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Abstract: Low temperature chilling damage is one of the most serious disasters in maize production, which is a typical 
non-linear complex issue with numerous influencing factors and strong uncertainty.  How to predict it is not only a hot 
theoretical research topic, but also an urgent practical problem to be solved.  However, most of the current researches are 
focusing on post-disaster static descriptive assessment rather than pre-disaster dynamic predictive analysis, resulting in the 
problems such as no indicative result and low accuracy.  In this study, the satisfaction rate of environmental accumulated 
temperature for maize production was used to measure the chilling damage risk, and a model for maize chilling damage risk 
prediction based on probabilistic neural network was constructed.  The model was composed of input layer, pattern layer, 
summation layer and output layer.  The obtained results showed that the prediction accuracy for the most serious risk level was 
as high as 0.91, and the rates of the Type I Error and Type II Error made by the model were 0.1 and 0.09, respectively.  This 
indicated that the model employed was promising with good performance.  The results of this research are of both theoretical 
significance for providing a new reference method of pre-disaster prediction to study maize chilling disaster risk and practical 
significance for reducing maize production risk and ensuring yield safety. 
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1  Introduction  

Maize needs a certain accumulated temperature in the whole 
growth period to mature normally.  Heat deficiency caused by low 
temperature will cause slow growth and delay development of 
maize.  Maize chilling damage refers to the disaster caused by low 
temperature and calorific deficiency during the process of maize 
growth, which can result in delayed growth and production 
reduction, even no production due to the low temperature and frost 
hazard in the later growth period.  Low temperature chilling 
damage is one of the most serious disasters in maize production; 
especially in Northeast China, the chilling damage caused by low 
temperature in growing season is the biggest meteorological 
disaster affecting agricultural production[1].  More specifically, in 
most parts of Northeast China, due to the low temperature and 
insufficient accumulated temperature in the growing season, maize 
usually gets slow growth and delayed maturity; in some severe 
years, maize even could not mature normally before autumn frost, 
which would result in maize yield reduction by more than 15%[2].  
Studies have shown that from now on to 2044, the risk of maize 
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chilling damage in the eastern Songnen Plain and the eastern 
Sanjiang Plain will still increase[3].  Therefore, it is of great 
significance to study the occurrence regularity and risk prediction 
method of maize chilling damage to prevent low temperature 
related disasters and ensure maize production safety[4], which can 
also provide an important basis for scientific maize production 
planning and disaster prevention and mitigation[5]. 

