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Abstract: Predicting crop yield timely can considerably accelerate agricultural production management and food policy-
making, which are also important requirements for precise agricultural development. Given the development of hyperspectral
imaging technology, a simple and efficient modeling method is convenient for predicting crop yield by using airborne
hyperspectral images. In this study, the Unmanned Aerial Vehicle (UAV) hyperspectral and maturity yield data in 2014-2015
and 2017-2018 were collected. The winter wheat yield prediction model was established by optimizing Vegetation Indices
(VIs) feature scales and sample scales, incorporating Partial Least Squares Regression (PLSR), Random Forest algorithm (RF),
and Back Propagation Neural Network algorithm (BPN). Results showed that PLSR stands out as the optimal wheat yield
prediction model considering stability and accuracy (RMSE=948.88 kg/hm’). Contrary to the belief that more input features
result in higher accuracy, PLSR, RF, and BPN models performed best when trained with the top 3, 8, and 4 VIs with the highest
correlation, respectively. With an increase in training samples, model accuracy improves, reaching stability when the training
samples reach 70. Using PLSR and optimal feature scales, UAV yield prediction maps were generated, holding significant
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value for field management in precision agriculture.
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1 Introduction

Food shortage has been a global concern, which is related not
only to the national economy and people’s livelihood but also to the
essence of national development!!. Winter wheat is one of the
primary grain crops, and the accurate and timely prediction of wheat
yield information has been the focus of studies on agriculture®.
Currently, research on predicting crop yields primarily revolves
around traditional sample estimation and Remote Sensing (RS)".
While traditional methods offer high precision, they necessitate
substantial human resources and equipment costs*. In contrast,
hyperspectral RS technology is distinguished by its high spectral
strong band continuity, and abundant spectral
This technology provides an opportunity for
monitoring crop growth and predicting yields in a timely, efficient,
and non-invasive manner'®’.

resolution,
information®.

In the field of precision agriculture, RS yield prediction devices
are mainly categorized into proximal handheld devices® and
Unmanned Aerial Vehicle (UAV) platforms®”. While proximal
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handheld devices can achieve non-destructive advance yield
predictions, they still exhibit significant gaps in terms of timeliness
and regional coverage when compared to UAV platforms!”. UAV
platforms, equipped with sensors, offer a flexible, rapid, and non-
invasive means for conducting multi-temporal observations of field
wheat, leading to the generation of yield prediction maps"". These
platforms can be outfitted with various sensors, such as RGB,
multispectral, and hyperspectral cameras, enabling the capture of
diverse data for comprehensive analysis. RGB and multispectral
cameras, due to their low cost and portability, have become the
most commonly used tools currently!™'. However, their limited
spectral their
quantitative agriculture. High spectral resolution narrowband

resolution restricts potential applications in
cameras can capture richer spectral information and finer surface

features, offering enhanced practical value in various
applications*'?. Fan et al.'” successfully estimated corn yield using
the full-band a UAV-mounted
hyperspectral camera. Utilizing high-resolution UAV hyperspectral
reflectance data, Kaes et al.' estimated wheat LAI (leaf area index)

and chlorophyll, subsequently employing this information for yield

reflectance obtained from

prediction. However, hyperspectral data often involve hundreds of
bands, posing challenges such as large data volume, information
redundancy, and complexity in band selection for yield estimation
based on full-spectrum reflectance!”. In contrast, Vegetation Indices
(VIs), typically derived from a few selected bands, offer a more
straightforward and intuitive expression of vegetation status and
growth conditions®"*". They have been widely employed in RS crop
yield estimation?!. In recent years, the increasing number of VIs
associated with crop growth and yield information has posed a new
challenge in determining which and how many VIs should be
selected as optimal features for crop yield prediction models.


https://doi.org/10.25165/j.ijabe.20241702.5869
mailto:xuxb77@whu.edu.cn
mailto:862696556@qq.com
mailto:sdny_xa@163.com
mailto:fenghaikuan123@163.com
mailto:zy928286257@163.com
mailto:lizh323@126.com
https://www.ijabe.org

April, 2024 Xu X B, etal.

Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images

Vol. 17No.2 261

As computer capabilities for data processing and analysis
continue to advance, a multitude of RS yield prediction models
based on statistical regression and machine learning have
emerged”**.. Tan used the Partial Least Squares Regression (PLSR)
algorithm to analyze the quantitative relationship between satellite
RS variables and actual wheat yield and reported that the PLSR
algorithm is better than the linear regression and principal
component analysis algorithm®”. Su et al.” showed that Back
Propagation Neural Network (BPN) could be better applied for
grain yield prediction than methods by stepwise regression and gray
correlation modeling. Yue et al.*” utilized a Random Forest (RF)
algorithm to combine spectral data with VIs for the regression
modeling of winter wheat biomass and confirmed the potential of
the RF algorithm for the RS prediction of winter wheat biomass.
However, in most studies utilizing these algorithms for crop yield
prediction, various VIs were directly used as input features without
pre-optimization of these features®™ . Furthermore, randomness is a
characteristic of these models, and differences in model randomness
and initial conditions often yield stochastic results, leading to
insufficient stability in crop yield prediction™*". Therefore, it is
crucial to further investigate how the stability in the output results
of these yield prediction models is influenced by the size of features
and samples.

In addressing the aforementioned issues, this study utilized
high-spectral data from 2014-2015 and 2017-2018 to compute and
screen multiple VIs. Using the PLSR, BPN, and RF algorithms,
wheat yield prediction models were constructed based on different
feature and sample scales. The objectives were as follows: 1) to
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Figure 1

2.2 Data acquisition
2.2.1 UAYV Hyperspectral data acquisition
The UAV hyperspectral images were acquired during the

select the optimal yield prediction model; 2) to determine the
optimal number of features for different yield prediction models;
3) to assess the impact of varying sample sizes on the stability and
accuracy of the yield prediction models.

2 Materials and methods

2.1 Study area and experimental design

The experimental design was performed during the growing
seasons of 2014-2015 and 2017-2018 at the Xiaotangshan
experimental site (116.44°E, 40.18°N) in Beijing, China (Figure 1).
The experimental site is located at an average altitude of 36 m and
has a warm temperate semi-humid continental monsoon climate.
This climate is mild and has four distinct seasons. Experiment
(Exp.) 1 was designed as three-way factors of cultivar, nitrogen, and
irrigation treatments during the growing season of 2014-2015. The
winter wheat cultivars were Jing9843 (J9843) and Zhongmail75
(ZM175). The nitrogen fertilizer treatments were 0, 195, 390, and
585 kg/hm’, respectively. Irrigation was designed as rainfall (0 mm),
normal irrigation (192 mm), and excess irrigation (384 mm). A total
of 48 experiment plots with 16 treatments and three replicates is
shown in Figure 1. Exp. 2 included two experimental designs, one
was designed as completely randomized two-way factorial
combinations of two cultivars (Lunxuanl67 and Jingongl8) and
four nitrogen fertilizer rates, the same as Exp. 1, during the growing
season of 2017-2018 (Figure 1). The other was designed as
completely randomized two-way factorial combinations of two
cultivars (Lunxuanl67 and Jingdongl8) and four nitrogen-
recommended fertilizer rates (Table 1).

2017-2018 Irrigation rate(mm)' 192

60 m

15m |

I 80 m 1

Irrigation rate (mm): Rainwater (W1); 192 (W2); 384 (W3)

Overview of the experiment area and distribution of experiment plots

flowering stage of wheat on May 13, 2015, and May 14, 2018. In
this experiment, an eight-rotor UAV was used as a platform to carry
a UHDI85 imaging spectrometer (Cubert, Germany) with a
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Table 1 Recommended nitrogen fertilizer (kg/hm?) applied
during the growing season of 2017-2018

Fertilizing date Fertilizing date
Treatments Treatments
8™ April 4" May 8" April 4" May

S01 78 0 S17 112 0
S02 0 0 S18 110 130
S03 0 10 S19 0 28
S04 78 0 S20 180 0
S05 34 25 S21 30 52
S06 0 0 S22 0 203
S07 38 82 S23 23 97
S08 140 0 S24 154 0
S09 142 0 S25 148 0
S10 30 0 S26 50 175
S11 0 145 S27 0 464
S12 100 0 S28 178 0
S13 33 7 S29 30 111
S14 0 21 S30 0 114
S15 124 21 S31 132 148
S16 27 0 S32 93 0

Note: base fertilizer nitrogen rates were 195 kg/hm? for all treatments.

