisture content detection during infrared 
drying using the least-squares method (LSM) algorithm, (3) to 
evaluate the feasibility of the fusion algorithm for meat moisture 
content detection.  

2  Materials and methods 

2.1  Preparation of meat samples 
Fresh sirloin (pork and beef) were purchased from the local 

Walmart supermarket (Changsha, China), with a reference moisture 
content of the samples varying from 69.46% to 74.21% (wet basis), 
as determined by the LOD method (AOAC Official Method 
2005)[9].  Three replicates were analyzed by the reference method 
to achieve an analytical variance no more than ±2%.  In this study, 
a moisture analyzer (SARTORIUS, MA100, Germany) was used as 
the drying apparatus (Figure 1). 

 
Figure 1  Experimental set-up (moisture analyzer equipment: 

Sartorius, MA100) 
 

2.2  Experimental procedure 
For sample treatment, all subcutaneous fat, external fascia, and 

adhesive tissues were removed from the muscles (pork and beef).  
The deboned meat chunks were ground by a meat grinder with a 
blade of 4.0 mm in diameter[27] (Model LM 10K, Koneteollisuus 
Oy, Finland).  As recommended by the AOAC official method 
2005, the average weight of the meat samples was 5-6 g[9].  The 
moisture content of the meat samples (pork and beef) is based on a 
wet basis (Mwb) in percentage, as expressed by Equation (1)[24,26]. 
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where, mt is the mass (g) of the sample at time t (min); m0 and me 
are the initial and final mass (g) of the sample. 

Aluminum drying trays (2 mm in thickness and 90 mm in 
diameter) were used to hold the meat sample.  The tray was 
pre-dried for a minimum of 1 h at 105°C, cooled in desiccators and 
weighed[27].  The above procedure was repeated until the difference 
in weight before and after drying was less than 0.005 g[27].  The 
moisture content determination was carried out by three 
independent replicates.  

The sample mass was measured every 6 s by the moisture 
analyzer and uploaded to the computer through the RS-232 
interface.  The information was then saved in a database and 
retrieved by the prediction algorithm.  All the calculations were 
processed and programmed by Matlab 2018 (The Mathworks, Inc., 
Natick, MA, USA).  
2.3  Development of the predictive model 

Moisture migration in biological products can be driven by a 
concentration gradient for liquids and by a partial vapor pressure 
gradient for vapor.  The governing equations for moisture 
transport are Fick’s second law[28,29] as shown in Equations (2) and 
(3): 
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where, MR is the moisture ratio; t is the drying time (s); Mt is the 
moisture content at moment t (s); M∞ and M0 is the final and initial 
moisture content; Deff is the effective moisture diffusivity (m2/s).  
All the moisture content values are on the wet basis. 

Based on the form and characters of samples, the following 
assumptions are made[30]: 

(1) The shrinkage of the product during drying is negligible, 
and the assumption of one-dimensional heat diffusion is satisfied. 

(2) The water diffusion coefficient is constant during drying. 
(3) External resistance, such as mass transfer resistance, is 

neglected. 
Then, Equations (2) and (3) can be merged into Equation (4), 
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where, z is the thickness of the sample (0 ≤ z ≤ δ) (m).  Solutions 
for Equation (4) with various geometrical and boundary conditions 
have been compiled by Crank[31].  The solution for an infinite slab 
is given by:  
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With sufficient drying time, Equation (5) can be simplified by 
taking the first term of the series solution and assuming that n = 0, 
which gives[32] 
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= , Equation (6) can be rewritten as follows, 
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Drying is characterized by the simultaneous transfer of heat 
and mass.  A characteristic drying curve of the infrared drying is 
shown in Figure 2.  

This graph clearly shows that the drying rate, which is the 
slope of the drying curve, decreases with the drying time.  During 
the first period of the drying process, all the heat absorbed from the 
air is used to evaporate water from the sample surface[33].  As 
shown in Figure 2, the water loss accelerates during the heating-up 
period (AB), whereas the second derivative of the drying curve is 
less than 0 and this period is characterized by the maximum drying 
rate related to the heat transfer rate of the sample.  The constant 
drying rate period (BC) is relatively short, and the second 
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derivative of the drying curve is equal to 0.  Gradually, the drying 
rate of the sample slows progressively during the falling rate period 
(CD), which lasts for a long time, and the second derivative of the 
drying curve is greater than 0[11,33].  This can be explained by the 
fact that when the moisture content at the surface decreases and the 
internal resistance to water transport increases, the evaporated 
water needs more time to make its way through the dry materials to 
the evaporation zone[34].   