At present, the relevant study of chilling damage is both a 
research hotspot in the field of agro-meteorology disaster 
prediction and an urgent practical problem to be solved in relevant 
agriculture production and disaster prevention departments.  
Especially with the context of future climate change, more and 
more attention has been paid to chilling damage risk assessment 
and prediction by scholars and policy makers in various countries.  
In foreign countries, relevant studies began in the late 1980s, 
mainly focusing on the establishment of assessment indices and 
system method.  In China, relevant studies started in the 1990s, 
focusing on the exploration of risk analysis method and 
technology[6].  Among all existing related studies, the specific 
methods used can be summarized into three categories.  (1) The 
first category is index-based evaluation method, which mainly 
focuses on selection, optimization and weight calculation of 
disaster risk indicators and then evaluating disaster risk level by 
constructing specific mathematical models. Typical implementation 
method includes multi-factor analysis[7], analytic hierarchy process, 
fuzzy comprehensive evaluation, principal component analysis, 
expert scoring method, historical comparison method and Delphi 
method, etc.  For example, Ma et al.[8] established a 
comprehensive climate-disaster risk assessment model for maize 
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chilling damage, which was composed of cold climate risk index 
and agricultural production structure factors such as maize yield 
and area ratio.  Gao et al.[9,10] constructed a chilling damage index 
in maize growth stage based on heat index, and systematically 
analyzed the temporal and spatial distribution and periodic 
characteristics of chilling damage at different growth stages of 
Maize in Northeast China in recent 50 years.  Zhu et al.[11] took 
accumulated equivalent temperature, negative accumulated 
equivalent temperature and heat matching index as indicators to 
study the identification method for cold damage year based on rice 
biological characteristics, circadian temperature rhythm and 
temperature coefficient.  Ma et al.[12] executed a low-temperature 
treatment at different altitudes on the northern slope of Changbai 
Mountain to reveal the effect of cold accumulated temperature in 
different phases of flowering on Japonica rice seed setting rate and 
to define the weather indexes of rice chilling injury.  (2) The 
second category is the probability-based analysis method, which 
usually uses mathematical statistics method to analyze the sample 
data to obtain the statistical regularity of disaster risk, and then 
carries on disaster risk assessment.  Typical analysis method 
includes regression model, time series model, clustering analysis, 
probability density function estimation, information diffusion 
theory, etc.  For example, some scholars have carried out risk 
assessment of low temperature and frost in agriculture based on 
information diffusion theory[13-15].  According to the principle of 
crop growth and development, Lin et al.[16] counted the number of 
frost days of different disaster grades at different growth stages of 
winter wheat and calculated the probability of frost occurrence for 
different grades during the whole growth period, and then the risk 
degree of frost disaster of winter wheat was evaluated.  (3) The 
third category is scenario-simulation-based method, which can be 
divided into two perspectives.  One is to establish a crop growth 
model under disaster risk scenarios by describing the dynamic 
growth process of crops, and then dynamically assess the 
meteorological disaster risk.  For example, Ma et al.[17] applied the 
improved dynamic model of maize growth, development and dry 
matter accumulation, and established a risk assessment model of 
maize chilling damage.  Cai et al.[18] studied the drought and cold 
disaster during the two growth stages of Maize 
germinating-tasseling and tasseling-maturing, and dynamically 
evaluated the risk of drought and chilling damage of Maize in 
Northeast China.  Another perspective is to use crop models to 
simulate the growth process of crops, and assess the risk of 
agro-meteorological disasters by setting different model parameters.  
For example, Wang et al.[19] and Zhang et al.[20] assessed the risk of 
maize cold damage in Northeast China and the risk of late frost in 
Huanghuai region by introducing WOFOST (world food study) 
model. 

To some extent, these related studies all have revealed the 
formation mechanism, influencing factors, calculation methods and 
techniques about maize chilling disaster.  However, there are only 
a few studies that carry out dynamic risk analysis using crop 
simulation models for the whole or critical period of crop growth, 
while most of the current researches are usually focusing on 
post-disaster static descriptive assessment rather than pre-disaster 
dynamic predictive analysis.  In addition, most of the methods 
used are traditional mathematical statistics methods, while machine 
learning algorithms based on data mining are very rare.  Although 
the calculation process of traditional method is simple, there are 
some issues to be improved, such as unstable accuracy and no 
indicative result.  The risk of maize chilling disaster is a typical 

non-linear complex problem with strong uncertainty.  On the one 
hand, it is related to the fluctuation of relevant agro-meteorological 
factors.  On the other hand, it is also related to the imprecise 
calculated results by the unsuitable method used to understand and 
evaluate the disaster risk.  Probabilistic neural network (PNN) is a 
parallel algorithm based on the Bayesian minimum risk criterion.  
PNN places Bayesian estimation in a feed forward neural network 
and makes Bayesian decision according to the nonparametric 
estimation of probability density function. It has the characteristics 
of both fast operation and high accuracy[21].  Based on the 
advantages of PNN in solving complex non-linear problems, this 
study attempts to predict low-temperature chilling damage risk in 
maize growth period with PNN, which can provide a new reference 
method to study the risk of maize chilling disaster and has very 
good practical significance for reducing the risk of maize 
production loss and ensuring yield safety. 

