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Abstract: In this study, a lightweight phenotyping system that combined the advantages of both deep learning-based panicle 

detection and the photogrammetry based on light consumer-level UAVs was proposed.  A two-year experiment was conducted 

to perform data collection and accuracy validation.  A deep learning model, named Mask Region-based Convolutional Neural 

Network (Mask R-CNN), was trained to detect panicles in complex scenes of paddy fields.  A total of 13 857 images were fed 

into Mask R-CNN, with 80% used for training and 20% used for validation.  Scores, precision, recall, Average Precision (AP), 

and F1-score of the Mask R-CNN, were 82.46%, 80.60%, 79.46%, and 79.66%, respectively.  A complete workflow was 

proposed to preprocess flight trajectories and remove repeated detection and noises.  Eventually, the evident changed in rice 

growth during the heading stage was visualized with geographic distributions, and the total number of panicles was predicted 

before harvest.  The average error of the predicted amounts of panicles was 33.98%.  Experimental results showed the 

feasibility of using the developed system as the high-throughput phenotyping approach. 
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1  Introduction

 

Rice (Oryza sativa L.) is the most important grain crop in Asia, 

and it provides up to 50% of the dietary caloric supply[1].  Its huge 

market and heavy demand appeal to agricultural researchers and 

ways to improve the production, yield, and quality of rice are widely 

studied[2,3].  In agriculture, rice is often researched through visual 

inspection because during growth stages rice can reveal significant 

changes in genetic traits, which are visibly observable.  

Conventional research heavily relied on manual labor-intensive and 

time-consuming checks.  Recently, as computer vision technology 

has been rapidly developed, applications such as image 

classification, image segmentation, and object detection, have been 

highly developed and implemented in the real world[4].   Such 

computer-vision-based developments have also received widespread 

attention from agricultural researchers due to their superiority for 

noninvasive data collection and quantitative studies[5,6].  

Meanwhile, computer-vision-based phenotyping has been 

recognized as a high-throughput approach to identify genetic traits 

and increase breeding efficiency[7].  For bringing these methods 

into rice phenotyping analysis, the first step is to choose an 

appropriate research object, which can not only visibly reflect key 
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changes of rice but also should be meaningful for phenotyping.  In 

this study, the panicle of rice is treated as a major object, as panicle 

has been identified as a critical trait in which it is regarded as a 

remarkable genetic parameter[8], and it can also denote a significant 

transformation between the vegetative stage and the reproductive 

stage[9].  Given the panicle as the major object, previous 

computer-vision-based rice phenotyping mainly focuses on 

segmentation[10,11], detection[12–14] and modeling[15].  Specifically, 

Ikeda et al.[15] utilized the image-based software, Panicle Structure 

Analyzer for Rice (PASTAR) and PASTAR Viewer to construct a 

model of panicle structure automatically.  Guo et al.[12]  monitored 

the diurnal peak of flowering through a series of images collected 

from the natural paddy field.  In 2019, the same team updated this 

research by replacing convolutional neural networks as the 

backbone for panicle detection[13].  Duan et al.[10]  designed a color 

feature-based artificial neural network (ANN) for multi-angle image 

segmentation.  Lately, Xiong et al.[11] showed that their 

convolutional-neural-network (CNN)-based deep learning model 

was the most effective model for identifying panicle segmentation 

and for reliability across different cases.  In addition, because of the 

similarity between rice and wheat, it is also worth reviewing studies 

on the wheat panicle.  Zhu et al.[16] proposed a coarse-to-fine 

method for wheat ear detection.  Sadeghi-Tehran et al.[17] proposed 

a similar hierarchical approach to extract and abstract the features of 

low-to-high levels features step-by-step and to enhance the color 

contrast by decorrelation stretching.  In conclusion, 

machine-learning and deep-learning-based algorithms of computer 

vision have entered the domain in recent years due to their 

remarkable performance[7,18].  Nevertheless, given the notoriously 

heterogeneous field conditions, it is hard to extrapolate from the 

results of the phenotypic analysis performed in controlled 

environments in laboratory and indoor fields to natural conditions[19].  

