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Abstract: The objective of this study was to develop a visual navigation system capable of navigating an unmanned ground 

vehicle (UGV) travelling between tree rows in the outdoor orchard.  Thus far, while most research has developed algorithms 

that deal with ground structures in the orchard, this study focused on the background of canopy plus sky to eliminate the 

interference factors such as inconsistent lighting, shadows, and color similarities in features.  Aiming at the problem that the 

traditional Hough transform and the least square method are difficult to be applied under outdoor conditions, an algorithm 

combining Hough matrix and random sample consensus (RANSAC) was proposed to extract the navigation path.  In the image 

segmentation stage, this study used an H-component that was adopted to extract the target path of the canopy plus sky.  Then, 

after denoising and smoothing the image by morphological operation, line scanning was used to determine the midpoint of the 

target path.  For navigation path extraction, this study extracted the feature points through Hough matrix to eliminate the 

redundant points, and RANSAC was used to reduce the impact of the noise points caused by different canopy shapes and fit the 

navigation path.  The path acquisition experiment proved that the accuracy of Hough matrix and RANSAC method was 

90.36%-96.81% and the time consumption of the program was within 0.55 s under different sunlight intensities.  This method 

was superior to the traditional Hough transform in real-time and accuracy, and had higher accuracy, slightly worse real-time 

compared with the least square method.  Furthermore, the OPENMV was used to capture the ground information of the 

orchard.  The experiment proved that the recognition rate of OPENMV for identifying turning information was 100%, and the 

program running time was 0.17-0.19 s.  Field experiments showed that the UGV could autonomously navigate the rows with a 

maximum lateral error of 0.118 m and realize the automatic turning of the UGV.  The algorithm satisfied the practical 

operation requirements of autonomous vehicles in the orchard.  So the UGV has the potential to guide multipurpose 

agricultural vehicles in outdoor orchards in the future. 
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1  Introduction

 

At present, agricultural autonomous navigation research 

mainly includes three methods, light detection and ranging 

(LiDAR)[1-3], global navigation satellite system (GPS)[4,5], and 

machine vision[6,7].  The problem with 2D lidar is that it has a 
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small angle of view and has high requirements for the symmetry of 

crop rows and tree rows.  The manufacturing process of 3D lidar 

is complicated and the cost is high[8].  The dense canopy of the 

orchard blocks the satellite signal, so there are some problems in 

GNSS navigation, which limits its application in complex farmland 

environments[9].  Agricultural machinery navigation technology, 

based on machine vision, has drawn increasing attention in the last 

decades due to the advantages of wide signal detection ranges, 

complete information, noncontact measurements, and high-cost 

performance.  Navigation path acquisition, coupled with the 

fitting method of navigation path, is one of the research hotspots.  

The method of image segmentation is one of the key points of path 

acquisition in visual navigation[10,11].  In the study of Yao et al.[12] , 

the mean image of the pixel value in five channels (R, G, B, S , and 

V) were treated as the inspected image and the feature points of the 

inspected image were extracted by the Canny algorithm, which 

would provide a reliable path for visual navigation.  Sumesh et 

al.[6] used a Red-Green-Blue (RGB) camera for sugarcane yield 

estimation with minimal field dataset.  A region of interest was 

detected by horizontal projection method to extract tree trunks.  

Meng et al.[7] selected Cg component of YCrCg color model for 

subsequent image processing to reduce the adverse effects of light 
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change on image segmentation and navigation line extraction.  

The fuzzy C-means clustering method (FCM) based on 

two-dimensional histogram is used for Cg component segmentation, 

so as to identify the green crop.  Chang et al.[13] presented an 

improved HSV-based image segmentation algorithm to decompose 

the captured image, where morphological operation is employed 

for foreground target extraction.  It is important to fit navigation 

paths for accurate real-time control of visual navigation, and 

accurate acquisition of navigation paths is critical for fit navigation 

paths.  Compared with other color spaces, HSV space can directly 

express the brightness, hue, and brightness of colors, which is 

convenient for color comparison.  After image segmentation, path 

fitting is performed to get the final navigation path.  Ma et al.[14] 

used the least square method to detect the navigation line to 

improve the real-time performance of the system.  In order to 

extract the root row lines, Yang et al.[15] used the least square 

method to fit the positioning points which were obtained by 

calculation.  In other different environments, the accuracy of the 

navigation centerline extracted by this algorithm is above 92%.  

The least square method has a fast detection speed for crop line 

fitting, but it is sensitive to noise, so it is difficult to extract crop 

lines accurately when the environment noise is high[16,17].  The 

outstanding advantage of Hough transform is robustness[18-21].  

Barawid et al.[22] used a Hough transform as the algorithm to 

recognize the tree row.  It was possible to navigate the robot 

tractor autonomously between the orchard row crops.  In order to 

improve the adaptability of the crop row recognition algorithm for 

different kinds and growth periods of vegetables with machine 

vision, Chen et al.[23] studied on a method based on automatic 

accumulation threshold of Hough Transformation performed to fit 

straight lines for all feature points in the image coordinate system.  