 
Figure 2  Characteristic drying curve of an infrared drying 

 

From Figure 2, it is clear to notice that the moisture content of 
the meat sample changes dramatically during the heating-up 
period[29].  In this case, the model developed in this study is not 
suitable to predict the final moisture content of the sample at this 
nonstatic stage.   

On the other hand, it has been proved that the drying curve 
during the falling rate period can be described by an exponential 
model[35].  So, we set the starting point, tc, as the beginning of the 
prediction algorithm to increase the reliability of our model.  This 
starting point can also be defined as the inflection point.  It can be 
determined by calculating the second derivative of the drying curve.  
Based on Equation (7), the mathematical drying model of MMC 
prediction for LOD method can be modified as 
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2.4  Adaptive recognition for the starting point  
The first derivative of the mass and moisture content can be 

denoted as vm and vM , respectively.  The second derivative of 
mass and moisture content are denoted as am and aM, and regulated 
by the following equations, 
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where, mi and mi-1 are the mass of the sample (g) at i and i-1; ti is 
the drying time in min; Δm and ΔM are the difference in sample 
mass and moisture content, respectively.  Δt is the time interval.  
From Equations (9) and (10), it can be deduced that the variation 
trend of the second derivative of the sample mass is the same with 
that of the second derivative of the sample moisture content.  The 

inflection point of the drying curve is the same as the inflection 
point of the sample mass loss. 

In this study, pork samples were randomly selected for analysis, 
with an initial moisture content Mwb=72.76% (wet basis) and initial 
mass m0=4.991 g.  When T=105°C, the infrared drying curve was 
measured and recorded every 6 s.  The derivative of the sample 
mass and moisture content was then calculated to determine the 
inflection point, as shown in Figure 3.    

 
a. Variation of moisture content 

 
b. Variation of sample mass 

 
c. Second derivative of sample mass and moisture content 

Figure 3  Determination of drying curve inflection point 
 

The change of meat sample moisture content with drying time 
is similar to that of the sample mass, as shown in Figure 3a.  It can 
be seen from Figure 3c that the point where the second derivative 
of two variables equals zero is the same with tc, as defined in 
Figure 2.  Therefore, the starting point of the predictive fusion 
algorithm can be determined by calculating the second derivative 
of the sample mass.  Based on the experimental data, the starting 
point of the falling rate period of 15 pork samples (as shown in 
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Table 2) was at 3-5 min started from the beginning of the drying 
process, which was tc in the model.  Through the above analysis 
and calculation, we can determine that tc is the starting point of the 
falling rate drying period as well as the starting point of our 
prediction model. 

To adjust the experimental data for a better fit, we proposed 
criteria for the starting point.  We set S as a flag to judge the 
starting point of the estimation algorithm.  Upon the above 
analysis, the starting point of prediction can be determined by 
judging whether a is positive or negative: 

11, 0 and 0
0, others.

i iif a a
S +⎧ < >⎪= ⎨

⎪⎩
           (11) 

where, ai represents the second derivative of sample mass at i.  If 
S=1, then i+1 is the starting point.  However, due to experimental 
noise, the recorded drying curve is not smooth, so Equation (11) 
needs to be modified as follows: 

1 11, 0 and 0 and 0, 1,2,..., ;
0, others.
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where, K is preset constant, which can be determined from the 
experiment.  If ai+1 meets the requirement of S=1 and the 
subsequent K points all meet the requirement of a ≥0, then i+1 is 
determined as the starting point of the prediction algorithm.   
2.5  Design prediction algorithm based on LSM 

According to the multiple regression model, the dependent 
variable is related to two or more independent variables.  The 
general model is of the form 
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where, t1, t2, … tm are independent variables (drying time); β1, 
β2, … βk are the parameters in the predictive drying model[37].  

