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Abstract: China has the world’s largest planting area of paddy rice, but large quantities of paddy rice fall to the ground and are 

lost during harvesting with a combine harvester.  Reducing grain loss is an effective way to increase production and revenue.  

In this study, a monitoring system was developed to monitor the grain loss of the paddy rice and this approach was tested on the 

test bench for verifying the precision.  The development of the monitoring system for grain loss included two stages: the first 

stage was to collect impact signals using a piezoelectric film, extract the four features of Root Mean Square, Peak number, 

Frequency and Amplitude (fundamental component), and identify the kernel impact signals using the J48 (C4.5) Decision Tree 

algorithm.  In the second stage, the precision of the monitoring system was tested for the paddy rice at three different moisture 

contents (10.4%, 19.6%, and 30.4%) and five different grain/impurity ratios (1/0.5, 1/1, 1/1.5, 1/2, and 1/2.5).  According to 

the results, the highest monitoring accuracy was 99.3% (moisture content 30.8% and grain/impurity ratio 1/2.5), the average 

accuracy of the monitoring tests was 92.6%, and monitoring of grain/impurity ratios between 1/1 and 1/1.5 (>95.4%) had higher 

accuracy than monitoring the other grain/impurity ratios.  Monitoring accuracy decreased as impurities increased.  The 

lowest accuracy for grain loss monitoring was obtained when the grain/impurity ratio was 1/2.5, with monitoring accuracies of 

88.2%, 75.7% and 78.8% at moisture contents of 10.4%, 19.6% and 30.4%. 
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1  Introduction

 

China is the world’s most populous country.  By the end of 

2018, approximately 1.395 billion people populated the country, 

accounting for approximately 18.5% of the world’s total population.  

However, only 134.86 million hm2 of arable land exist in China, 

which makes up approximately 7% of the world’s arable land[1].  

In other words, China feeds 18.5% of the world’s population with 

7% of its arable land.  This is such a remarkable project that also 

illustrates the population pressure on the land and food in China.  

Supposing the grain loss rate per hectare of cultivated land could be 

reduced by 1% when harvesting and that the average rice output 

per hectare was 7500 kg, these numbers mean that 75 kg of loss 

grains per hectare would be saved.  That is, approximately 10 

billion kg of paddy rice can be saved in 130 million hm2 of Chinese 

cultivated land, which can meet the grain demand of 20 million 

people or so in the city (Beijing, the capital of China), which is 

equivalent to a country (one, Romania, or two, Portugal).  

Therefore, after fulfilling the mechanization of harvesting, how to 

monitor and control the grain loss in the process of rice harvesting 
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has become one of the most significant problems involved in 

intelligent harvesting in China. 

Among the performance parameters, including loss, breakage 

and impurity, the loss rate is the most important one for the rice 

combine harvester.  When crops are fed into the harvester from 

the header, the reel bats strike the crop ears, and grain loss can 

occur.  In the threshing progress, the threshing and separator 

structure and operation parameters directly influence the threshing 

performance indicators of which grain loss is the most important 

one.  Grains are blown out by airflow during the cleaning progress, 

and the loss during cleaning is unavoidable.  Therefore, grain loss 

occurs in the three stages—head-feeding, threshing and cleaning— 

when harvesting.  Considering that threshing grain loss accounts 

for a large proportion of the total loss, while grains are mixed and 

carried along with the stalks and straw during threshing, 

monitoring of the threshing rice loss in real-time is especially 

important and difficult. 

At present, the piezoelectric film is often used to collect the 

electrical impulses generated by grain and MOG (material other 

than grain) touching the sensor plate[2-5].  However, interference 

signals generated when harvesting in the field are inevitable 

because of the complex working environment of the combine 

harvester, including vibration disturbances, materials of many types 

impacting the plate, and changeable grain moisture content[6].  

Furthermore, the low recognition accuracy of the grain impact 

signals from abundant MOG impact signals of the various materials 

results in a decrease in measurement accuracy. 

