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Abstract: Waterlogging in the early stage of cotton will reduce the number of bolls and do harm to yield.  Early detection of 

waterlogging will help farmers to adjust cotton management and save the loss.  To evaluate the application of deep learning 

for the detection of early waterlogging, this study applied a convolutional neural network (CNN) to classify different durations 

of waterlogging stress (0, 2, 4, 6, 8, 10 d) based on hyperspectral images (HSIs) of cotton leaves.  An experiment was designed 

to simulate the situation of cotton under waterlogging stress and collect HSIs of visible and near-infrared (VNIR 450-950 nm) 

spectra with 126 bands 66 d after cotton sowing (66 DAS).  It was found the spectral curve reflectance of waterlogging cotton 

was higher than that of non-waterlogging cotton.  Especially near 550 nm and 750 nm, and the spectral curve increased with 

durations of waterlogging stress and there were ‘blue shift’ phenomena for the position of the red edge of the spectra.  The first 

principal components of HSIs after band randomly discarding and principal component analysis (PCA) were used to build a 

dataset.  GoogLeNet Inception-v3 (GLNI-v3) and VGG-16 models were selected to detect cotton waterlogging stress with the 

dataset.  The results showed that the average time for a round training for GLNI-v3 was 13.337 s, with a classification 

accuracy of 96.95% and a loss value of 0.09431.  The average time for a round training for VGG-16 was 21.470 s, with a 

classification accuracy of 97.00% and a loss value of 0.17912.  Though these two models had similar classification accuracy 

and loss value, GLNI-v3 achieved a high accuracy with fewer training iterations.  The durations of waterlogging stress of 

cotton in a short-term can be detected by HSIs of cotton leaves and CNN models are suitable for the classification of HSIs, and 

this method can provide support for cotton yield estimation and loss assessment after waterlogging. 
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1  Introduction

 

As the change of global climate, the frequency of extreme 

weather increases so that waterlogging events have become more 

common.  Cotton is known to be poorly adapted to waterlogging 

which is one of the major problems that influences global cotton 

production[1,2].  The root system of waterlogging cotton could not 
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obtain the oxygen for aerobic metabolism and it has to turn to 

anaerobic metabolism which reduces root uptake of nitrogen and 

delays the growth of root[3].  Waterlogging reduces the number of 

bolls, which is associated with yield loss and lower radiation use 

efficiency causing the reduction of dry matter.  Cotton with a high 

ridge has no significant reduction in yield with short-term 

waterlogging, such as 3 d[4].  Cotton is higher sensitivity to earlier 

waterlogging at squaring stages than that at flowering and 

boll-setting stages.  Lint yield of cotton could be affected by 

waterlogging at squaring, flowering and boll-setting stages[5].  An 

early waterlogging event (65 d after cotton sowing, 65 DAS) makes 

radiation use efficiency remain low for the duration of cotton 

growth and waterlogging (66 DAS) of 3, 6, 9 and 12 d results in a 

16% to 50% reduction in lint yield[6-8].  Early waterlogging 

reduces all nutrient concentrations in leaves as well[9].  

Waterlogging and shade will impair leaf nitrogen acquisition, and 

the interactive effect of them is significant only when the level of 

waterlogging stress is light[10,11]. 

A hyperspectral image (HSI) contains hundreds of narrow 

spectral bands from visible to near-infrared.  Compared to RGB 

images or multispectral images, HSIs have better spectral 

resolution and record more spectral information of target.  

Hyperspectral imaging technology has been applied for plant 

disease and stress detection on leaf, single plant and canopy scale.  
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The detection of leaves under biotic or water stress can be 

performed by HSIs and classifiers, such as quadratic discriminant 

analysis, neural networks, support vector machine, etc[12-14].  

Vegetation indices, a subset of selected wavelengths and texture 

extracted from HSIs, are chosen as features for classification of 

healthy and diseased plants[15-18].  In the current studies of cotton, 

hyperspectral data was applied for the detection of foreign matter in 

cotton[19,20], a subset of selected wavelengths were used for 

regression analysis to detect severity of pests[21,22],  and new 

indices of hyperspectral were combined to estimate the leaf water 

content[23,24]. 

The Yellow River Basin, Yangtze River Basin and Northwest 

Inland are the three major cotton producing regions in China[25].  