Chen et al.[24] proposed prediction point Hough transform fitting 

the navigation paths to solve the problem of poor real-time 

performance caused by the wide range of the traversal angle and 

intersection point of traditional Hough transform.  Random 

Sample Consensus (RANSAC) can improve the performance of 

computational efficiency, reliability, and accuracy in high-noise 

environments[25].  Zhou et al.[26] used the RANSAC algorithm to 

fitting the DBH of the trees in the plane.  The DBH of the 71 trees 

in the forest area was fitted and extracted using RANSAC 

algorithm.  The overall error satisfied the requirements of forestry 

mapping.  Zhu et al.[27] got 151 pairs of refined cotton matches by 

using the RANSAC algorithm, and there were no wrong matches in 

the refined matches.  which helped make the results of cotton 

three-dimensional (3D) reconstruction more accurate.  To improve 

the robustness and accuracy of the feature extraction, Sun et al.[28] 

studied on an improved Features from Accelerated Segment Test 

(FAST) feature extraction based on RANSAC method to remove 

the mismatched points.  The results showed that the improved 

FAST feature extractor based on RANSAC method can not only 

reduce the mismatched points significantly, but also enhance the 

positioning accuracy of the vision/SINS integrated navigation 

system at the cost of little computation load. 

Although the color model and random sampling algorithm 

have been respectively used to acquire and fit the navigation path, 

the improvement of real-time performance and matching accuracy 

is in great demand.  Previous studies mainly focused on the use 

of visual navigation techniques to identify ground structures in the 

orchard[29-32], while less attention has been paid to the combination 

of canopy plus sky.  In order to achieve the purpose of protecting 

fruit trees in the process of driving, this study designed a method 

based on the sky background and took the canopy as the 

navigation standard.  The objective of this study was to develop 

the unmanned ground vehicle (UGV) based on visual navigation 

that is less vulnerable to interference from the outdoor 

environment simultaneously, which satisfies the practical 

operation requirements of outdoor orchard vehicles in different 

sunlight intensities. 

2  Materials and methods 

2.1  Platform of the UGV 

In order to solve the problem of weeds and soft soil in the 

outdoor orchard, the UGV adopted crawler chassis.  The diagram 

of the UGV (Figure 1) has six main components.  The laptop 

(Intel i7, 3.20 GHz) used Matlab 2019a to design GUI and process 

images.  The USB WebCam and OpenMV were used to estimate 

the current vehicle position.  The STM32 controlled the DC motor 

drive unit by controlling the DC motor controller to correct the 

position of the UGV.  This UGV is driven by two twelve-volt DC 

motors connected directly to each of the two drive wheels.  Figure 

1 shows the UGV platform with its components. 
 

 
1. Laptop  2. DC Motor Controller  3. DC motor drive unit  4. USB WebCam  

5. STM32  6. OpenMV 

Figure 1  UGV platform and its six components 
 

As the vehicle moved between trees, the USB WebCam 

captured the navigation path in the background of the sky and 

canopy.  The laptop calculated the control angle by navigation 

path information.  Pulse-Width Modulation (PWM) signal was 

transmitted by STM32 to control the DC motor driver to correct the 

position of the UGV.  When OpenMV obtained the turning sign at 

the end of the orchard, PC controlled the vehicle to perform the 

turning operation which was designed in advance. 

2.1.1  Control design of the UGV 

The motion characteristic of the UGV is a two-wheel 

differential drive.  The rotation of two isomorphic driving wheels 

at the rear end provides power for the UGV.  In the driving 

diagram of the UGV (Figure 2), vl
 
and vr are defined as the linear 

speed of these two points in the vehicle body coordinate system 

moving in the inertial coordinate system.  The values can be 

obtained from the angular speeds ϕl and ϕr
 
output from the motor 

drive interface and radius r of the driving wheel, as expressed in 

Equation (1). 

           
l l

r r

v r

v r





 

 
                    (1) 

where, vl is the linear speed of the left track, m/s; vr is the linear 

speed of the right track, m/s; ϕl is the angular speed of the left 

driving wheel, rad/s; ϕr is the angular speed of the right driving 

wheel, rad/s; r is the radius of the driving wheel, m. 

Taking the midpoint of the central line of the two driving  
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wheels as the reference point C(x, y) of the UGV, the instantaneous 

angular velocity ωc of UGV can be calculated as: 

( )l r l r
c

v v r

l l

 


  
 

 

            (3) 

where, l is the distance between the centers of the two tracks, m. 

 
Note: vl and vr define the linear speed of these two points in the vehicle body 

coordinate system moving in the inertial coordinate system, m/s; C(x, y) is the 

reference point at the midpoint of the central line of the two tracks of the UGV;  

l is the distance between the centers of the two tracks, m. 