spectrum ranging from 450 nm to 950 nm (Figure 2). The UAV
flew at a constant speed of 5 m/s at an altitude of 50 m above the
plot, capturing hyperspectral images with a spatial resolution of
21 cm. The winter wheat field was photographed from 10:00 to
14:00 Beijing time when it was sunny day and cloudless. The

UHDI185 sensor

30 by 50 1000 by 1000

original images of the UAV-included radiation correction and
atmospheric correction were subjected to data processing by using
ENVI (Exelis Visual Information Solutions, USA)", image fusion
by using Cubert Pilot (Cubert, Germany), and hyperspectral image
mosaic by using Agisoft PhotoScan (Agisoft LLC, Russia) to
eliminate the influence of atmospheric transmission and sensors in
the imaging process and to integrate hyperspectral and high-spatial-
resolution images. The spectral curve of the experimental area was
extracted and studied using ArcGIS (Esri, USA). Detailed process
flow is shown in Figure 3.
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Figure 2 Unmanned aerial vehicle (UAV), UHD18S5 hyperspectral
imaging spectrometer, and its technical parameters
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Figure 3 Preprocessing of UAV remote sensing data

2.2.2 Yield data

The yield data were collected during the maturity of winter
wheat. Yield data were collected at the maturation stage of winter
wheat, which was randomly selected from the sample in the

experimental area. Then, the collected samples were threshed, dried,
and weighed (the accuracy of the electronic balance was 0.01 g). A
total of 112 samples were randomly divided into two sets: 90

samples for the modeling set and 22 samples for the validation set.
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Throughout the experiment, the yield ranged from 800 to
8998 kg/hm?, with the modeling set encompassing a production data
range of 800-8998 kg/hm’ and the validation set having a yield data
range of 1895-8899 kg/hm’. The average yield value in the
modeling set was 5719 kg/hm?, which closely matched the average
value in the validation set at 5739 kg/hm*.

2.3 Models and methods
2.3.1 Vegetation index (VI)

Ten commonly used VIs were selected as parameters to predict
the yield of winter wheat in accordance with previously described
methods. Choose the VI suitable for predicting winter wheat yield
by using the UAV. The mathematical formula is listed in Table 2.

Table 2 Summary of vegetation index (VI) in this study

Name

Formula References

Red-edge Chlorophyll Index

Double-peak Canopy Nitrogen Index

Green Index

Green Normalized Difference Vegetation Index
Modified red-edge Simple Ratio Index

Red Edge Normalized Index

Normalized Difference Red Edge

Normalized Difference Vegetation Index
Normalized Difference Vegetation Index canste
Spectral Polygon Vegetation Index

Clied eage = (R750/R720)1
DCNI = (R720-R700)/ (R700—Re70)/(R720~Rg70+0.03)

GNDVI = (Ry50~Rs50)/(R750+ Rss0)

MSR = (Rgoo/Re70-1)/5qrt(Rgoo/Rezo+1)
ND705 = (Ry50—R705)/(R750TR705)
NDRE = (R799~R720)/(R7907R1720)
NDVI = (Rgoo—Re70)/(Rgo0™Re70)

NDVlansie = (Rr66—R708)/ (R760TR708)
SPVI = 0.4(3.7(Rgpy—Rg70)—1.2abs(RssRg70))

Gitelson et al., 2005
Chen et al., 20105
Zarco-Tejada et al., 200557
Baret et al., 19915
Chen 19967
Sims et al., 20024
Fitzgerald et al., 2010
Bouman et al., 199212
Steddom et al., 2003+
Verrelst et al., 2008

GI = Rss1/Rg7

Note: R,,, represents the spectral reflectance at xxx nm.

2.3.2 Partial Least Squares Regression (PLSR) model

The PLSR is a multivariate statistical analysis method that
integrates the characteristics of multiple linear regression analysis,
canonical correlation analysis, and principal component analysis.
PLSR is the most common set of data by minimizing the sum of
squared errors, which can be modeled under the condition of the
serious multi-dependency of independent variables and solve the
problem wherein the number of samples is smaller than the number
of variables. PLSR can also interpret independent and dependent
variables. Therefore, PLSR is widely used for RS to invert biomass
parameters!. The final model in predicting yield (y) has the
following specific form:

y=by+bit, +byt, +...+b,t, (1)

where, ¢, to ¢, are the numbers of copies of the principal component
from 1 to n, and b, is the regression coefficient. The n of this study
is determined by the number of input features, with a range of n
between 3 and 8.
2.3.3 Random Forest (RF) model