Scholars have studied grain loss monitoring and control with 

the purpose of reducing the loss rate and improving profits.  YT-5 

type piezoelectric ceramic and PVDF films have been utilized as 
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sensing material to monitor grain sieve losses and grain separation 

losses in real-time in the working process of the combine 

harvester[5,7,8].  Relevant models between separation loss and crop 

throughput have been developed, and experimental studies have 

been carried out to estimate the grain separation performance 

utilizing impact-type sensors[9,10].  Craessaerts et al.[11] provided a 

fuzzy model for the prediction of sieve loss by the data input of fan 

speed and load on the sieve section.  Four pressure sensors were 

mounted on the cleaning section to monitor the sieve load[11-13].  

An artificial neural network was introduced to assess the grain 

losses in the field condition and the simulation result showed that 

the ANN method was appropriate and feasible to assess the grain 

losses[14]. 

In this study, a monitoring system was developed to determine 

the grain loss of the paddy rice.  KV-UAF42 (universal active 

filter) was configured for a range of high passage to filter the 

machine vibration interference signals.  Features of the material 

signals that impact the sensor plate were extracted, including the 

Root Mean Square, Peak Number, Frequency, and Amplitude, and 

a training data set was obtained.  A decision tree algorithm was 

used to mine the dataset and establish a kernel recognition model.  

The model was evaluated by the method of 10-fold cross-validation.  

In the end, grain loss for the paddy rice, the widely planted grain 

variety, was determined with the monitoring system, and the 

accuracy of this method was verified. 

2  Materials and methods 

2.1  Monitoring system design 

2.1.1  Signal acquisition 

A piezoelectric film was pasted on the sensitive plate to record 

the kernel-MOG mixture impact on the sensitive plate.  The size 

of the sensitive plate was 170 mm (length)×120 mm (width)×1 mm 

(thickness). 

When kernels and MOGs impacting the sensor plate, the 

vibration waves were captured by the piezoelectric film (diameter 

50 mm) and converted into voltage signals.  The voltage signals 

were amplified and filtered by the KV-UAF42 active filter module 

with the traditional high-pass filtering method.  The output analog 

signals were transmitted into the analog input port of the wiring 

terminal (AI 0, ADAM-3968 SCSI 68P Terminal Board REV.B1) 

and then transformed into digital signals by A/D conversion in the 

PCI-1710U Data Acquisition Card.  Finally, the captured 

sampling data were transported to the Industrial Computer.  The 

measuring instruments were connected to the circuit as shown in 

Figure 1. 

 
Figure 1  Connection of the measuring instruments to the circuit 

 

The vibration of the combine harvester influences the output 

voltage signals significantly, and after the fast Fourier transform 

(FFT), its frequencies are mainly lower than 800 Hz[8].  The 

piezoelectric film with a Resonance Frequency of 2.9 kHz is used.  

The KV-UAF42 high-pass filter with a center frequency of 5 kHz, 

which can filter the low frequency vibration interference of the 

working machine and let the high frequency collision signal on the 

sensor plate (5-20 kHz) pass is chosen[2-5].  The PCI-1710U Data 

Acquisition Card has 12-bit A/D conversion capability, and the 

sampling rate reaches 100 kS/s. 

2.1.2  Software 

The software was designed using Labview.  The flow 

diagram of the software is shown in Figure 2.  The lower and 

upper thresholds of the soft trigger voltage were set to −0.2 V and 

0.2 V, and the signals exceeding the voltage range of [−0.2, 0.2] V 

were captured and analyzed.  Four features of each captured 

signal were extracted, including the Root Mean Square (V), the 

Peak Number, the Frequency (Hz) and the Amplitude (V).  The 

frequency and amplitude were extracted from the fundamental 

component of the input signal, and the peaks and troughs above the 

threshold of half amplitude of the input signal were counted.  The 

collision signals of kernels and MOGs were shown in Figure 3.  

The data set, including extracted four features and the 

classifications for kernel and MOG, as shown in Table 1, and the 

data set was machine learned with Decision Tree algorithm. 

2.1.3  Recognition using decision tree 

Decision trees are methodologies used to classify data into 

discrete form using structured tree algorithms.  A standard tree is 

represented by the J48 algorithm, which consists of a root node, a 

number of leaf nodes, and a number of branches.  Each branch of 

a tree represents a chain of nodes from the root to a leaf, and each 

node represents an attribute (or feature)[15-17].  Decision trees are 

one of the most effective and widely used techniques in many areas 

of Data Mining, such as pattern recognition, machine learning, 

image processing and information retrieval[18-20]. 