Figure 2  Driving diagram of the UGV 
 

The operating system of the UGV consists of four main units: 

the detection unit, the control unit, the processing unit, and the 

execution unit (Figure 3).  The detection unit obtains the left and 

right wheels’ speeds through the speed sensor, OpenMV gains the 

left and right turning information, and the camera acquires the 

navigation path information.  The control unit has the following 

functions: estimate the Course Angle based on the left and right 

track speeds, conduct path planning according to the acquired path, 

determine the turning operation according to the turning 

information, and determine the drive output according to the actual 

motion trajectory and the offset angle of the target trajectory.  The 

processing unit conducts the hierarchical control function using 

STM32.  Finally, STM32 sends the PWM signal to the execution 

unit.  The execution unit controls the motor for navigation. 

 
Figure 3  Operating system of the UGV 

 

2.1.2  Software design of the UGV 

In this study, the image formed by canopy plus sky was used 

for visual navigation recognition, and the impact of environmental 

factors can be greatly reduced.  The difficulties such as 

inconsistent lighting, shadows, and color similarities in features 

were eliminated by using the sky-based approach where the image 

was reduced to canopy plus sky, thus simplifying the segmentation 

process[33].  For visual navigation in outdoor orchards, in terms of 

hardware selection, USB WebCam was used to obtain images in 

order to improve the universality and economy of the system.  

With a 135° view in the outdoor orchard sky, it was impossible to 

accurately identify the turning sign at the end of outdoor orchards.  

OpenMV was added as a secondary sensor to capture the turning 

information of the navigation system.  The overall software 

system of the UGV is shown in Figure 4.  First, it is judged 

whether the turning sign is obtained from the images that are 

collected by OPENMV.  And then the left/right turning program 

drives the UGV to perform a turning operation.  When the turning 

information is not obtained, the outdoor orchard path image is 

collected by Matlab.  The image is preprocessed by image 

segmentation operation and morphological operation.  Next, the 

center point of the path in the image is obtained and the redundant 

points are removed by Hough matrix.  Optimal feature points are 

obtained by removing outliers by the RANSAC algorithm.  

Finally, the UGV performs the path tracking operation through the 

fitted path line.  

 
Note: RANSAC: Random Sample Consensus 

Figure 4  Software system of the UGV 
 

2.2  Methods of navigation path acquisition 

2.2.1  Image acquisition 

Because of the multiple influencing factors such as seasonal 

weeds and irregular potholes in the orchard, this study used the 

image that was formed by canopy plus sky, as illustrated by the 

yellow line in Figure 5, as the basis for the extraction of the 

baseline road.  The image acquisition mode was triggered by the 

Matlab software, and when an image was acquired, the next image 

was immediately acquired after the navigation baseline was 

extracted. 

 
Note: The two yellow lines are the ideal dividing line between 

the sky and the canopy. 

Figure 5  Original image of outdoor orchard 
 

2.2.2 Image processing of segmentation and morphological 

In order to extract the information of the canopy accurately, 

this study compared three color models (RGB, Lab and HSV).  As 

shown in Figure 6, for the component that determines the green 
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information, compared with the R component of RGB model and a 

component of Lab model, the H component of HSV model is quite 

different and easy to distinguish, and the value of the H component 

is concentrated between 0.197 and 0.387 under the condition of 

light and color temperature in the morning. 

 
    a. R component         b. a component          c. H component  

Figure 6  Histograms of RGB, Lab, and HSV models 
 

The color segmentation method for each color model is 

adopted, and the segmented image is shown in Figure 7.  By 

comparing the OUST segmented image in RGB model and the 

k-means segmented image in Lab model, the H-component 

segmented image in HSV model has fewer noise gaps and well 

preserves feature information of the canopy. 
 

 
a. Gray image        b. Clustering image         c. HSV image 

Figure 7  Color space of the orchard 
 

Since there were many small black noises, white voids, and 

irregularly shaped crown edges in the binary image after image 

segmentation, the opening and closing operations were performed 

by the octagon with a side length of 3 pixels.  Finally, a smooth 

binary image was obtained from morphological image processing. 

2.2.3 Determination of path reference point 

1) Acquisition of path reference points 

Because of the irregular growth of outdoor fruit trees, this 

study used the vertical coordinates of the picture to extract the 

center points of fruit trees and the edge of the sky as the reference 

points of the navigation path.  Assuming that the original image 

size is U×V, V and U represent row pixels and column pixels of the 

image, respectively.  Then the number of horizontal bars is V, and 

the pixel coordinate point P(i, j) of the feature edge acquired in line 

i is the pixel value here, as expressed in Equation (4). 

        
,  ( , ) 1

[0, ], [0, ]

x

y

P i
P i j
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i u j v
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
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                 (4) 

As shown in Figure 8, the left_point and the right_point of the 

feature edge are obtained by a straight-line scan (as shown in Line 

2).  Due to the irregular growth of outdoor trees, there are 

repeated errors in the feature edge information extracted by Line 1.  

The far_point(l, k) (as shown in Line 3, the far_point is the only 

point located in the center area of the picture determined by the line 

scan) is used as the reference point of the path center to eliminate 

repeated error feature points.  (n, m)|P is the coordinate of the 

feature point.  The feature point can be calculated by Equation (5). 
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The feature point of the final middle path is the midpoint of the 

edge feature point in each row, as expressed in Equation (6).  This 

study used these feature points as reference points for navigation 

paths, which can effectively avoid damage to fruit trees in the 

process of driving.  The result is shown in Figure 9.  