Unmanned aerial vehicles (UAVs) have been recognized as one  
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of the effective field-based high-throughput phenotyping platforms 

due to the boost in UAV manufacturing and to their flexibility and 

the high quality of their data collection[20].  For utilizing 

computer-vision-based methods more flexibly, the UAV-based 

platform works with visual detection and segmentation is under 

rising trend.  Ampatzidis and Partel.[21]  designed a low-cost and 

automated system of phenotyping by UAV to detect, count, and 

locate trees for further detailed individual tree evaluation.  

Gnädinger and Schmidhalter[22] proposed a method to assess the 

emergence of maize by counting the number of maize plants using 

UAV aerial images.  Jin et al.[23] estimated the density of wheat 

crops at emergence through segmenting corps from very low altitude 

UAV images.  Zhou et al.[14] implemented a UAV-platform for rice 

panicle detection and compared the performance using different 

CNNs.  In conclusion, aerial images from UAVs at low altitudes 

have been shown to have extensive applications and to be useful for 

high-throughput phenotyping, especially on segmentation and the 

detection of individual crops.  Given the state-of-the-art computer 

vision technologies, the combination of deep-learning-based 

detection and aerial photogrammetry at low altitudes is promising. 

In this study, a vision-based panicle phenotyping system was 

developed by combining a cutting-edge deep learning model, Mask 

region-based CNN (Mask-R-CNN; He et al.[24]), with 

consumer-grade UVAs.  The aim of this system is to construct a 

complete workflow, including panicle detection, mapping, and 

prediction of the total number of panicles during the heading stage.  

This system is hoped to be light and easy-to-go for providing a 

practicable implementation for farmers.  Therefore, only two 

consumer-grade UVAs, DJI Mavic Pro and DJI Mavic 2 Zoom (DJI 

Corporation, Shenzhen, China), and their embedded cameras were 

utilized, excluding high-load six-rotor UAVs with heavy and 

expensive cameras.  Two-year experiments were conducted to 

evaluate the performance.  The main difficulties in achieving the 

goal are summarized as follows: 

  A strict standard of the training dataset is required.  The 

dataset should consider not only the size but also the diversities of 

panicles.  The diversities include different cultivation densities, 

varieties, natural conditions, and changes in crop growth.  The 

model trained on this dataset should be generalized enough. 

  Due to the limited ability of the utilized UAVs and their 

embedded cameras, flights must be very close to the ground.  The 

images acquired at proximal altitudes contain numerous 

homogeneous scenes and noises caused by changing lights, the 

reflectance of water surface, and waggling crops moved by the 

wind from nature or rotors.  In this situation, stitching images as 

an orthographic image is hard, because feature points among 

images cannot be matched correctly.  From numerous images with 

overlays, eliminating noises and extracting effective information 

are challenges. 

There are mainly three contributions to this study.  (1) A large 

rice panicle dataset with pixel-level annotations was built from 

scratch; (2) The trained model was implemented and tested on 

different varieties, cultivation densities and UAVs to confirm the 

generalizability of the model; (3) A complete workflow, including 

extracting panicle locations and eliminating noises, was proposed 

for predicting the total number of panicles before harvest without 

stitching orthographic images.  

2  Materials and methods 

2.1  Study area 

The study was held at the paddy fields of the farm at Hokkaido 

University, Sapporo, Japan.  The experiments in 2018 and 2019 

were conducted at different paddy fields on the farm, as shown in 

Figure 1. 

 
a. 2018 

 
b. 2019 

Figure 1  Experimental paddy fields in 2018 (a) and in 2019 (b) 
 

In 2018, rice was sown on 6 May and was transplanted to the 

field on 7 June.  There were two types of cultivation.  (1) The 

dense cultivation (covered by blue grids) involved the planting of 

rice at 15-cm vertical intervals and 30-cm horizontal intervals.  A 
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total of 396 Kitaake plants (an improved rice variety from Hokkaido) 

were arranged in 33 rows and 12 columns.  (2) The sparse 

cultivation (covered by red lines) involved the planting of 

individuals at 30-cm vertical intervals and 30-cm horizontal 

intervals.  A total of 198 plants were arranged in 33 rows and 6 

columns.  Specifically, the plants under sparse cultivation were 

crossed by Kitaake and Kokusyokuto-2 (a Hokkaido landrace rice 

generally denoted as A58). 