 
Figure 2  Flow diagram of the software for classification of 

kernels and MOGs 
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Figure 3  Collision signals coming from kernels and MOGs’ impacting on the sensor plate 

 

Table 1  Data set of collision signals features for kernels and 

MOGs 

RMS A F P Class RMS A F P Class 

0.076 0.004 0.050 223 Kernel 0.061 0.003 0.457 247 MOG 

0.079 0.003 0.050 86 Kernel 0.061 0.003 0.038 64 MOG 

0.151 0.032 0.027 9 Kernel 0.061 0.003 0.100 83 MOG 

0.091 0.004 0.009 35 Kernel 0.062 0.004 0.206 57 MOG 

0.093 0.006 0.010 26 Kernel 0.063 0.006 0.032 27 MOG 

0.077 0.003 0.050 121 Kernel 0.063 0.005 0.484 82 MOG 

0.069 0.009 0.015 22 Kernel 0.059 0.004 0.443 42 MOG 

0.074 0.007 0.054 20 Kernel 0.061 0.001 0.037 294 MOG 

0.083 0.008 0.131 10 Kernel 0.063 0.002 0.038 173 MOG 

0.048 0.015 0.244 12 Kernel 0.058 0.005 0.038 17 MOG 

0.075 0.011 0.279 6 Kernel 0.061 0.001 0.050 329 MOG 

0.066 0.005 0.065 50 Kernel 0.126 0.02 0.357 6 MOG 

0.067 0.004 0.040 64 Kernel 0.073 0.002 0.032 24 MOG 

0.123 0.003 0.396 32 Kernel 0.063 0.002 0.037 101 MOG 

0.161 0.006 0.356 17 Kernel 0.075 0.014 0.207 11 MOG 

0.068 0.002 0.386 89 Kernel 0.058 0.002 0.025 88 MOG 

0.078 0.003 0.059 30 Kernel 0.074 0.001 0.021 147 MOG 

0.068 0.003 0.065 44 Kernel 0.067 0.001 0.047 217 MOG 

0.083 0.002 0.056 36 Kernel 0.065 0.002 0.280 183 MOG 

0.187 0.085 0.211 4 Kernel 0.066 0.003 0.023 140 MOG 

Note: A-Amplitude; F-Frequency; P-Peak number. 

Decision Tree algorithm J48 (C4.5) was used to mine the data 

of collision signal features and develop the tree-like recognition 

model, as shown in Figure 4.  The model tree was embedded in 

MathScript module of Labview to recognize kernel signals from 

the data. 

As shown in Figure 4, 19 nodes (10 leaf nodes, each 

represented by a rectangular box, and 9 internal nodes, each 

represented by a circle box) are included in the model tree.  The 

letters in the rectangles of the leaf nodes are related to the class 

kernel and MOG, and the numbers in the bracket represent 

classified cases/errors.  The estimate of the tree’s classification 

performance was obtained using stratified cross-validation of 

10-fold.  For kernel impact signals, the correctly identified TP 

number was 261, and the TPR of kernel classification was 96.3%.  

For MOG impact signals, the correctly identified TP number was 

36, and the TPR of MOG classification was 61.0%.  The weighted 

average TPR was 90.0%, which means that approximately 90.0% 

of the instances have been classified correctly.  This indicates that 

the results obtained from the training data are optimistic with what 

might be obtained from an independent test set from the same 

source.  

 
Figure 4  Kernel and MOG recognition model based on Decision tree algorithm 

 

2.2  Experimental method 

2.2.1  Test bench 

To simulate the effect of material falling down from the 

concave screen when harvesting, a sensor calibration test bench, 

which included the frame, the stepping motor, the transmission belt, 

and the thin flat sensitive plate, was designed as shown in Figure 5.  
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The sensor plate was installed 30 cm below the transmission belt.  

The angle between the sensor plate and the falling material was 45 

degrees.  With the help of the rotation speed adjustment of the 

stepping motor, the speed of the transmission belt connected with 

the stepping motor was capable of adjustment in the range of 

10-100 mm/s. 