The RF is a classification tree-based algorithm proposed by
Breiman and Cutler in 2001, As shown in Figure 4, RF consists of
several decision trees with multiple trees used to simulate training
samples. The final classification result is voted by a multitree
classifier’”. RF summarizes a large number of classification trees
and improves the prediction accuracy of a model. The RF operation
speed is fast and does not need to consider multicollinearity

Training
samples

Figure 4 Schematic diagram of random forest (RF)
classification process

problems. The RF operation also performs well in dealing with big
data. RF is a new model that replaces traditional machine learning
models, such as neural networks',
2.3.4 Back Propagation Neural Network (BPN) model

The BPN is one of the most widely used and most effective
neural network models™. A BPN prediction model with a single
hidden layer is constructed using the trainlm training function and
the learngdm adaptive learning function in MATLAB R2016a
(MathWorks, USA). Tansig is used as a transfer function for the
hidden and output layers. The output calculation results of the BPN
model are as follows:

Y=F W WX+b)+b") 2)
where, Y is the output vector (predicted yield); X is the input vector;
f' and f? are the transfer functions on the hidden and output layers,
respectively; b' and b* are the deviations of the hidden and output
layers, respectively; w' and w* are the weights of the layer and
hidden layer, respectively™”.

2.4 Statistical analysis

In this study, the performance of the models was evaluated
using Root Mean Square Error (RMSE) and Coefficient of
Variation (CV). RMSE reflects the degree of deviation between the
simulated and measured values. Generally, a lower RMSE indicates
higher accuracy in modeling and validation. The RMSE was
calculated as follows:

RMSE = 3)

where, 7, is the measured value; Y; is the predicted value, and 7 is
the number of samples. The CV is a normalized measure of the
variability of each statistical value. A smaller CV indicates less
variability and higher reliability of the model. Conversely, a larger
CV suggests greater variability and lower reliability of the model.
The CV was calculated as follows:

SD

where, SD is the standard deviation, and MN is the average.

3 Results

3.1 Selection of Vegetation index
Table 3 lists the correlation between VIs and winter wheat
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yield. All tested VIs showed an extremely significant correlation
with yield (p<0.01), with NDRE exhibiting the highest correlation
(r=0.792) and GI displaying the lowest correlation (+=0.634). The
ranking of VIs in terms of their correlation with yield, from highest
to lowest, is NDRE, Clred edge, NDVIcanste, ND705, NDVI,
MSR, GNDVI, DCNI, SPVI, and GI. In this study, feature
parameters for model construction were selected by choosing the
top three to eight VIs in descending order.

Table 3 Correlation coefficient (r) between VI and yield

VI r VI r
Clied edge 0.779" ND705 0.758™
DCNI 0.646™ NDRE 0.792™
GI 0.634" NDVI 0.732™
GNDVI 0.716™ NDVI e 0.767"
MSR 0.717" SPVI 0.640™

Note: ** indicates that the correlation reached a very significant level (p<0.01).

3.2 Performance of models with varying numbers of input
features

Three yield prediction models for winter wheat were
constructed based on PLSR, RF, and BPN, respectively. Random
sampling was conducted 1000 times for the three models to verify
the practicability of the model and the influence of sampling results
on the model construction. In the verification set, the predicted
values of the three methods were compared with the measured
values (Figure 5). Regardless of the number of selected features and
multiple runs, the PLSR method demonstrates the strongest
stability. When modeling with three VIs, the PLSR method achieves
the best prediction performance (RMSE=948.8 kg/hm?). In contrast,
the stability of predictions by the RF method is less satisfactory,
with RMSE ranging from 907.93 to 1091.90 kg/hm*. However, the
accuracy of the RF model increases with an increase in the number
of VlIs, reaching optimal results when using eight indices. The BPN
method exhibits the poorest stability in yield prediction, with the
most pronounced RMSE fluctuations (841.56-1147.58 kg/hm?). As
the number of VIs increases, the fluctuation of RMSE gradually
rises. When using three, eight, and four VIs, PLSR, RF, and BPN
models show the highest accuracy (Figure 5). The yield prediction
results of the three models with the optimal selected features are
illustrated in Figure 6. Although RF demonstrates the highest fitting
accuracy in the modeling set, PLSR exhibits lower prediction errors
in the more critical validation set. In summary, considering both
stability and accuracy, all three methods can be utilized for yield
prediction, with PLSR outperforming the BPN and RF models.