In 2019, besides two types of cultivation densities, three growth 

stages of plants were planned.  The variety was Nanatsuboshi (an 

improved rice variety from Hokkaido).  Rice was sown on 9 May, 

24 May, and 5 June, and transplanted to the field on 4 June, 18 June, 

and 8 July, respectively.  Half of all areas were planted with the 

dense cultivation, with the plants arranged in 12 rows and 5 columns 

with 15-cm vertical intervals and 30-cm horizontal intervals.  The 

other half of the areas were planted with sparse cultivation, with the 

plants arranged in 6 rows and 5 columns with 30-cm vertical 

intervals and 30-cm horizontal intervals.  A total of six areas were 

defined on the basis of their transplanting dates and cultivation 

densities. 

2.2  Hardware settings 

The downward wind from the rotors can strongly shake stems 

and affect the image quality, as growing panicles have weak stems.  

Hence, the small-scale UAVs are suitable options, as they can fly at 

a very low altitude with a relatively weak wind generated by the 

rotors.  In 2018, the DJI Mavic Pro was utilized.  After acquiring 

data in 2018, DJI released two brand new products, the Mavic 2 

Pro and Mavic 2 Zoom.  Specifically, the Mavic 2 Zoom is 

equipped with an optical zoom function that can zoom in twice the 

original focal length.  Therefore, in 2019, the DJI Mavic 2 Zoom 

replaced the DJI Mavic Pro.  The specifications of the UAVs are 

shown in Table 1.  
 

Table 1  Specifications of DJI Mavic Pro and DJI Mavic 2 

Zoom 

 DJI Mavic Pro DJI Mavic 2 Zoom 

Sensor 1/2.3” CMOS 1/2.3" CMOS 

FOV (Field of View) 78.8° (26 mm) 83° (24 mm)-48° (48 mm) 

Aperture f/2.2 f/2.8 (24 mm)–f/3.8 (48 mm) 

Resolution 4096×2160 3840×2160 

FPS 24 30 
 

In 2018, the flight speed was 0.3 m/s, and the altitude was 1.2 m.  

The gimbal angle was kept vertical to the ground.  In 2019, the 

flight speed was 0.3 m/s.  The flight speed and gimbal angle were 

set at 2.5 m and −90°, respectively.  Camera settings were set to 

auto with a 4K video mode whenever the UAVs flew in the fields.  

One thing that should be noted that the zoom function of DJI Mavic 

2 Zoom was maintained at an enlargement of 2× (FOV 48°, f/3.8) 

except for the flights on 20 August, 21 August, and 22 August. 

2.3  Field experiments and image acquisition  

In 2018, videos acquired on 4, 6, 8, 12, and 22 August were used 

to extract frames.  A total of 400 frames were equably selected as 

the training and validation dataset for the deep learning model.  

These selected frames contained the entire period of the heading 

stage before maturing and were able to confirm panicles under 

heterogeneous nature conditions.  On the one hand, even though all 

frames were annotated with pixel-level polygons as much as 

possible, labeling all objects is impossible when a single frame could 

contain more than 200 panicles.  On the other hand, feeding a full 

4K size image is far out of the graphic card memories.  To avoid 

missing annotations and to improve the quality of the dataset, the 

original frames (4096×2160) were split into small tiles (128×128).  

Tiles containing annotations of less than 32 pixels were further 

filtered from the dataset for avoiding extremely small objects in the 

dataset.  Ultimately, 13 857 images with 38 799 annotations were 

obtained.  Eighty percent of the dataset was randomly selected as 

the training set, and the rest was treated as the validation set.  The 

dataset acquired in 2018 were only used to train and validate the 

deep learning model.  