Grains, short straw and stalks were mixed and dispersed on the 

transmission belt, which is driven by the stepping motor.  As the 

transmission belt conveyed the materials, the mixture fell and 

impacted the sensitive plate of the vibration measuring element. 

 
Figure 5  Test bench to simulate materials of grains, short straw 

and stalks falling down 

2.2.2  Test method 

The moisture content of the rice crop varies greatly at different 

times in one day (morning, noon, and afternoon) because of the 

influence of the environment and weather of paddy fields.  When 

the sunshine is high at noon, the moisture content is as low as 15% 

or even less.  Before sunset, the moisture content of the rice crop 

can increase up to 25% or even more with a decrease of 

temperature and the generation of fog in the field.  In addition, the 

proportion of material components (kernels and MOGs) beneath 

the concave screen changes with the field environment and 

operation parameters when harvesting.  As shown in Figure 6a, 

the two piles on the left are thick and thin straw, most of which can 

generate signals by impacting the sensor plate, and the pile on the 

right are stalks, which can rarely generate signals because of their 

light weight. 

To obtain the kernel-MOG mixture of different moisture and 

impurity rates, the rice crop was harvested when the expected 

moisture and impurity rates were reached and then transported to 

the laboratory[21].  The collected materials were divided into three 

groups according to the moisture content: 10.4% (L), 19.6% (M), 

and 30.4% (H), and the 1000-grain weight of each group was 

measured manually.  Similarly, each moisture-group was divided 

into five groups according to the “grain/impurity mass ratio”: 1/0.5 

(R1), 1/1 (R2), 1/1.5 (R3), 1/2 (R4), and 1/2.5 (R5).  Finally, 15 

groups of different moisture and grain/impurity mass ratio were 

obtained, and the mixture of each group was weighed and spread 

on the belt before the test started.  As the kernel-MOG mixture 

fell, the position of the sensor was adjusted to ensure that all of the 

mixtures fell on the sensor plate, as shown in Figure 6b.  

The impact signals of the mixture were counted according to 

the two different cases—“with recognition model” and “without 

recognition model”—and the monitoring accuracies of the two 

methods were calculated and compared to verify the effect of the 

recognition model. 

 
a. Straw and stalks 

 

 
b. Kernel-MOG mixture falling onto the sensor 

Figure 6  Experimental method 
 

The 1000-grain weight changes with the grain moisture.  

Through weighing experiments, the 1000-grain weight is recorded 

in Table 2, corresponding to different grain moisture content.  

Each group of grain/impurity mixture was 10 g weight and was fall 

onto the sensor plate in 5 s. 
 

Table 2  1000-grain weight of three different grain moisture 

contents 

No. Moisture/% 1000-grain weight/g 

1 10.4 26.0 

2 19.6 29.0 

3 30.8 33.0 
 

2.2.3  Evaluation of experiment 

The monitoring accuracy of the sensor was calculated after the 

tests.  The following formula was used to determine the accuracy 

of grain monitoring for paddy rice at three different moisture 

contents and five different impurity rates.  

( 1)
100%

1000

MK R
P

mR


                (1) 

where, P is the accuracy of grain monitoring; M is the 1000-grain 

weight, g; K is the number of monitored grains; m is mixture 

weight, g; R is the “grain/impurity mass ratio”, hereinafter referred 

to as “grain/impurity ratio”. 

3  Results and discussion 

3.1  Calibration test 

It is observed from Tables 3-5 that the average detection 

accuracy of the three different moisture contents—the average 

detection accuracy of 93%, 94% and 91% correspond to the 

moisture of 10.4%, 19.6%, and 30.8%, respectively—did not fall 

below 90% with the recognition model.  At the same moisture 

content, the detection accuracy of the higher impurity rate had 

higher detection accuracy than that of the lower impurity rate. 
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Table 3  Monitoring results of moisture 10.4% mixture group 