2  Materials and methods 

2.1  Description of source data 
In this study, the satisfaction rate of accumulated temperature 

during maize growth period, which referred to the satisfaction 
degree of accumulated temperature of the environment to that 
required by maize growth, was used to measure the risk of low 
temperature chilling damage in maize production.  The original 
data used are 50 years’ meteorological daily data from 235 
national basic meteorology stations.  Among them, 77 (one-third 
of the total) stations were randomly selected as testing samples, 
and the remaining two-thirds, namely 158 stations, were used as 
training samples.  Each station contains five basic information, 
namely station ID, station name, latitude, longitude and altitude, as 
shown in Table 1.  In addition, each station also contains 50 
years’ daily meteorological data of 12 indices, one of which used 
in this study is daily average temperature as shown in Table 2.  
The stations distributed in 10 provinces in China's main maize 
production areas, namely the Northeast China and Huanghuaihai 
regions, as shown in Figure 1.  All the original data are from the 
China Meteorological Science Data Sharing Service Network.  In 
the practice of maize production, only when the accumulated 
temperature of the target planting environment is stably greater 
than the accumulated temperature required by maize growth can 
maize crop mature normally.  Therefore, in the next sections, the 
characteristic values of accumulated temperature will be 
calculated. 

 

Table 1  Examples of basic information of meteorology 
stations 

Station ID Station name Latitude/(°) Longitude/(°) Altitude/m 

50468 Heihe 50.25000 127.45000 166 

50514 Manzhouli 49.56667 117.43333 662 

50656 Bei'an 48.28333 126.51667 270 
Note: The table omits the basic information of other stations. 
 

Table 2  Examples of daily average temperature data of 
meteorology stations 

Station ID Year Month Day Daily average 
temperature/°C 

50136 2010 6 1 15.8 

50136 2010 6 2 17.7 

50136 2010 6 3 20.4 

Note: Only one station is selected in the table, and the data of three days is 
presented.  The original data are from 235 stations with 18 250 d. 
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Figure 1  Spatial distribution of meteorology station samples 

 

2.2  Calculation of accumulated temperature characteristics 
Because only the temperature stably higher than 0°C is 

significant for maize growth, in this study the accumulated 
temperature of maize planting environment is measured by the 
cumulative sum of the daily average temperatures which are stable 
above 0°C at the corresponding meteorology station.  Therefore, 
for each meteorology station, the corresponding environmental 
accumulated temperature characteristics can be calculated by 
Equations (1)-(3), 
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where, i is the year; j is the date; B and E represent the start and end 
dates respectively when the daily average temperature is stable 
above 0°C; dij is the daily average temperature on date j of year i, 
°C; ti is the environmental accumulated temperature in year i, °C; μ 
and σ are the mean and standard deviation of environmental 
accumulated temperature during recent 50 years.  The examples of 
calculated statistics (μ and σ) of environmental accumulated 
temperature at all stations are shown in Table 3. 

 

Table 3  Examples of calculated environmental accumulated 
temperature statistics and maize chilling damage risk 

information 

Station ID Mean (μ) Standard 
deviation (σ)

Satisfaction 
rate (P) 

Risk 
level (Y) 

58436 5678.56 193.25 1.000000 0 

58531 5975.34 209.25 1.000000 0 

50844 3385.69 155.47 0.993446 1 

53231 3216.11 167.18 0.901939 1 

50742 3063.84 158.87 0.656098 2 

50468 2682.53 143.73 0.013594 2 
Note: the table omits the calculated environmental accumulated temperature 
statistics and maize chilling damage risk information of other stations. 

 

2.3  Test of accumulated temperature probability distribution 
In order to calculate the satisfaction rate of environmental 

accumulated temperature for maize production, it is necessary to 
first determine the probability distribution type of accumulated 

temperature.  According to experience, the daily average 
temperature (the average value of the average temperature of many 
periods in a day) should follow the normal distribution.  The 
environmental accumulated temperature can be expressed as a 
linear combination of the daily average temperature of each day in 
the growth period, so it can be inferred that the environmental 
accumulated temperature should also follow the normal distribution.  
In this study, a combination of qualitative and quantitative methods 
is used to test and determine the probability distribution type of 
environmental accumulated temperature. 