In 2019, videos were acquired on 6, 7, 9, 10, 12, 13, 20, 21, 22, 

and 27 August.  Frames from each video were extracted by a 

one-second interval, and then they would match to corresponding 

geographic information.  These frames are shot by the DJI Mavic 2 

Zoom instead of the DJI Mavic Pro, and they met new nature 

conditions at the different paddy fields planted a different rice 

variety.  These differences can confirm that the frames used in 2019 

are never seen by the trained deep learning model.  Furthermore, 

the results of evaluating the system performance on these frames 

should be creditable. 

2.4  Mask R-CNN 

The Mask R-CNN[24] belongs to the R-CNN series[25] and is 

modified on the Faster R-CNN[26] by adding the FCN (Fully 

Convolutional Network)[27] for the pixel-level masking of objects.  

In conclusion, the Mask R-CNN, mainly consists of (1) a residual 

learning network (ResNet)[28] and an FPN (Feature Pyramid 

Network)[29] as the backbone for feature extraction over an entire 

image; (2) a region proposal network (RPN)[26] for proposing 

candidate object-bounding boxes; (3) RoIAlign for resolving the 

misalignment; (4) the head layer for bounding-box recognition 

(classification and regression); and (5) an FCN for mask prediction.  

We implemented the Mask R-CNN from an open-source project[30] 

on Github to fit the requirements in this study.  

On the configuration of the training progress, only two classes, 

the background, and panicles were defined.  The detailed 

configuration of the training progress included (1) the ResNet101 as 

a backbone; (2) a batch size of 2 on a single graphic card; (3) a 

learning rate of 0.001 for 30 epochs only training head layers and a 

learning rate of 0.0001 for 60 epochs training all layers; (4) no 

resizing of the input image (128×128); (5) beginning from 

pre-trained COCO weights instead of beginning from random 

weights; (6) RPN anchor scales of 8, 16, 32, 64, and 128; (7) 

on-the-fly augmentation.  Specifically, data augmentation was 

conducted with either no change or by randomly selecting 1 to 3 

types of (1) horizontal flip; (2) vertical flip; (3) one randomly 

selected affine translation from rotations of 90°, 180°, and 270°; (4) 

random gaussian blur with sigma values from 0 to 5; (5) random 

scaling from 1× to 2×.  

During inference progress, a sliding window (1024×1024) with 

50% overlap was applied to scan the 4K full image.  In every step, 

the pre-trained model detects the contents within a sliding window 

with a detection confidence of 85%.  Non-maximum suppression 

(NMS)[31] was implemented to delete repeated detection among the 

overlapping sliding windows. 

2.5  Workflow of predicting the total numberof panicles 

2.5.1  Flight trajectory preprocessing 

The centroid status of the UAV was recorded as flight logs by a 

frequency of every 100 ms.  Each log consists of (1) a geographic 

location (Latitude, Longitude, Altitude); (2) a timestamp; (3) three 

rotation angles (Pitch, Roll, Yaw); (4) a gimbal angle.  Original 

geographic locations were recorded in the WGS84 coordinate 

(EPSG: 4326), and then they were converted to Tokyo/UTM zone 

54N (EPSG:3095) coordinate, which used the Tokyo geographic 2D 



210   January, 2021                        Int J Agric & Biol Eng      Open Access at https://www.ijabe.org                         Vol. 14 No. 1 

coordinate reference system (CRS) as its base CRS and the UTM 

zone 54N as its projection.  Therefore, the format of recorded 

locations was converted to (X, Y, Z). 