 
Grain/impurity 

ratio 

Monitoring kernel 

number 

Actual kernel 

number 
Accuracy 

1 1/0.5(6.67 g/3.33 g) 242 256 94.5% 

2 1/1(5 g/5 g) 199 192 96.4% 

3 1/1.5(4 g/6 g) 150 154 97.4% 

4 1/2(3.33 g/6.67 g) 142 128 89.1% 

5 1/2.5(2.86 g/7.14 g) 123 110 88.2% 
 

Table 4  Monitoring results of moisture 19.6% mixture group 

 
Grain/impurity 

ratio 

Monitoring kernel 

number 

Actual kernel 

number 
Accuracy 

1 1/0.5(6.67 g/3.33 g) 235 230 97.8% 

2 1/1(5 g/5 g) 175 172 99.3% 

3 1/1.5(4 g/6 g) 143 138 96.5% 

4 1/2(3.33 g/6.67 g) 113 115 98.3% 

5 1/2.5(2.86 g/7.14 g) 120 99 78.8% 
 

Table 5  Monitoring results of moisture 30.8% mixture group 

 
Grain/impurity 

ratio 
Monitoring kernel 

number 
Actual kernel 

number 
Accuracy 

1 1/0.5(6.67 g/3.33 g) 224 202 89.1% 

2 1/1(5 g/5 g) 159 152 95.4% 

3 1/1.5(4 g/6 g) 123 121 98.3% 

4 1/2(3.33 g/6.67 g) 105 100 95.0% 

5 1/2.5(2.86 g/7.14 g) 109 87 75.7% 
 

The detection accuracy was 99.3% (the highest) at the moisture 

content of 30.8% and the grain/impurity ratio of 1/1, and it was 

75.7% (the lowest) at the moisture content of 19.6% and the 

grain/impurity ratio of 1/2.5.  The detection accuracy was more 

than 95.4% at the grain/impurity ratio of 1/1 and 1/1.5, as shown in 

Figure 7.  

The grain/impurity ratio had a greater impact on the accuracy 

of the monitoring device than the moisture content, mainly because 

the impurity detection accuracy (TPR) was not that high (61.0%), 

resulting in a considerable portion of impurities that were 

misidentified as grains. 

3.2  Comparison test 

To verify the validity of the developed monitoring system, the 

monitoring accuracy of the system “with recognition model” and 

“without recognition model” were compared at the grain/impurity 

ratio levels of 1/0.5 (R1), 1/1 (R2), 1/1.5 (R3), 1/2 (R4) and 1/2.5 

(R5) and moisture content levels of 10.4%, 19.6% and 30.8%. 

When the impurity rate of the mixture increased, the 

monitoring accuracy using the recognition model was stable, 

whereas the monitoring accuracy without the identification model 

decreased greatly, as shown in Figures 8a-8c.  

The increase in the impurity contents made it more difficult to 

monitor grain impact signals.  The impact signals formed by a 

large amount of impurity of thick straw and heavy stalks on the 

sensor plate were similar to those of the grain impact signals.  If 

not processed, the monitoring accuracy would be extremely 

unstable.  After distinguishing by the “grain-impurity” recognition 

model, the monitoring accuracy was steady and improved by 

approximately 30%, on average. 

 
Figure 7  Detection accuracy based on the moisture and impurity rate of paddy rice 

 
a. Moisture 10.4%  b. Moisture 19.6% 

 
c. Moisture 30.8% 

Figure 8  Comparison tests results of different moisture 
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4  Conclusions 

The monitoring system for grain loss of paddy rice was 

developed to determine the grain loss based on the different 

moisture contents and grain/impurity ratios of materials beneath the 

concave screen.  The moisture contents between 10% and 30% 

and the grain/impurity ratios between 1/0.5 and 1/2.5, which were 

involved in almost all of the grain-MOG mixture during combine 

harvesting, were taken into consideration in the development of the 

monitoring system.   

The results showed that the piezoelectric film was capable of 

acquiring the impact signals of grains and MOGs.  Four features 

were extracted from the signals: Root Mean Square (RMS), peak 

number, Frequency and Amplitude.  A Kernel/MOG recognition 

model based on the Decision Tree J48 (C4.5) algorithm achieved a 

certain precision of classification.  The validation experiments 

showed that the average accuracy of the monitoring system did not 

fall below 90.7% at moisture contents between 10% and 30% and 

grain/impurity ratios between 1/0.5 and 1/2.5, and the monitoring 

accuracy was improved by approximately 30%, on average. 
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