ˆ ( )M t  is the calculated value of moisture content.  Let the 
observed data points be denoted by 
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where, n is the size of the sliding window (n=20).  The problem is 
to compute those estimates of the parameters which will minimize 
the error between predictive value and measured value. 
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where, M∞ is the final moisture content (wet basis) and τ is the 
coefficient of drying characteristics.  According to the principle of 
the least-squares method[38], Q is the partial derivatives concerning 
M∞ and τ, and the derivatives are set to zero.  To minimize Q, the 
two parameters M∞ and τ can be solved by Equation (17) 
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The goal of our investigation is to find an effective method that 
will be suitable for embedded systems.  Furthermore, the 

algorithm can be run by either a small handheld device or an online 
instrument.  To reduce the calculation amount of the algorithm 
and improve the execution efficiency in the embedded system, we 
performed the logarithmic operation of Equation (8).  By doing 
this, we can get a linearized fusion expression. 
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then:  
1 2Y xα α= +                   (20) 

Equation (19) is the information fusion arithmetic expression 
of meat moisture measurement.  These transformations can 
simplify the data as linear regression for model prediction.  After 
determining α1 and α2, the final dry-basis moisture content M∞ can 
be calculated.  
2.6  Solution of the model parameters 

Based on the principle of the least-squares method, the sum of 
squares of the deviation, ψ̂ , can be defined as: 
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where, α1 and α2, which minimize ψ̂ , can be obtained by the LSM.  
In the same way, partial derivatives ψ̂  are taken with respect to α1 
and α2, and the following equations are obtained:  
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Where α1 and α2 can be obtained by solving the equation: 
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From Equation (19), the relationship between the predicted 
moisture content M∞ and τ (the coefficient of drying characteristics), 
α1 and α2 can be obtained: 
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The iterative algorithm has been applied to calculate the 
parameters α1 and α2 can be obtained by, and then the prediction of 
M∞ (the final moisture content) can be obtained.  α1(j) and α2(j), 
the jth approximations of α1 and α2, can be found by inputting 
sampled data and substituted into Equation (25); that is: 
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The error between ( )ˆ jM∞  (the jth calculated value) and ( )jM ∞  
(the jth measured value) is 
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c
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π
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When Δ(j)=0, the prediction of final moisture content (dry basis) 
can be obtained.  Actually, the above process is equivalent to 
solving the transcendental equation 
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In order to reduce the influence of the initial value on the 
convergence of the prediction algorithm, this paper adopts the 
Newton downhill method[39].  The request to initial value is high 
in Newton iteration, but the Newton downhill method can extend 
the range of the initial value.  
2.7  Adaptive recognition for the end point  

The permitted levels of meat moisture content according to 
Chinese standard GB 18394-2001[40] are shown in Table 1.  

 

Table 1  Permitted levels of moisture content in livestock and 
poultry 

Category of meat Moisture content/% 

Pork ≤77 

Beef ≤77 

Chicken ≤77 

Mutton ≤78 
 

Since these data can be regarded as a priori knowledge of the 
meat moisture content, we set the first-level threshold value to 

ɛ1=70% (wet basis).  ( )ˆ jM ∞  is the jth predictive value of the sample.  

If ( )
1

ˆ jM ε∞ ≥ , the value of ( )ˆ jM∞  would be saved in an array m1[L], 
where L is the length of the array.  Combining engineering 
experience and test data, we set L=20.   

If the maximal and minimal values meet the following criterion 
at the same time: 

( ) ( )
max 2 min 2

ˆ ˆ ˆ ˆ| | | |j jM M and M Mε ε∞ ∞− ≤ − ≤       (29) 
We set the parameter ɛ2 as the second level threshold.  

Through a large number of experiments, we set ɛ2=0.002 as the 
second-level threshold value to control the accuracy of the 

prediction and fusion algorithm.  Then ( )ˆ jM ∞  is the final 
predicted value of the algorithm.  The flowchart of the prediction 
algorithm is shown in Figure 4. 

Step 1: The rate of water loss and the first-order derivative 
during the drying process are calculated; 

Step 2: As illustrated in Equation (12), if the next 6 points all 
meet the requirement of a<0.00001, then i+1 is determined as the 
starting point of prediction, and then recorded. 

Step 3: The sliding window sampling method is applied to the 
prediction algorithm, and the length of the sliding window array is 
20.  The predicted value of the final moisture content (wet basis) 
can be calculated based on the experimental data. 