Affected by monsoon, rainy season often occurs from June to 

September in Yellow River Basin and Yangtze River Basin, which 

may cause waterlogging of cotton.  Except heavy rainfalls and 

floods, excessive irrigation can be a reason for waterlogging.  

Previous researches demonstrated that with various of waterlogging 

stress the reduction of yield was quite different[7,8].  Manual 

records cannot reflect the true days of waterlogging, which may 

lead to the mistaken estimation of yield after disaster.  

Convolutional neural network (CNN) model has shown the great 

ability of classification of plant disease and the CNN was applied 

for the detection of cotton waterlogging in this study.  To evaluate 

the application of CNN for early waterlogging stress detection with 

hyperspectral data, an experiment was designed for cotton 

waterlogging treatment aiming to classify waterlogging stress in 

short-term with HSIs of cotton leaves.  The objectives of this 

study were: (1) to obtain HSIs of waterlogging cotton, (2) to 

preprocess HSIs, (3) to compare spectral reflectance of cotton 

under waterlogging stress with that under normal condition, and (4) 

to perform classification of waterlogging stress with HSIs. 

2  Materials and methods 

2.1  Design of waterlogging experiment 

The experiment started at the Experimental Station of 

Shandong Cotton Research Center, Linqing, Shandong, China 

(36°61′N, 115°42′E) in the summer of 2019.  Linqing is a famous 

cotton-producing area because its soil and climate are ideal for 

cotton cultivation.  The Experimental Station is located in the 

southern suburb of Linqing.  It has a test area of 3.3 hm2 with 

irrigation and drainage systems.  The region is with a warm 

temperate monsoon climate and belongs to a hail-free zone, which 

represents the cotton cultivation environment in the Yellow River 

Basin. 

In this study, the treatment of different waterlogging days was 

firstly designed, then the data collection and pretreatment were 

carried out.  Finally, the data after pretreatment were analyzed.  

The overall flow chart is shown in Figure 1. 

The waterlogging experiment was carried out in the bottomless 

earth pond, in which each plot was separated by concrete walls of 

15 cm thick and 150 cm deep to prevent water loss.  There were 

12 plots and each had an area of 10.44 m2 (2.87 m×2.77 m) for 

cotton planting.  An electric rain shelter was installed above the 

earth pond.  When the sensor on the rain shelter identified 

precipitation, it would turn on the motor to drive rain shelter to 

cover earth pond, aiming to prevent the interference of natural 

precipitation on the waterlogging experiment.  When the rain 

stopped, the shelter would be automatically retracted.  The earth 

pond and electric rain shelter are shown in Figure 2a. 

Cotton was sown at a density of six plants/m2 with four rows 

per plot on April 28, 2019, and the flower bell period was on July, 

2019.  There were three identical waterlogging treatment areas 

and one non-waterlogging control area.  Each treatment area had 

three repeat plots (Figure 2b).  Waterlogging treatment started 

from July 4, 2019 and lasted a total of 10 d.  Waterlogging 

treatment areas were supplied with water twice a day to ensure a 10 

cm high water layer above the soil surface.  The non-waterlogging 

control maintained normal irrigation according to local cotton 

planting experience. 

 
Figure 1  Flow chart of experiment and data analysis 

 

 
a. Earth pond and electric rain shelter 

 
Note: red: waterlogging treatment; blue: control group 

b. Areas of waterlogging and non-waterlogging 

Figure 2  Introduction of the study area 
 

2.2  Collection of hyperspectral images  

HSIs were collected by a UHD-185 hyperspectral imaging 

camera (Cubert, Germany) 2, 4, 6, 8, 10 d after waterlogging 

treatment began, respectively.  The hyperspectral imaging camera 

had a spectrum collection scope of 450-950 nm, spectral resolution 

of 4.0 nm and the image resolution was 1000×1000 pixels with 126 

spectral channels.  The software control system consisted of a 

high-performance laptop (Dell Inspiron 7559, i5-6300HQ,     
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2.30 GHz CPU, 4 GB installed memory, 64-bit Windows 10 

operating system) and Cube-Pilot Edelweiβ software.  

Illumination was provided by a halogen lamp of 100 W (Figure 3).  