2

left_point right_point
mind_point


           (6) 

 
Figure 8  Feature points of edge between the sky and the canopy 

 
Figure 9  Feature points of the navigation path 

 

2) Reference points are optimized by Hough matrix 

Hough transform is a method to find and link line segments in 

an image based on Hough matrix.  The basic idea is to concentrate 

the points on the line in the image to a point in the parameter model 

to form a local peak.  Hough transform makes use of the global 

characteristics of the image, which is less affected by the boundary 

fracture, having strong robustness and anti-noise ability. 

In this study, Hough matrix was used to optimize the feature 

points.  Firstly, a two-dimensional accumulation array A(a, b) was 

established.  The range of the first dimension is the possible range 

of the slope of the line in the image coordinate model, and the 

range of the second dimension is the possible range of the cut 

moment of the line in the image coordinate model.  In the 

beginning, array A(a, b) is initialized to 0.  Then for each former 

scenic spot (xi, yi) in the image coordinate model, the 

corresponding value of b can be expressed as: 

b = –axi + yi                    (7) 

where, a is the discrete value in the parameter model.  Every time 

a pair of (a, b) is calculated, the corresponding array element A(a, 

b) is added with 1.  After all the calculations, the maximum peak 

value of A(a, b) is found in the voting result of the parameter 

calculation.  The corresponding a0 and b0 are the parameters of the 

linear equation with the largest number of collinear points (a, b) in 

the original image.  And save the key feature points (line_point1 

and line_point2) that determine the straight line.  Next, it is can 
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continue to find the second peak value, the third peak value, and 

the fourth peak value, etc., which correspond to the lines with 

slightly fewer collinear points in the original image.  The final 

Hough matrix is calculated as shown in Figure 10.   
 

 
a.Complete results of Hough matrix 

 

 
b. 675 representative points of Hough matrix 

Figure 10  Final results of optimizing feature points by Hough matrix 
 

When the value of 50 peaks is calculated, the value of the 

elements in the neighborhood is set to 0 so that other interference 

points and the duplicate points near key peaks are removed.  The 

peak value less than half of the maximum peak value is removed so 

that only the key feature points are retained.  Finally, the coordinate 

points marked with red “+” are left as shown in Figure 11. 

 
Note: The red “+” are the key feature points of the navigation 

path, the same as below. 

Figure 11  Key feature points of the orchard path 
 

This method retained the features of path feature points.  

However, there were interference areas caused by irregular tree 

growth as shown in Figure 11, resulting in wrong key peaks. 

2.2.4 The fitting method of navigation path 

In order to solve the influence of interference areas caused by 

different tree growth, this study used the RANSAC algorithm to 

estimate the parameters of the mathematical model from a group of 

observed data iteratively containing outliers.  This algorithm 

assumes the data containing correct data and abnormal data.  The 

correct data is recorded as inliers and the abnormal as outliers.  

The core idea of the algorithm is randomness and hypothesis.  

Randomness is to randomly select sampling data according to the 

probability of correct data occurrence.  According to the law of 

large numbers, randomness simulation can approximate the correct 

results.  A hypothesis is to assume that the selected sample data 

are all correct data, and then use these correct data to calculate 

other points through the problem satisfaction model, and then make 

a score for this result.  The procedure for this method is as follows.  

First of all, to get a linear model, two points are needed to uniquely 

determine a linear equation.  So in the first step, two points are 

selected randomly.  Through these two points, the model equation 

can be calculated.  Then all the data points are put into this model 

to calculate the error and determine the number of points that 

satisfy the error.  Finally, repeat the previous process until a 

certain number of iterations is reached, and then select the most 

supported model as the solution to the problem.  The inliers are 

points for supporting the most supported model and the outliers are 

deleted by the most supported model. 

In this study, t is assumed to be the probability of the inliers in 

the whole data set, as expressed in Equation (8). 

inliers

inliers outliers

n
t

n n



               (8) 

where, ninliers is the number of inliers of the most supported model; 

noutliers is the number of outliers of the most supported model; tn is 

the probability that n points are inliers.  P is the probability of the 

correct solution, as expressed in Equation (9). 

 1 (1 )n mP t                    (9) 

where, n is the number of points needed by the model, m is the 

number of iterations.  t is a prior value that can be set.  It can also 

be seen that P can be guaranteed by increasing m, it can be 

calculated as: 

log(1 )

log(1 )n

P
m

t





                (10) 

After determining the values of n, t, and m, the key feature 

points are brought into the calculation to obtain the model.  But 

the straight line of the obtained path is the path formed by canopy 

plus sky.  So the angle θ0 of the navigation path can be calculated 

as: 

0

0

1
arctan

k
                  (11) 

where, k0 is the slope of the model calculated by using RANSAC. 

2.3  Turning information recognition 

Since the path separates from the sky background, it is 

impossible to accurately determine the turning information at the 

end of the road.  Based on the OpenMV visual processing chip, 

the OpenMV IDE tool was used to determine the threshold and 

recognize turning information.  When the size of the identified 

area (blue area) was greater than a certain value, the navigation 

system was at the turning point.  Then four equally green boxes 

were used to segment the center position of the different areas, as 

shown in Figure 12. 