Step 4: The calculated value of the final moisture content (wet 
basis) is saved.  When the online sampling data are updated, they 
are sent into the data stack and the predicted value of the final 
moisture content (wet basis) will be updated.  

Step 5: ε1 is set as the first-level threshold value to determine 
whether the predicted value is close to the actual value.  At the 
same time, ε2 is set as the second-level threshold value to control 
the accuracy of the prediction and fusion algorithm. 

 
Figure 4  Flow chart of online information fusion algorithm for 

prediction of meat moisture content 

3  Results and discussion 
3.1  Validation of the predictive model 

After the model was built, thirty randomly selected test data 
from the experiment were used model evaluation.  As shown in 
Table 2, the coefficient of determination (R2) was the primary 
criterion used to select the most fitted equation for the drying curve, 
with a reduced chi-square (χ2) and root mean square error 
(RMSE)[32].  Model evaluation was necessary to estimate the 
accuracy and robustness of the predictive ability.  According to 
the statistical results shown in Table 2, the R2 of the prediction 
model is (0.8769-0.9996), χ2 is (1.246×10−5-1.728×10−3), and 
RMSE is (0.0073-0.1399), which are regarded as reasonable results. 
3.2  Validation of the prediction algorithm 

The detection procedure was performed at a drying 
temperature of 105°C by using the official method.  The predicted 
results were compared with the experimental results.  The 
measurement deviation is presented in Table 3 and Figure 5, and 
some conclusions can be found as follows: 

(1) When the moisture contents of the meat sample (beef and 
pork) are varied from 69.46% to 74.21%, the relative error of 
MMC measured by the proposed algorithm is 0.0017-0.0117, the 
absolute error is less than 1% compared with the official method. 

(2) The prediction and fusion algorithm can effectively reduce 
the detection time while ensuring the detection accuracy.  There is 
about 40.18%-56.87% time reduction in percentage compared with 
the official method recommend by AOAC. 

To visualize the feasibility of the proposed algorithm for the 
prediction of the detection results, we randomly selected two sets 
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of samples with an average initial moisture content Mbeef =72.71% 
for beef or Mpork =70.88% for pork respectively.  

 

Table 2  Curve fitting criteria of mathematical models at 
different moisture content values 

No. Mwb/% m/g R2 χ2 RMSE 

70.14 5.605 0.9895 3.725×10-4 0.0073 
71.34 5.701 0.9712 4.011×10-4 0.0451 
70.78 4.876 0.9757 3.214×10-4 0.0128 
71.81 5.112 0.9839 3.132×10-4 0.0212 

72.32 5.524 0.9909 1.410×10-3 0.0734 
69.46 5.012 0.9942 3.041×10-4 0.0252 
71.15 4.887 0.9966 2.148×10-4 0.0135 
70.77 5.126 0.9987 1.728×10-3 0.0642 
70.87 4.998 0.9863 4.172×10-4 0.0155 
73.55 5.013 0.9971 4.927×10-4 0.0253 
70.23 5.045 0.9872 3.527×10-4 0.0193 
71.44 4.955 0.9995 1.557×10-4 0.0395 
70.56 5.670 0.9826 2.061×10-4 0.0141 
72.14 4.668 0.9693 1.449×10-4 0.0328 

Pork 

72.97 4.275 0.9961 1.473×10-4 0.0102 
70.23 5.533 0.9045 1.483×10-4 0.0887 
70.98 5.021 0.9985 1.977×10-4 0.0105 
74.21 5.669 0.9996 2.172×10-4 0.0055 
73.98 4.778 0.9986 1.358×10-4 0.0281 
70.33 4.786 0.9994 1.246×10-5 0.0091 
71.15 4.897 0.8897 1.357×10-4 0.0862 
72.23 5.126 0.9612 1.751×10-4 0.0357 
70.88 4.955 0.8899 1.477×10-4 0.1399 
73.24 4.668 0.9357 1.432×10-4 0.0413 
71.73 4.711 0.9282 2.666×10-4 0.0316 
72.56 4.876 0.8769 2.332×10-4 0.0889 
72.14 5.605 0.9701 2.114×10-4 0.0467 
72.23 5.002 0.9919 2.623×10-4 0.0325 
71.92 4.995 0.9956 2.189×10-4 0.0177 