Randomly take one station as an example, firstly, in qualitative 
analysis, from Figure 2, it can be seen that the environmental 
accumulated temperatures are approximately symmetrically 
distributed with respect to the mean value.  Besides, from the 
normal Q-Q diagram in Figure 3, it can be clearly seen that each 
point is very close to the solid line.  Therefore, it can be 
qualitatively said that the environmental accumulated temperature 
follows the normal distribution.  Secondly, in quantitative analysis, 
the Kolmogorov-Smirnov test and Shapiro-Wilk test were used to 
determine whether the environmental accumulated temperature 
followed the normal distribution.  All calculations were 
implemented in the SPSS17.0 software.  When the significance 
level is set as 0.05, the obtained P-values of Kolmogorov-Smirnov 
and Shapiro-Wilk tests were 0.2 and 0.5, respectively; both were 
greater than the significance level 0.05, which quantitatively further 
showed that the normal distribution can be used to simulate the 
distribution of environmental accumulated temperature.  
Therefore, in this study, the normal distribution was used to 
calculate the environmental accumulated temperature satisfaction 
rate in the following section. 

 
Figure 2  Histogram of environmental accumulated temperature of 

one example meteorology station named Changchun 

 
Figure 3  Normal Q-Q plot of environmental accumulated 

temperature of one example meteorology station named Changchun 
 

2.4  Calculation of chilling damage risk 
After knowing that the environmental accumulated 

temperature follows the normal distribution, for each meteorology 
station, the probability that the environmental accumulated 
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temperature satisfies maize growth in production can be calculated 
by Equation (4),  

2
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where, H is the accumulated temperature required by maize growth, 
°C; P is the accumulated temperature satisfaction rate of the target 
planting environment corresponding to the meteorology station.  
In this study, in order to better control the risk, H=3000°C was 
taken conservatively according to the average value that most 
maize varieties need for accumulated temperature in the whole 
growth period. 

Then, the risk level Y can be determined by Equation (5) based 
on the field expert experiences,  
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where, 0 represents no risk, 1 indicates low risk, 2 means serious 
risk, and level 0 is the basis of risk level, corresponding to the risk 
level information in Table 3.  
2.5  Chilling damage risk prediction based on PNN model 

Probabilistic neural network[22], proposed by D. F. Specht in 
1989, can be regarded as a radial basis function neural network, 
which combines density function estimation and Bayesian decision 
theory, having the characteristics of simple structure and wide 
applications[23-25].  The topological structure of probabilistic 
neural network used in this study is shown in Figure 4, which 
consists of four layers: input layer, pattern layer, summation layer 
and output layer.  

 
Figure 4  Topology of the constructed PNN model 

 

Suppose the feature dimension of each sample be L, in this 
study L=3 (latitude, longitude, altitude); the number of testing 
sample be M, in this study M =77; the number of training sample be 
N, in this study N=154; the number of risk levels is S, in this study 
S=3 (risk level 0, 1 and 2).  In addition, let the testing sample set 
be X={Xi}={Xik}, where Xi is the ith testing sample, Xik is the kth 
feature of Xi, 1≤i≤M, 1≤k≤L; Training sample set be T={Tj}={Tjk}, 
where Tj is the jth training sample, Tjk is the jth feature of Tj, 1≤j≤N, 
1≤k≤L; Risk level set is C={Cu}, where Cu is the uth risk level, 
1≤u≤S. 

Then the number of neurons in the input layer is equal to the  

sample feature dimension, namely there are three neurons in input 
layer in this study as shown in Figure 4.  The number of neurons 
in the pattern layer is equal to the number of training samples.  
Pattern layer is essentially radial base layer, where each neuron 
corresponds to a radial base center (also corresponding to a training 
sample).  So for any input vector (testing sample) Xi, the output of 
the jth neuron in pattern layer is determined by Equation (6),  
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where, Gij is the probability density of the jth neuron in pattern 
layer; ||Xi-Tj|| is the distance between the ith testing sample and the 
jth training sample; σ is a smoothing factor which is a 
hyperparameter of the model and is usually a constant value 
between (0, 1). 