 
Figure 12  The angle of turning information 

 

The angle between the lines formed by the center point of any 

two boxes and the Y-axis is θ, it can be calculated as: 

arctan
n m

n m

x x

y y






               (12) 

The final turning information is determined by its positive and  
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negative values. 

3  Results  

3.1  Evaluation of image processing 

3.1.1  Evaluation of navigation path acquisition 

Images of the outdoor orchard were acquired for validating the 

effectiveness of the proposed algorithm in this study.  The images 

in the outdoor orchard were acquired at different times in one day.  

In the morning, noon, afternoon, and late in the afternoon, the 

illuminance and color temperature are different, so this study used 

the trial and error method to get the appropriate threshold of the H 

component is 0.15-0.42.  Navigation path information 

measurement was conducted in normal sunlight intensity, which 

was further used to compare with the experimental results for 

validating the performance of the proposed method in this study.  

As shown in Figure 13, because Hough transform method was 

more concerned about the uniform collinearity of local feature 

points in detecting the line features, some regional points in the 

path become lines separately, so the path obtained through Hough 

transform method had a large error.  Compared with Hough 

transform, the least square method could solve the problem of 

incomplete line detection.  Moreover, based on the principle of 

minimum residual error, the detection accuracy was guaranteed.  

The least square method was to find the global minimum directly 

for derivation, which had better global property, but it was also 

easy to be affected by error points.  In this study, Hough matrix 

was used to eliminate the redundant points, and then the RANSAC 

algorithm was used to eliminate the outliers (wrong points).  

Finally, it could be observed from figure 13 that the path fitting by 

Hough matrix and RANSAC could more fully reflect the 

information between rows of orchard trees.  This method 

improved the robustness of road fitting.  The experimental results 

of different sunlight intensities and backgrounds showed that the 

proposed method has good universality. 

 
a. Original image 

 

b. Binary image 

 

c. Mathematical  

morphology 

d. Hough transform 

method 

e. Least square method 

 

f. Hough matrix and 

RANSAC 
 

Figure 13  Detection results by three methods at different sunlight intensities 
 

Under three different sunlight intensities, Hough transform 

continuously searched for the peak value through the 

two-dimensional accumulation array established by slope and 

intercept and finally obtained the line with the most collinear points.  

The least square method determined the linear equation by 

calculating the least square sum of errors from all points to the line.  

Table 1 shows the equations and time-consuming of fitting lines of 

different methods for navigation path fitting.  The average time of 

traditional Hough transform to fit the navigation path was 0.73 s.  

The average time of the least square method to fit the navigation 

path was 0.32 s.  The average time of Hough matrix and 

RANSAC method proposed in this paper to fit the navigation path 

was 0.49 s.  Compared with the traditional Hough transform[21], 

Hough matrix and RANSAC method saved 0.24 s.  In summary, 

Hough matrix and RANSAC method was superior to the traditional 

Hough transform in real-time and accuracy, and had higher 

accuracy, slightly worse real-time compared with the least square 

method. 

 

Table 1  Results of liner parameter comparison 

Method Sunlight intensity k b Time consumption/s 

Hough  

transformation 

normal 0.65 −25.14 0.81 

strong 0.64 −25.78 0.66 

low 0.64 −25.93 0.73 

Least square  

method 

normal 1.41 −81.59 0.33 

strong 1.29 −72.71 0.28 

low 1.57 −99.52 0.34 

Hough matrix and  

RANSAC 

normal 5.77 −780.72 0.46 

strong 5.18 −567.13 0.48 

low 6.14 −659.71 0.53 

Note: k is the intercept of fitting lines on the y-axis; b is the slope of fitting lines. 
 

60 pictures under different backgrounds and sunlight 

intensities were used as experiment samples.  Four parameters 

such as target pixel ratio, time-consuming of navigation path 

acquisition, average time-consuming of navigation path acquisition 

and average recognition accuracy rate were calculated under 
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different pictures.  The recognition accurate rate was defined 

according to the degree of coincidence between the slope of the 

obtained line and the slope of the line under normal sunlight 

intensity.  The target pixel ratio was the percentage of the number 

of orchard pixels and the total number of image pixels.  The 

statistical results of the method for 20 samples under each sunlight 

intensity were summarized, as shown in Table 2.  It was observed 

that the time-consuming of navigation path acquisition is within 

0.55 s.  And in the case of strong sunlight intensity, the average 

time of the method was almost the same.  The average recognition 

accuracy rate of this method was 95.73%-96.81% and 

90.36%-90.36% in strong sunlight intensity and low sunlight 

intensity, respectively.  However, Low sunlight intensity 

increased the difficulty in acquiring high-quality images, thus 

reducing the overall matching accuracy.  These results showed 

that Hough matrix and RANSAC method still has certain stability 

under different background and sunlight intensities. 