g BPN & PLSR s RF
1200 |

oot | = 7 ¢ " +

1000
4

RMSE

900 -
800

3 4 5 6 7 8
The number of features
Figure 5 Performance variations of models with different
feature sizes

3.3 Performance of models with varying numbers of training
samples

To assess the impact of varying training sample sizes on the
models, the three models based on optimal feature selection were

RMSE-RF: 529.733 RMSE-PLSR: 1011.71
RMSE-BPN: 1060.86

10000
9000 | - RF train
2 8000 | -PLSR train
T§ 7000 | “BPN train
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a. Training set
RMSE-RF: 985.999 RMSE-PLSR: 948.88
RMSE-BPN: 1010.148
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b. Validation set

Figure 6 Utilizing the PLSR, RF, and BPN methods along with
optimal feature selection, the winter wheat yield is predicted in both
the training set and the validation set

trained with different randomly selected sample quantities in the
training set. The sample size in the validation set remained constant,
and the results were evaluated for stability through 1000 repetitions,
as depicted in Figure 7 and Table 4. In instances where the sample
size was excessively small, such as having only 10 samples, the
predictive models based on the three methods exhibited instability
(CV_PLSR=0.39, CV_RF=0.16, CV_BPN=4.42). With an increase
in sample size, the predictive models for the three methods tended
to stabilize, showcasing low RMSE values and small CVs. In
scenarios of large sample sizes, the RMSE values of models
predicted using the PLSR and RF methods were close, with the
PLSR method demonstrating high fitting. However, for sample
sizes less than 20, the CV of the model based on the PLSR method
was substantial (CV>0.2), indicating lower stability. At a sample
size of 90, the RMSE of the predicted model based on the three
methods approached 1000 kg/hm?, but the model based on the BPN
method exhibited the worst stability and the lowest fitting effect.
Accuracy was significantly influenced by the sample size.
Therefore, the yield prediction model constructed based on the
PLSR method was applied to UAV hyperspectral imaging in this

study. BPN & PLSR & RF

1750 b = = =

1500
m
§ 1250 |
> I

1000 + 4 . +
s0p L
10 20 30 40 50 60 70 80 90

The number of features

Figure 7 The performance variations of models with different
sample sizes
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Table 4 Performance variation table for models with different sample sizes

The number of samples

Model 10 20 30 40 50 60 70 80 90

pLsg  RMSE 1362.635 1117.195 1041.489 1022.825 1011.759 1000.409 994.992 991.187 988.522
cv 0.39 021 0.11 0.09 0.08 0.07 0.06 0.06 0.06

. RMSE 1267.485 1148.79 1092.162 1064.229 1048.487 1037.283 1025.359 1026.235 1020.745
cv 0.16 0.14 0.13 0.11 0.10 0.09 0.08 0.08 0.07

. RMSE 2137365 2084072  2435.194 1250.637 1842271 1136.04 1107.028 1090.82 1073.78
cv 442 7.33 12.05 027 8.58 0.21 0.20 0.20 0.18

Note: CV represents the coefficient of variation.

3.4 Winter wheat yield mapping based on UAV
Figures 8 and 9 present UAV maps of winter wheat yield
predictions for the years 2014-2015 and 2017-2018, respectively,
providing a visual representation of regional yield variations.
Further comparison of the UAV yield maps for the two years with
fertilization levels revealed an increase in average yield with higher
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Figure 9 Yield maps of winter wheat based on the PLSR method
and UAV hyperspectral imagery from 2017-2018

116°26'36"E

fertilizer application. Plots subjected to the N1 fertilization
treatment exhibited the lowest average yield (3317.69 kg/hm?®),
while those under the N4 fertilization treatment showed the highest
average yield (9746.89 kg/hm?). The consistency between predicted
yields and fertilization patterns further emphasizes the reliability of
yield prediction in this study.
116°26'37"E

116°26'38"E

40°10'45"N

40°10'44"N

116°26'37"E 116°26'38"E

Yield maps of winter wheat based on the PLSR method and UAV hyperspectral imagery from 2014-2015

4 Discussion

In terms of crop production, VI can partially reflect plant
growth. In this study, the correlation between VI and yield was
compared, and the results revealed that the bands highly correlated
with yield were concentrated in the infrared and near-infrared
bands. Among them, NDRE (720 and 790 nm bands) had the
highest correlation with yield. Juliane also pointed out that the near-
infrared band is used to predict crop biomass with high accuracy®'.
Most traditional statistical analysis methods are based on a single
VI, but the information contained in a single VI tends to be
saturated™. In our study, multiple RS VI combinations can achieve
information complementarity, compensate for the defects of the
single VI, and improve the accuracy of RS yield prediction.