Six fresh cotton leaf samples with no disease, insect pests, or 

damage were randomly collected from each plot, and a total of   

90 HSIs of non-waterlogging control cotton leaves and 270 images 

of leaves with different waterlogging days were obtained for a total 

of five times (54 images every time).  In order to reduce the 

influence of dark current and light on the quality of HSIs, the 

reference intensity of a standard white plate and dark environment 

were acquired so that the original reflectance intensity of HSIs 

could be converted to relative reflectance using Equation (1): 

 = 100%
s d

w d

I I
R

I I





               (1) 

where, Is is pixel value of origin HIS; Iw is reflectance of standard 

white plate; Id is reflectance of dark environment; R is relative 

reflectance, %. 

The HSIs were saved in grayscale with a “.cab” suffix.  

Cube-Pilot software was used to read files with “.cub” suffix, and 

saved the data to TIFF files. 

 
1. Lighting assembly  2. Hyperspectral imaging camera  3. Dark box   

4. Leaf samples  5. Linear translation stage  6. Computer 

a. Hyperspectral image acquisition system 
 

 
b. Hyperspectral imaging camera 

Figure 3  Data collection devices 
 

2.3  Extraction of spectral data 

To analyze the effect of waterlogging stress on cotton leaf 

spectrum, ENVI 5.3 software was used to select region of interests 

(ROIs) to extract the spectral reflectance of cotton leaves.  Six 

ROIs with 100×100 pixels were selected in every hyperspectral 

image.  Mean spectral reflectance of different days of 

waterlogging treatment were calculated.  Due to the influence of 

the environment and instruments, a certain amount of noise 

appeared in the raw data of spectral reflectance.  Savitzky–Golay 

(SG) smoothing convolution method was applied to reduce the 

influence of noise in the spectral reflectance curve[26,27].  And the 

baseline drift of original spectral data was solved by multiple 

scattering correction (MSC). 

2.4  Removal of image background 

The images (Figure 4a) collected by the hyperspectral imaging 

camera contain background and the target leaves.  A mask file 

was used to remove the background of images.  Grayscale images 

of cotton leaves (Figure 4b) were processed by OpenCV under 

Python 3.7 version compilation environment.  The Canny operator 

was selected to perform a convolution operation on the grayscale 

images to extract the edge contour of cotton leaves[28].  After 

Canny operation, binary images of leaves edge (Figure 4c) were 

obtained, but some edges of binary images were not closed.  

Morphological process was applied to all images to get a completed 

contour of leaves.  It is a method of image processing that mainly 

includes two basic operations of corrosion and dilation and two 

combined operations of open and close operations.  In order to fill 

the gaps in the contour, close operation was applied to perform 

dilation and then corrosion operation (Figure 4d).  The leaf was 

finally shown with pixel value of 1 and the other area displayed 

with pixel value of 0, so that the mask files (Figure 4e) were 

completed.  The HSIs were processed with mask files to remove 

background by Python 3.7 (Figure 4f). 

2.5  Principal component analysis of images  

It is necessary to concentrate the effective information from all 

bands of HSIs to fewer conversion bands, which can maximize 

characterization of the original data information, because of the 

redundant information and correlation of HSIs bands.  Therefore, 

principal component analysis (PCA) was used to perform 

dimensionality reduction on HSIs in this study.  PCA maps data 

from the original coordinate system to a new orthogonal coordinate 

system through matrix transformation[29,30].  The first coordinate 

axis selects the direction with the largest variance in the original 

data.  The second coordinate axis selects the direction that is 

orthogonal to the first coordinate axis and has the second largest 

variance.  The selection of coordinate axis will be repeated until 

the number of new coordinate axes is equal to the dimension of the 

original data.  The first principal component contains the largest 

variance information, followed by the second and third principal 

component, and the last few principal components have the least 

information. 

The first principal component acquired by PCA process 

included more than 91% information of the original HSI.  This 

study replaced the original HSIs with the images of the first 

principal component after PCA, which were used as samples for 

CNN training.  The process of PCA and the selection of first 

principal component were completed using ENVI Tasks function 

through the ENVI Py Engine library with Python. 

2.6  Convolutional neural network 

In this study, CNN was used as the classifier for the 

classification of cotton leaves with different waterlogging stress.  

The basic blocks of CNN included convolution layer, activation 

layer, pooling layer and full connection layer[31-33]. 