3.1.2  Evaluation of turning information recognition 

In order to experiment with the effectiveness of the turning 

recognition method, 40 pairs of turning information images were 

acquired by the OpenMV.  Through the recognition of the turning 

information, it could be seen that this method can recognize the 

turning sign, as shown in Figure 14. 

This study summarized the recognition results of the method 

for different angles.  It is observed from Table 3 that the average 

time-consuming of recognition and Average recognition accurate 

rate for Turning information recognition were 0.17-0.19 s and 

100%, respectively.  These results showed that the proposed 

method could accurately recognize the turning information, which 

provided a fundamental basis for the visual navigation system. 
 

Table 2  Results of navigation path acquisition method 

Sunlight 

intensity 

Picture 

No. 

The number of  

trees in image 
Target pixel ratio/% 

Time consuming of  

navigation path acquisition/s 

Average time consuming of  

navigation path acquisition/s 

Average recognition 

accuracy rate/% 

Normal 
1-10 6-8 51-60 0.43-0.47 0.45 100 

11-20 10-12 61-70 0.46-0.49 0.48 100 

Strong 
21-30 6-8 51-60 0.41-0.47 0.44 96.81 

31-40 10-12 66-70 0.44-0.50 0.48 95.73 

Low 
41-50 6-8 51-60 0.49-0.52 0.51 91.14 

51-60 10-12 61-70 0.42-0.55 0.46 90.36 
 

 

  

a. Original images b. Images after recognition 
 

Figure 14  Turning information recognition 
 
 

Table 3  Results of turning information recognition 

Turning information Picture No. 
Target pixel ratio 

/% 

Time consuming of  

recognition/s 

Average time consuming of  

recognition/s 

Average recognition accurate  

rate/% 

Left turning 
1-10 30-35 0.16-0.18 0.17 100 

11-20 36-40 0.17-0.2 0.19 100 

Right turning 
21-30 30-35 0.16-0.18 0.17 100 

31-40 36-40 0.17-0.2 0.19 100 
 

3.2  Evaluation of the UGV 

Before the experiment, the coordinates of the starting and 

ending points of the driving path in the orchard were obtained 

through GPS produced by Shanghai Sinan Satellite Navigation 

Technology Co., Ltd., and the equation of the standard driving path 

was determined by the coordinates.  Figure 15 shows the 

Graphical User Interface (GUI) of the visual navigation system 

developed by Matlab 2019a.  The orchard path and its slope were 

shown in the navigation GUI.  When the “Start” button was 

clicked, the visual navigation system started to obtain the 

navigation path and outputted control signals.  During navigation, 

the UGV drove at speed of 0.5 m/s. 

As shown in Figure 16a, GPS recorded the trajectory of the 

UGV in three-dimensional coordinates.  From the trajectory 

mapped in the X-Y plane, it could be seen that the initial visual 

navigation process was relatively stable, but it was difficult to 

continue the straight-line navigation quickly after the turning 

operation.  Figure 16b shows the lateral error of the UGV from 

the standard driving path.  It indicated that the visual navigation 

system was effective in guiding the UGV in the outdoor orchard.  

For the orchard experiment, the UGV had a maximum lateral error 

of 0.118 m from the standard driving path where the width of the 

whole row was 3.20 m.  It could be seen that the relative error of 

the width of the row was very small.  At 19.42 s, OpenMV 

recognized the turning information and controlled the UGV to 

perform the steering operation.  Experiments show that the vision 

navigation system designed in this study can realize the UGV's 

autonomous full coverage walking in the orchard without damaging 

the fruit trees. 
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Figure 15  GUI of the navigation system 

 

 
a. Driving path information of the UGV 

 
b. Diagram of lateral error 

Figure 16  Results of navigation experiment of the visual 

navigated UGV 

4  Discussion 

In this study, different path fitting methods affected the 

accuracy of the UGV navigation path.  Although the robustness, 

accuracy, and delay of different algorithms affect the visual 

navigation effect in varying degrees, the appropriate algorithm can 

still meet the requirements of outdoor orchard navigation.  Based 

on the experiment results, it was determined that Hough matrix and 

RANSAC method for the visual navigation system was adequate 

for guiding the UGV down the orchard row.  The interference 

factors such as inconsistent lighting, shadows, and color 

similarities in features were eliminated by using the image that is 

formed by canopy plus sky, thus simplifying the segmentation 

process.  

The proposed method based on Hough matrix and RANSAC 

for orchard navigation demonstrated the potential of guiding the 

UGV.  However, there were obvious limitations to the proposed 

method.  First of all, the sky-based method could only be used in 

the spring and summer seasons when trees have leaves or canopies 

year-round such as citrus.  Secondly, because the path fitting 

method based on Hough matrix and RANSAC only worked well in 

standard orchards which are planted neatly, this method had some 

limitations for orchards.  Finally, this study used OpenMV to 

identify the turning sign, which increased the complexity of the 

software program and the instability of the navigation system.  In 

the future, something can be done to optimize the method for these 

problems, and to constantly improve the performance of the 

system. 