The appropriate selection of RS feature parameters can improve
the accuracy of winter wheat RS prediction. However, when more
parameters of RS features are selected, the accuracy of RS
prediction is not necessarily good, and the RS characteristics highly
correlated with winter wheat yield should be selected””. After the
results shown in Figure 5 were compared, the accuracy of the yield
prediction model based on PLSR and BPN did not improve with the
increase in VI, whereas the accuracy of the yield prediction models
based on RF improved with the increase in VI. Both PLSR and BPN
algorithms require inputting feature parameters as sample sets, so
complex collinear relations exist among many feature parameters,
and the parameters
superposition and noise increase; thus, the accuracy of prediction
models is affected®. The RF algorithm has a good tolerance to
outliers and noise and is not easy to overfit®. Breiman studied the

increased feature cause information
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relationship between a random feature number and RF intensity and
the relationship between a random feature number and a
generalization error®”. Breiman found that RF intensity increases as
random feature numbers increase, whereas the generalized error rate
decreases slightly as random feature numbers increase'!. Therefore,
different VI models were built in this study, and the best VI was
chosen to construct a yield prediction model and eliminate the
influence of overfitting on the accuracy of the model.

The accuracy of the yield prediction model is affected by two
factors: the inherent properties of crops and the number of samples
and prediction methods®’. Among them, different conclusions exist
in different studies on the selection criteria of samples®”. When the
number of samples increases from 10 to 70 (Table 4), the prediction
accuracy of models significantly improves. However, when the
number of samples gradually increases from 70 to 90, the accuracy
of the model does not improve significantly. This result indicated
that at least 70 sample points were needed on the sample scale of
this study, and the predicted results were credible. The performance
of the RF model depends on the classification accuracy and
diversity of each decision tree™. The weights and thresholds of
BPN are random during each initialization, and the errors at the end
of training are different®. As such, the results after each training
are slightly different when RF and BPN models are used. The
random results of RF and BPN production prediction models were
analyzed, and the results revealed that the average value of the
(RMSEg=1021.221  kg/hm?’,  RMSEgp=
1069.863 kg/hm?) was closer to the average value of the overall
results when the random times of RF and BPN production
prediction models reach 400 times.

model  results

Based on hyperspectral imagery obtained from UAV,
prediction models were established using PLSR, RF, and BPN. The
results of the PLSR yield prediction model outperformed the other
models, providing support for accurate wheat yield prediction. As
agricultural RS technology rapidly advances, an increasing number
of yield prediction models are being developed. Further research
will assess the adaptability of these models to different features and
samples. In addition to VI features, attention should be given to
texture features or features derived from spectral or spatial
dimensions through other transformations®. This study conducted
preliminary investigations into PLSR, RF, and BPN prediction
models for winter wheat yield prediction using UAV hyperspectral
RS. Future research may consider different wheat climates and
planting conditions"®, evaluating the regional transferability of
prediction models.

5 Conclusions

In this study, three models of PLSR, RF, and BPN for yield
prediction in winter wheat were compared based on VIs from UAV-
based hyperspectral reflectance data. This study demonstrates the
optimal performance of the PLSR model in predicting wheat yield,
showcasing remarkable stability and accuracy with an RMSE of
948.88 kg/hm’. Contrary to the conventional notion that an increase
in input features leads to heightened accuracy, our investigation
reveals that the PLSR, RF, and BPN models exhibit peak
performance when trained with the top 3, 8, and 4 VIs, respectively,
exhibiting the highest correlation. Additionally, the study indicates
that as the number of training samples rises, there is an observable
enhancement in model accuracy, reaching a point of stability when
the training samples reach 70. Employing PLSR and optimal feature
scales, the generation of UAV yield prediction maps proves to be
successful, offering crucial data support for field management,

health monitoring, and precision decision-making.
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