Given the sensor noises and missing logs, directly matching 

frames to their corresponding logs can lead to errors.  Thus, the 

Kalman smoother[32] was utilized for preprocessing flight 

trajectories.   The Kalman smoother is an extension based on the 

Kalman filter, and it is a backward algorithm.  The Kalman 

smoother can provide imputed values for missing values in time 

series.  To apply the Kalman smoother needs to set a dynamic 

model.  In this study, the dynamic model was extended from a 2D 

model[33] and then was applied to explain the motion of flight with 

parameters using Equations (1)-(6): 
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where, xk-state at k, Equation (1).  The elements Xk, Yk, and Zk are 

the coordinates in the X, Y, and Z directions at k, respectively, m; sk

(X)
, 

sk

(Y)
 and sk

(Z)
 are the velocities of X, Y, and Z at k, respectively, m/s.  

Hk-measurement matrix; 1k  -system matrix giving the state xk 

from xk+1; Qk-system noise covariance matrix; P0-the initial estimate 

of state error covariance; R-measurement noise covariance matrix; 

The value of σ is an estimate of GPS noise.  In this study, σ was  

5 m.  σs was the average velocity of each flight trajectory.  

Describing motion modeling and the Kalman smoother in more 

detail is beyond the scope of this study.  Thus, for more details, 

we recommend checking the mentioned research, as only the 

critical parameters are described here.  

2.5.2  Mapping panicle distribution 

Frames were extracted from videos with an interval of one 

second.  Each frame would be matched to a corresponding log 

from the preprocessed flight trajectory by aligning the same 

timestamps.  Continuously, panicles in the frames were detected 

by the trained model, and their locations were recorded in the pixel 

coordinate (u, v).  Eventually, these locations of detected panicles 

were converted from the image coordinate (x, y, z) into the UTM 

coordinate (X, Y, Z).  The transformation equations[34] are shown 

as Equations (7) and (8). 
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where, u and v are the coordinates in the pixel coordinate; u  and 

v
 
are the width and height of the frame, respectively; FoV is the 

diagonal angle of the frame; x, y, and z are the coordinates of the 

image coordinate. 
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where, Xp, Yp, and Zp are the panicles’ locations in the real-world 

coordinate converted from x, y, and z in the image coordinate.  Xd, 

Yd, and Zd are the recorded centroid locations of the UAV from logs.  

1( )R  , 2( )R  , and 3( )R   are the rotation matrices for the roll 

 , pitch θ, and yaw   angles, respectively.  ρ1 and ρ2 are the 

rotation angle and tilt angle of the gimbal, respectively.  In this 

study, ρ1 was 0.   The results of mapping the locations of panicles 

and the flight trajectory into the real-world background are shown 

in Figure 2, where green points denote panicles and red points 

denote the discrete records of the flight trajectory.  Furthermore, 

only the experimental area in 2019 is specified, and the panicles 

within this area are visualized as shown in Figure 3, where blue 

points denote the panicle locations. 

2.5.3  Prediction of the amounts of panicles 

As frames were extracted with overlap, panicles contain 

unwanted repetition and noises, such as false detections.  

Counting the number of panicles directly from the experimental 

area can only acquire incorrect values.  The clustering algorithm, 

called Density-based Spatial Clustering of Applications with Noise 

(DBSCAN)[35], was implemented for eliminating the repetition and 

noises.  The DBSCAN does not rely on a pre-defined number of 

clusters and is friendly for the arbitrary shape of samples.  The 

required parameters of DBSCAN are the maximum distance 

between two samples and the minimum number of samples in a 

neighborhood.  The DBSCAN outputs clusters and noises based 

on the input data.  In this study, the panicles belonging to the 

same cluster were seen as the same panicle and would be further 

computed for the centroid of the cluster.  The locations of the 

centroids were treated at the new locations of panicles of 

eliminating the repetition.  The noises would be directly deleted.  

The parameters of the DBSCAN are set the maximum distance as  

2 mm and the minimum number as 2.  

Even though the DBSCAN can remove most repetition and 

noises, the errors and uncertainties still exist.  To predict a 

relatively accurate number of panicles, fitting the number of panicles 

by time-series into a growth model is an option.  Nonlinear 

regression models are widely used in agricultural research.  Generally, 
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Figure 2  Mapping flight trajectory and panicle locations in the UTM coordinate 

 

 
Figure 3  Panicles remapped within the experimental area in 2019 

 

 

the sigmoid model also called the S-shaped model, has advantages 

in interpretability and prediction[36].  Meanwhile, rice growth was 

explored as a biphasic growth pattern[37], which was a mixture 

representation of two logistic curves that one was from the 

vegetative stage and the other was from the reproductive stage.  