5  Conclusions 

This study developed the visual navigated UGV for orchard 

based on Hough matrix and RANSAC.  The UGV was controlled 

by two DC motors to control the crawler chassis, and it used the 

ordinary USB WebCam and the low-cost OPENMV to obtain the 

outdoor orchard environmental information.  The following issues 

have been resolved. 

1) For orchard trees are composed of green, the HSV color 

model was proposed to do image segmentation.  Experiments 

showed that the valid threshold can be used to accurately extract 

the target path of canopy plus sky under full-day.  

2) In view of the dense weeds in the outdoor orchard and the 

complex and changing environment, the natural path of identifying 

the canopy of the outdoor orchard was used as the basis for path 

identification.  Experiments showed that this method reduces the 

impacts such as inconsistent lighting, shadows, and color 

similarities of the outdoor environment.  

3) According to the path recognition error that is caused by the 

unevenness of the canopy, an improved method combined with 

Hough matrix and the RANSAC algorithm was proposed.  This 

method eliminated the influence of the outliers (wrong points) 

caused by the abnormal crown.  Through the experiment and 

comparison, it is concluded that Hough matrix and RANSAC 

method is superior to the traditional Hough transform in real-time 

and accuracy, and has higher accuracy, slightly worse real-time 

compared with the least square method. 

4) We incorporated the auxiliary OPENMV image recognition 

chip to make the UGV autonomously turn during operations and 

improve the integrity and applicability of the navigation system.  

The outdoor orchard field experiment showed the UGV achieves 

autonomous navigation in outdoor orchards, which satisfies the 

practical operation requirements of orchard management machinery.  

So the visual navigation system that was developed in this study 

has the potential to guide multipurpose agricultural vehicles in 

outdoor orchards in the future.  

 

Acknowledgements 

The authors acknowledge that this work was supported by the 

Special Fund for Agro-scientific Research in the Public Interest 

(Grant No. 201503136), the National Key Technology R&D 

Program (Grant No. 2017YFD0301300). 

 

[References] 
[1] Lemos R A, Nogueira L, Ribeiro A M, Mirisola L G B, Koyama M F, de 

Paiva E C, et al.  Unisensory intra-row navigation strategy for orchards 

environments based on sensor laser.  Congresso Brasileiro de Automática, 

2018; 22: 0400.  doi: 10.20906/CPS/CBA2018-0400. 

[2] Thanpattranon P, Ahamed T, Takigawa T.  Navigation of autonomous 

tractor for orchards and plantations using a laser range finder: Automatic 

control of trailer position with tractor.  Biosystems Engineering, 2016; 

147: 90–103. 

[3] Blok P M, van Boheemen K, van Evert F K, IJsselmuiden J, Kim G-H.  

Robot navigation in orchards with localization based on Particle filter and 



184   November, 2021                       Int J Agric & Biol Eng      Open Access at https://www.ijabe.org                        Vol. 14 No. 6 

Kalman filter.  Computers and Electronics in Agriculture, 2019; 157: 

261–269. 

[4] Passalaqua B P, Molin J P.  Path errors in sugarcane transshipment trailers.  

Engenharia Agrícola, 2020; 40(2): 223–231. 

[5] Luo C, Mohsenimanesh A, Laguë C.  Parallel point-to-point tracking for 

agricultural Wide-Span Implement Carrier (WSIC).  Computers and 

Electronics in Agriculture, 2018, 153: 302–312. 

[6] Sumesh K C, Ninsawat S, Som-ard J.  Integration of RGB-based 

vegetation index, crop surface model and object-based image analysis 

approach for sugarcane yield estimation using unmanned aerial vehicle.  

Computers and Electronics in Agriculture, 2021, 180: 105903.  doi: 

10.1016/j.compag.2020.105903. 

[7] Meng Q K, He J, Qiu R C, Ma X D, Si Y S, Zhang M, et al.  Crop 

recognition and navigation line detection in natural environment based on 

machine vision.  Acta Optica Sinica, 2014; 34(7): 180–186. (in Chinese) 

[8] Oksanen T.  Laser scanner based collision prevention system for 

autonomous agricultural tractor.  Agronomy Research, 2015; 13(1): 

167–172. 

[9] Zhang H C, Zheng J Q, Dorr G, Zhou H P, Ge Y F.  Testing of GPS 

accuracy for precision forestry applications.  Arabian Journal for Science 

and Engineering, 2014; 39(1): 237–245. 

[10] Bengochea-Guevara J M, Conesa-Muñoz J, Andújar D, Ribeiro A.  Merge 

fuzzy visual servoing and GPS-based planning to obtain a proper 

navigation behavior for a small crop-inspection robot.  Sensors, 2016; 

16(3): 276.  doi: 10.3390/s16030276. 

[11] Choi K H, Han S K, Han S H, Park K H, Kim K S, Kim S.  

Morphology-based guidance line extraction for an autonomous weeding 

robot in paddy fields.  Computers and Electronics in Agriculture, 2015; 

113: 266–274. 

[12] Yao L J, Hu D, Yang Z D, Li H B, Qian M B.  Depth recovery for 

unstructured farmland road image using an improved SIFT algorithm.  Int 

J Agric & Biol Eng, 2019; 12(4): 141–147. 