The convolutional layer is the core cornerstone of CNN, and 

the filter kernel in the convolution layer performs convolution 

operation on the image.  The size of filter kernel is n×n (n is odd), 

which can be adjusted according to the needs.  Filter kernel is slid 

over the image and dot product is calculated between the 

corresponding position of image and filter kernel.  The weights in 

filter kernel are constantly optimized and updated by the 

back-propagation algorithm in the training process of CNN. 
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a. Cotton leaf images of 454 nm b. Grayscale images of cotton leaf 

  
c. Leaf contour extracted by Canny operator   d. Leaf contour after close operation 

  
e. Mask of cotton leaves f. HSIs after masking 

 

Figure 4  Different processing results 
 

The input is mapped to the output by nonlinear function in 

activation layer.  There are some nonlinear activation functions 

used in deep learning, such as sigmoid, tanh, ReLU, etc.  Different 

activation functions are selected based on the learning task of 

neural network.  The rectified linear unit (ReLU) is applied 

widely in CNN, it can convert the input of negative value to 0 

while keeping the input of non-negative value unchanged, which is 

convenient for model calculation.  The ReLU function is defined 

as Equation (2):  

f(x) = max(0, x)                (2) 

The pooling layer performs downsampling on the feature maps 

outputted by convolution layer and activation layer, which reduces 

the sizes of feature maps and the weight parameters of the 

subsequent network.  The general size of the pooling layer is 2×2, 

and the most commonly used calculation method is maximum 

pooling to extract maximum value of feature maps. 

The nodes between fully connected layers no longer use local 

connections, but perform the fully connected method to increase 

the connection weight and expand the calculation of fully 

connected layer.  The features extracted by CNN from input 
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images through layer-by-layer convolution correspond to the image 

labels, and the prediction results of image detection are given. 

This study applied 2 classical CNN model (GLNI-v3[34] and 

VGG-16[35]) as classifiers.  The training and verification of the 2 

models were conducted in Python 3.7 by Keras library.  It is a 

Python artificial neural network library, which can be used as the 

application interface of Tensorflow, Microsoft-CNTK and Theano 

neural network library to conduct the structural design, parameter 

debugging, effect evaluation, model application and parameter 

visualization of deep learning model. 

2.7  Dataset of CNN 

During the waterlogging experiment, a total of 360 HSIs were 

collected.  The training of CNN usually requires a large number of 

data, but the current manual collection of HSI is difficult to provide 

sufficient data support.  In order to prevent overfitting caused by 

insufficient data, it is necessary to use data enhancement techniques 

to expand the amount of trainable data for a limited data set.  The 

operations of flip, rotation, scale, shift, etc., to original HSIs can be 

regarded as adding noise to images.  It can enhance the diversity 

of dataset and improve the generalization ability and robustness of 

CNN. 

Due to the data redundancy between HSIs’ bands, when a 

certain hyperspectral band is randomly discarded, the loss 

information can be supplemented by other related bands without 

causing major modifications to the original image.  Meanwhile, 

randomly discarding a certain band from images produces 

difference between original and new images, which makes the data 

more diverse.  In this study, band randomly discarding strategy 

was applied to every HSI.  A round of band randomly discarding 

doubled the number of images, and the images were performed 5 

times for waterlogging cotton and 4 times for non-waterlogging 

cotton.  A total of 10 080 images were collected.  After the 

application, all the images were performed by PCA and the images 

of first principal component were reserved.  10 080 images were 

divided into training images and verification images with the ratio 

of 3:1.  There were 1296 training images and 432 verification 

images for each different waterlogging stress, as well as 1080 

training images and 360 verification images for non-waterlogging 

treatment. 

The training images and the verification images were stored in 

the folders named “Train” and “Test”, and were further allocated to 

subfolders named “after days of waterlogging treatment”.  When 

using Python 3.7 to train the convolutional neural network model, 

the images were imported in the form of an array, normalized and 

scaled to put into training tensors and verification tensors.  The 

label corresponding to each image was obtained by extracting the 

name of the folder where the image was located, and was encoded 

by one-hot.  Stochastic Gradient Descent (SGD) was selected for 

weight update in the convolutional neural network model, and the 

model learning rate was set to 0.01.  The training round epochs 

were set to 1000.  The models were trained by all images of the 

training set in a single round.  The batch size was set to 32 so that 

32 images were randomly selected and delivered into the models at 

the same time for training.  5 folds cross validation was applied to 

the training to make sure the stability of accuracy.  Cross entropy 

was selected as the loss function to score the classification results.  