The number of neurons in the summation layer is equal to the 
number of risk levels, namely there are three summation neurons in 
this study as shown in Figure 4.  The summation layer calculates 
the weighted summation output of the neurons belonging to the 
same risk level in pattern layer as shown in Equation (7), where Viu 
is the output value of the uth neuron in summation layer 
corresponding to Xi, and Nu is the number of neurons belonging to 
the uth risk level in pattern layer. 
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The number of neurons in the output layer is 1.  Output layer 
firstly normalizes the output of the summation layer to get the 
probabilities that the input sample Xi belongs to different risk levels 
as shown in Equation (8), and then judges the final predicted risk 
level that the input test sample belongs to as shown in Equation (9). 
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where, V′iu is the normalized value of Viu; îY  is the final predicted 
risk level corresponding to the max value of V′iu. 

Considering that the value of different features of input 
variable varied greatly, in order to eliminate the impact of 
inconsistent measurement units, for all samples each feature value 
was pre-processed by standardization method before being fed into 
the model.  Furthermore, in order to compare the effects of 
different standardization methods on prediction result, two different 
standardization methods that are shown as Equations (10)-(11) 
were adopted in data pre-processing stage, where MIN(.) and 
MAX(.) were the minimization function and maximization function, 
respectively; MEAN(.) and STD(.) were the mean value and 
standard deviation value, respectively.  So all the values inputted 
into the model were actually the standardized values, namely X'.  
Here, Equation (10) was defined as MAX-MIN method and 
Equation (11) as MEAN-STD method. 
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Finally, the accuracy of classification predicted by the model 
is determined by Equation (12), where M is the total number of 
testing samples; S is the number of risk levels, and Tu is the number 
of samples correctly classified into the uth risk level. 
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3  Results and discussion 

All data processing and model calculation in this study were 
implemented in Python 3.7.  Firstly, in order to determine the 
optimal value of the hyperparameter σ, the value of 0.05 was taken 
as step and investigated the change of the model accuracy when σ 
varied in the interval (0, 1) with different step values.  The 
difference caused by MAX-MIN pre-processing method and 
MEAN-STD pre-processing method with different values of σ is 
shown in Figure 5, from which it can be seen that the accuracy of 
MEAN-STD pre-processing method is generally higher than that of 
MAX-MIN method.  By MEAN-STD pre-processing method, the 
accuracy of the model is basically stable with little fluctuation, and 
it also has good precision performance for different σ values.  
However, the accuracy by MAX-MIN pre-processing method 
varies greatly when σ is greater than 0.25, and the overall 
performance is relatively low and unstable.  Therefore, in this 
experiment, the MEAN-STD method was finally chosen for 
pre-processing the original data before inputted into the model.  In 
this case, the relatively optimal value of the hyperparameter σ is 0.8 
corresponding to the highest precision, which can be clearly seen 
from Figure 5. 

 
Figure 5  Effects of different pre-processing methods with 

different σ values on precision 
 

When the optimal pre-processing method was determined as 
MEAN-STD and the optimal value of hyperparameter σ was 
chosen as 0.8, the final predicted classification results of the model 
could be obtained as shown in Figure 6, and the prediction details 
of each risk level could be got as shown in Table 4.  From Figure 
6, it can be seen that for risk level 0 and risk level 2, the number of 
predicted results from the model is less than the actual sample 
number, while for risk level 1, the number of predicted results is 
more than that of observation.  This is a phenomenon of 
classifying the cases in the two end levels into the middle level, 
which shows that the prediction trend of the model is somewhat 
conservative. 

According to Table 4, it can be calculated and obtained that the 
overall accuracy of the model for the three risk levels is 0.81 
((27+14+21)/77).  This performance is generally good in the field 
of agricultural disaster research where the influencing factors are 
very complex and usually with strong uncertainty.  Besides, for 
the risk level 2 (the most serious), the accuracy of the model is as 
high as 0.91 (21/23), which is a very good performance in this field.  
So the prediction performance of the model is acceptable especially 
for cases with serious risk levels. 