[13] Chang Q X, Xiong Z K.  Vision-aware target recognition toward 

autonomous robot by Kinect sensors.  Signal Processing: Image 

Communication, 2020; 84: 115810.  doi: 10.1016/j.image.2020.115810. 

[14] Ma Y, Zhang W Q, Qureshi W S, Gao C, Zhang C L, Li W.  Autonomous 

navigation for a wolfberry picking robot using visual cues and fuzzy 

control.  Information Processing in Agriculture, 2020; 8(1): 15–26. 

[15] Yang S J, Mei S L, Zhang Y N.  Detection of maize navigation centerline 

based on machine vision.  IFAC-PapersOnLine, 2018; 51(17): 570–575. 

[16] Si Y S, Jiang G Q, Liu G, Gao R, Liu Z X.  Early stage crop rows 

detection based on least square method.  Transactions of the Chinese 

Society of Agricultural Machinery, 2010; 41(7): 163–167, 185. (in 

Chinese) 

[17] Hu L, Luo X W, Zhang Z G, Chen X F, Lin C X.  Side-shift offset 

identification and control of crop row tracking for intra-row mechanical 

weeding.  Transactions of the CSAE, 2013; 29(14): 8–14. (in Chinese) 

[18] Zhang R J, Li M Z, Zhang M, Liu G.  Rapid crop-row detection based on 

improved Hough transformation.  Transactions of the Chinese Society for 

Agricultural Machinery, 2009; 40(7): 163–166. (in Chinese) 

[19] Mochizuki Y, Torii A, Imiya A.  N-Point Hough transform for line 

detection.  Journal of Visual Communication and Image Representation, 

2009; 20(4): 242–253. 

[20] Mukhopadhyay P, Chaudhuri B B.  A survey of Hough Transform.  

Pattern Recognition, 2015, 48(3): 993–1010. 

[21] Vera E, Lucio D, Fernandes L A F, Velho L.  Hough Transform for 

real-time plane detection in depth images.  Pattern Recognition Letters, 

2018; 103: 8–15. 

[22] Barawid O C, Mizushima A, Ishii K, Noguchi N.  Development of an 

Autonomous Navigation System using a Two-dimensional Laser Scanner 

in an Orchard Application.  Biosystems Engineering, 2007; 96(2): 

139–149. 

[23] Chen Z W, Li W, Zhang W Q, Li Y W, Li M S, Li H.  Vegetable crop 

row extraction method based on accumulation threshold of Hough 

Transformation.  Transactions of the CSAE, 2019; 35(22): 314–322. (in 

Chinese) 

[24] Chen J Q, Qiang H, Wu J H, Xu G W, Wang Z K.  Navigation path 

extraction for greenhouse cucumber-picking robots using the 

prediction-point Hough transform.  Computers and Electronics in 

Agriculture, 2021; 180: 105911.  doi: 10.1016/j.compag.2020.105911. 

[25] Li Y, Gans N R.  Predictive RANSAC: Effective model fitting and 

tracking approach under heavy noise and outliers.  Computer Vision and 

Image Understanding, 2017; 161: 99–113. 

[26] Zhou S Z, Kang F, Li W B, Kan J M, Zheng Y J, He G J.  Extracting 

diameter at breast height with a handheld mobile LiDAR system in an 

outdoor environment.  Sensors (Basel, Switzerland), 2019; 19(14): 3212.  

doi: 10.3390/s19143212. 

[27] Zhu R J, Zhu Y H, Wang L, Lu W, Luo H, Zhang Z C.  Cotton 

positioning technique based on binocular vision with implementation of 

scale-invariant feature transform algorithm.  Transactions of the CSAE, 

2016; 32(6): 182–188. (in Chinese). 

[28] Sun Q, Zhang Y, Wang J G, Gao W.  An improved FAST feature 

extraction based on RANSAC method of vision/SINS integrated navigation 

system in GNSS-denied environments.  Advances in Space Research, 

2017; 60(12): 2660–2671. 

[29] Bochtis D, Griepentrog H W, Vougioukas S, Busato P, Beruto R, Zhou K.  

Route planning for orchard operations.  Computers and Electronics in 

Agriculture, 2015; 113: 51–60. 

[30] Li Y, Ding W L, Zhang X G, Ju Z J.  Road detection algorithm for 

Autonomous Navigation Systems based on dark channel prior and 

vanishing point in complex road scenes.  Robotics and Autonomous 

Systems, 2016; 85: 1–11. 

[31] Narayan A, Tuci E, Labrosse F, Alkilabi M H M.  A dynamic colour 

perception system for autonomous robot navigation on unmarked roads.  

Neurocomputing, 2018; 275: 2251–2263. 

[32] Li J B, Zhu R G, Chen B Q.  Image detection and verification of visual 

navigation route during cotton field management period period.  Int J 

Agric & Biol Eng, 2018; 11(6): 159–165. 

[33] Radcliffe J, Cox J, Bulanon D M.  Machine vision for orchard navigation.  

Computers in Industry, 2018; 98: 165–171. 

 