Beef 

71.17 4.997 0.9133 3.477×10-4 0.0526 

Table 3  Predicted results of moisture content compared with 
the experimental results 

Species Mass
/g 

Observed 
value 

(d.b.)/%

Predicted 
value 

(d.b.)/% 

Relative 
error 
/% 

Measured 
time 
/min 

Predicted 
time 
/min 

Time-
saving

/% 

5.605 70.14 70.82 0.0097 97.6 47.6 51.23
5.701 71.34 71.80 0.0064 100.9 51.6 48.86
4.876 70.78 71.45 0.0095 104.6 56.7 45.79
5.112 71.81 71.28 0.0074 102.3 61.2 40.18
5.524 72.32 71.64 0.0094 108.2 60.9 43.72
5.012 69.46 70.04 0.0083 110.2 51.6 53.18
4.887 71.15 70.87 0.0039 109.9 56.3 48.77
5.126 70.77 71.03 0.0036 112.5 55.6 50.58
4.998 70.87 71.01 0.0019 108.3 57.4 46.99
5.013 73.55 72.98 0.0077 111.7 53.5 52.10
5.045 70.23 70.11 0.0017 104.7 62.3 40.49
4.955 71.44 71.05 0.0054 112.8 59.7 47.07
5.670 70.56 69.88 0.0096 106.8 55.3 48.22
4.668 72.14 71.99 0.0021 103.4 44.6 56.87

Pork 

4.275 72.97 73.13 0.0022 104.2 60.4 42.03

5.533 70.23 69.95 0.0039 104.3 57.7 44.68

5.021 70.98 70.67 0.0044 107.8 60.2 44.16

5.669 74.21 74.04 0.0023 107.5 57.5 46.51

4.778 73.98 74.22 0.0032 103.4 55.2 46.62

4.786 70.33 70.87 0.0077 99.3 54.2 45.42

4.897 71.15 71.54 0.0056 102.1 49.6 51.42

5.126 72.23 71.99 0.0034 103.7 53.6 48.31

4.955 70.88 71.33 0.0063 102.3 55.7 45.55

4.668 73.24 73.99 0.0102 100.2 58.2 41.92

4.711 71.73 71.12 0.0085 97.2 57.9 40.43

4.876 72.56 72.06 0.0069 99.9 53.6 46.35

5.605 72.14 72.77 0.0087 102.5 57.3 44.09

5.002 72.23 72.67 0.0061 103.3 60.6 41.34

4.995 71.92 71.08 0.0117 99.7 54.4 45.44

Beef 

4.997 71.17 71.67 0.0070 101.7 59.5 41.49
 

 
a. Comparison between the predicted MC and the experimental data (beef)       b. Comparison between the predicted MC and the experimental data (pork) 

 
c. The verification of predictive error (beef)  d. The verification of predictive error (pork) 

 

Figure 5  Estimated goodness analysis of the proposed algorithm 
 

The measured curve and prediction curve based on the 
proposed algorithm of meat samples (beef and pork) are described 
in Figures 5a and 5b, the verification of predictive error is 
represented in Figures 5c and 5d.  In Figure 5a, the prediction 
curve is in line with the measured curve for the beef sample, 

indicating the suitability of the prediction algorithm.  While in 
Figure 5c, the trend of absolute error is asymptotically stable.  
When the drying time is after 40 min, the absolute error between 
the estimated value and the measured value is less than ±1%.  A 
similar conclusion can be drawn from the estimated results of the 
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moisture determination process in pork (shown as Figures 5b and 
5d). 

4  Conclusions 

In this study, a method for rapid determination of moisture 
content of meat samples based on information fusion technique is 
proposed.  When MMC is varied from 69.46% to 74.21%, the 
relative error of MMC measured by the proposed algorithm is 
0.0017-0.0117, the absolute error is less than 1% compared with 
AOAC.  The time-saving is about 40.18%-56.87% less than the 
official method.  The proposed method could provide a fast and 
reliable prediction of meat moisture content during the infrared 
drying process.  Also, this algorithm should be useful for 
developing a new moisture analyzer with a predictive function. 
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