 
Figure 6  Predicted classification results of the model for  

testing samples 
 

Table 4  Details of predicted classification results for  
each risk level 

 Predicted Risk 
Level 0 

Predicted Risk 
Level 1 

Predicted Risk 
Level 2 

Observed Risk 
Level 0 27 7 0 

Observed Risk 
Level 1 5 14 1 

Observed Risk 
Level 2 0 2 21 

 

What’s more, according to Table 4, it can be obtained that the 
ratio of Type I Error made by the model (classifying the non-risky 
samples as risky ones or the less risky samples as more serious 
ones, shown as the bold and underlined numbers in the upper right 
corner of Table 4) is 0.1 ((7+0+1)/77).  The ratio of the Type II 
Error made by the model (classifying the risky samples as risk-free 
or risk-less ones, shown as the bold and italic numbers in the lower 
left corner of Table 4) is 0.09 ((5+0+2)/77).  Considering the 
impact of the two types of errors on maize production, the second 
type of error is more concerned.  That is to say, it is much more 
dangerous to mistake a risky sample as a risk-less one than to 
mistake a risk-less one as a risky one.  The rate of second type 
error of the model is smaller than that of the first type error, so the 
model is of practical value in predicting the risk of maize chilling 
damage, which is helpful for risk control in agriculture production.  
In addition, according to Table 4, through further analysis, it can be 
known that the model does not produce the phenomenon of 
over-level prediction errors, namely the sample of level 0 is not 
mistakenly predicted to be level 2 and the sample of level 2 is also 
not mistakenly predicted to be level 0.  This implies that the 
model has good application value. 
 

4  Conclusions 
Maize chilling damage by low temperature is a serious disaster 

in maize production.  Prediction of its risk is a typical non-linear 
complex issue.  Probabilistic neural network is a kind of 
classification neural network with simple structure, easy algorithm 
and good performance.  It can use linear learning algorithm to 
achieve the function of non-linear approximation, allows increasing 
or reducing training data without re-training the model and has the 
characteristics of global optimization and fast operation speed, 
which is suitable for the prediction of maize chilling damage risk.  
Therefore, in this study, the phenomenon of low temperature and 
chilling damage in maize production was studied, and a risk 
prediction model of maize chilling damage based on probabilistic 
neural network was established.  The method is of great 
significance to reduce the risk of maize production. 

Through empirical analysis and data calculation, the following  
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concrete conclusions were obtained: Firstly, the environmental 
accumulated temperature during maize growth period, which was 
used to calculate maize chilling damage risk, followed the normal 
distribution, and the risk of chilling damage could be calculated by 
probability model of normal distribution.  Secondly, to predict the 
risk of maize chilling damage by probabilistic neural network, the 
original data were standardized by different pre-processing 
methods, and the accuracy of MEAN-STD method was higher than 
that of MAX-MIN method.  Thirdly, the optimal value of the 
model hyperparameter, namely smoothing coefficient σ, was 
obtained as 0.8 by trial-and-error method.  Fourthly, the overall 
accuracy of the model was 0.81, and especially the prediction 
accuracy of the risk level 2 (the most serious level) was as high as 
0.91.  Lastly, the rates of the Type I Error and Type II Error made 
by the model were 0.1 and 0.09, respectively.  The model had a 
smaller Type II Error and did not produce over-level prediction 
errors. 

In summary, all these finds indicate that the risk prediction 
model of maize chilling damage in growth period based on 
probabilistic neural network has very good prediction performance 
and credibility, which is conducive to chilling damage risk control 
in maize production.  It has good academic and theoretical 
reference significance for transforming post-disaster evaluation to 
pre-disaster prediction and expanding new ideas for the risk study 
of maize chilling disaster.  The model is also of great practical 
significance for supporting scientific maize planting plans, making 
early disaster prevention and mitigation measures, and ensuring the 
safety of our grain production.  In the next step, the real-time 
assessment and dynamic prediction of maize chilling damage risk 
based on adaptive probabilistic neural network algorithm will be 
further studied under the background of big data and the context of 
global climate change. 
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