The cross entropy is defined as Equation (3): 

1
( , ) ( )log( )

( )x

H p q p x
q x


             

(3) 

where, p is the true value probability distribution; q is the model 

prediction value probability distribution. 

 

3  Results and discussion 

3.1  Variation of spectral curve with different days of 

waterlogging treatment 

The average spectral curves of leaves in different waterlogging 

treatment days can be seen in Figure 5.  The shapes of cotton 

leaves’ spectral curves in waterlogging treatment are approximately 

the same as those in the non-waterlogging control group.  The 

spectral curve of non-waterlogging treatment has a low reflectance 

in the range of 450 to 500 nm.  The curve begins to rise after  

500 nm and reaches a small peak of reflectance around 550 nm 

affected by chlorophyll reflection.  From 600 to 700 nm, affected 

by strong absorption of chlorophyll, the curve decreases and drops 

to the lowest point around 670 nm appearing a valley of reflectance.  

After that, the spectral curve in the range of 670 to 750 nm shows a 

rapid upward trend, and a peak platform of reflectance occurs after 

750 nm.  

 
Figure 5  Original average spectral curves of cotton leaves under 

different waterlogging conditions 
 

In Figure 6, it is observed that the reflectance of spectral curve 

with waterlogging treatment is higher than that with non-waterlogging 

spectral curve from 450 to 950 nm.  In the range of 500 to 550 nm, 

the reflectance increases with the increase of the waterlogging days.  

At the peak of reflectance around 550 nm, the curve of 10 d 

waterlogging treatment has the highest reflectance and the curve of 

2 d waterlogging treatment has the lowest reflectance.  In the 

range of 670 to 750 nm (red edge), the reflectance also increases 

with the increase of waterlogging days, the curve of 10 d 

waterlogging treatment is on far left side and the curve of 2 d 

waterlogging treatment is on far right side.  There are ‘blue shift’ 

phenomena for the position of red edge wavebands.  The 

reflectance in waterlogging treatment from 750 to 950 nm is quite 

different.  The curve with 8 d waterlogging treatment has the 

highest reflectance. 

In visible wavebands, due to the absorption of chlorophyll, 

there is a valley near 500 nm and 670 nm waveband, and a red edge 

is formed from 670 nm to 750 nm.  In the range from 500 nm to 

600 nm waveband, a green peak is formed because of the reflection 

of chlorophyll.  In near-infrared waveband, the spongy mesophyll 

of leaves makes a reflecting platform with high reflectance from 

750 nm to 950 nm waveband.  Previous studies[5,8] have shown 

that, with the increased durations of waterlogging stress, the 

concentration of chlorophyll in leaves significantly reduces and 

photosynthesis of cotton decreases.  Waterlogging has made the 

chlorophyll synthesis associated gene (GhLHCB) down-regulate so 

that chlorophyll synthesis rate decreases.  And the concentration 
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of H2O2 in tissues increases with the increase of waterlogging stress, 

which would cause damage to cell membranes under hypoxic 

conditions.  These may be the main reason for the increased 

spectral reflectance of cotton under the durations of waterlogging 

stress. 

 
Figure 6  Average spectral curve of cotton leaves after the process 

of SG and MSC under different waterlogging conditions 
 

3.2  Detection of waterlogging stress 

The classification accuracy and loss function of GLNI-v3 and 

VGG-16 are shown in Figure 7 and Figure 8, respectively.  

Comparing the classification accuracy and loss values of the two 

models, it is found that the classification accuracy increases and the 

loss value decreases with the increasing number of training, for 

both the training and verification process of the two models.  The 

average time for a round of training took 13.337 s for GLNI-v3 and 

21.470 s for VGG-16.  Compared with VGG-16, the classification 

accuracy of GLNI-v3 has a faster convergence rate.  After 80 

rounds of training, the verification accuracy of GLNI-v3 has 

reached 90%, taking 18 minutes.  VGG-16 took 54 minutes to 

reach 90% accuracy with 150 rounds of training.  When the 

accuracy tends to remain almost unchanged, the loss of the value 

curve reaches the lowest point.  The confusion matrix in Figure 9 

shows 2 models has the same classification accuracy (97%) for the 

verification set.  GLNI-v3 had a lower loss value of 0.09431, 

whereas VGG-16 had a loss value of 0.17912.  Both models had a 

good performance on classification of early waterlogging leaves, 

however, some leaves with 8 d waterlogging treatment were 

classified to 10 d waterlogging leaves erroneously.  It could be the 

features after 8 d and 10 d waterlogging treatment were quite 

similar so that the deep learning models made mistake on the 

classification of long-term waterlogging leaves. 

GLNI-v3 uses the Inception module to expand the width of the 

hidden layer of the convolutional neural network while maintaining 

a certain depth of the neural grid.  VGG-16 uses only one size of 

convolution kernel to process input image in one convolutional 

layer.  As the Inception module uses convolution kernels of 

different sizes to process the image at the same time, GLNI-v3 

could obtain more image features in one training round under the 

same situation, and make classification accuracy converge faster. 

Vegetation indices and multispectral images has been applied 

to estimate canopy cover and spray application rates of cotton by 

unmanned aerial vehicle in current researches[36,37].  With the day 

of waterlogging treatment increasing, it was found that spectrum of 

cotton changed greatly near 550 nm and 750 nm, which could be 

regarded as the “green” and “red edge” band for a multispectral 

camera.  These proves the possibility for multispectral images to 

detect waterlogging stress of cotton.  RGB images are common 

materials for classification with deep learning[38-40].  This paper 

proved that hyperspectral images of cotton leaves with different 

waterlogging stress could be classified with CNN models.  

Considering the instruments of hyper-spectral imaging system are 

expensive and HIS cannot be acquired easily, multispectral images 

and RGB images may be adapted for the detection of waterlogging 

stress from the canopy of cotton on a large scale. 

 
a. GLNI-v3 classification accuracy  b. GLNI-v3 loss value 

 

Figure 7  Training accuracy and loss value of GLNI-v3 model  

 
a. VGG-16 classification accuracy  b. VGG-16 loss value 

 

Figure 8  Training accuracy and loss value of VGG-16 model 
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a. Confusion matrix of GLNI-v3  b. Confusion matrix of VGG-16 
 

Note: 0 represents non-waterlogging treatment; 2 represents two days of waterlogging treatment; 4 represents four days of waterlogging treatment; 6 represents 

six days of waterlogging treatment; 8 represents eight days of waterlogging treatment; 10 represents ten days of waterlogging treatment. 

Figure 9  Confusion matrix of classification results for GLNI-v3 and VG-16 models 
 

 

4  Conclusions 

Due to the climatic characteristics of the Yellow River Basin 

and the sensitive characteristics of cotton to waterlogging stress, 

the early detection of waterlogging stress provided a basis for the 

estimation of cotton yield loss and mitigation decision.  The 

experiment with different days of waterlogging treatment was 

designed, and the HSIs of cotton leaves under waterlogging stress 

were obtained.  Dimensionality reduction of image by principal 

component analysis was conducted, and convolutional neural 

network models were trained as classifiers for the detection of 

cotton waterlogging stress.  The main conclusions are shown as 

follows: 

(1) After SG smoothing and multiple scattering correction, the 

spectral curve of cotton leaves is similar to the original one, and the 

spectral curve is significantly different under different 

submergence days.  With the increase of submergence days of 

cotton plants, the “green peak” of spectral curve increases 

gradually and becomes steeper near 550 nm; in the range of “red 

edge” from 700 to 750 nm, the beginning and end of the spectrum 

curve move forward, and there are ‘blue shift’ phenomena for the 

position of red edge of the spectra; in the platform of reflection 

peak from 750 to 950 nm, the reflectance for the flooded cotton 

leaf is higher than that for the control group. 

(2) The first principal component of hyperspectral image after 

dimensionality reduction was used to establish the data set, and the 

two classic convolutional neural network models of GLNI-v3 and 

VGG-16 were trained and tested.  The experimental results 

showed that the accuracy of both GLNI-v3 and VGG-16 reached to 

97%; GLNI-v3 had a lower loss value of 0.09431 and took less 

time for training compared to VGG-16. 
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