Specifically, the total weight of panicles was acted as the 

dependent variable in the model during the reproductive stage.  

As the total weight is also tightly related to the total number of 

panicles, in this study, the number of panicles was set as the 

response variable, and the day after transplanting was set as the 

explanatory variable.  The formulation of the growth model is 

shown as Equation (9). 
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where, Yasym is the asymptotic value; tm is the point that the growth 

rate is maximum; k is the steepness of the fitted curve; E is the error.  

The initial guesses were given the maximum value of Y to Yasym, the 

median date of t to tm, 1 to k and the minimum value of Y to E.  The 

growth model was fitted by the least-squares method.  

2.6  Evaluation indices 

2.6.1  Evaluation indices of Mask R-CNN 

The performance of the Mask R-CNN was evaluated through 

three metrics under intersection over union (IoU) over 50%: 

Average Precision (AP), Precision, Recall, and F1-score.  The 

value of IoU shows whether the overlap ratio that detected the 

bounding rectangle covers the corresponding annotation.  

Precision reflects the percentage of correct predictions.  Recall 

measures the proportion of correct predictions among all 

annotations.  On the precision-recall curve, AP represents the area 

under the curve.  F1-score indicates the balanced accuracy of 

predictions.  Equations (10)-(13) are shown as follows: 
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2.6.2  Evaluation indices of growth model 

R2, Equation (14), and Root Mean Square Error (RMSE), 

Equation (15), are computed for evaluating how well the models 

are fitted.  y  is the mean of observed data yi.  fi is the predicted 

data from the fitted model. 
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3  Results and discussion 

3.1  Accuracy of Mask R-CNN 

The dataset acquired in 2018 was split into two parts, 80% as 

the training set and 20% as the validation set.  The remaining 20% 

of the dataset was selected as the validation set with a detection 

coefficient of 85%.  The best-trained time of the Mask R-CNN 

was selected, and the metrics, AP, precision, recall, and F1-score on 

the validation set 79.46%, 82.46%, 80.06%, and 79.66%, respectively.   

Given the complex environments in natural fields, although the 

trained model performed well on the validation set, it is hard to say 

that the model is good enough and is well generalized under natural 

conditions.  Therefore, visual inspections of several common 

scenes were performed by applying the best-trained model to real 

detection of the frames acquired in 2019.  In general, strong light 

conditions causing overexposure and the blurring of objects are 

common in the paddy rice field.  Four general scenes were 

randomly selected to check the reliability of the pre-trained Mask 

R-CNN, as shown in Figure 4.  Figure 4a is the scene shot without 

strong light condition and object blurring; Figure 4b is the scene 

shot with little object blurring but without strong light condition; 

Figure 4c is the scene shot with the strong light condition but 

without object blurring; Figure 4d is the scene shot with both 

strong light condition and object blurring.  In conclusion, the 

Mask R-CNN can handle the complicated nature conditions with 

acceptable overall performance. 

 
a. Without strong light condition and 

object blurring 

b. With little object blurring but 

without strong light condition 

 
c. With strong light condition but 

without object blurring 

d. With both strong light condition 

and object blurring 
 

Figure 4  Visual inspection of the results of Mask R-CNN under 

four common scenes shot:  
 

3.2  Interpretation of rice growth  

The manual check would be used to compare the growth trend 

with mapping results, as shown in Figure 3, to interpret the growth 

changes represented by the changes in mapping panicle 

distributions.  The manual check recorded the ratio of crops where 

the first panicle had emerged from the rice stem, as shown in 

Figure 5.  From the perspective of the record, all crops in the 

paddy field came into the heading stage first in the dense 

cultivation areas.  The sparse cultivation areas in the second and 

third transplant regions grew better than the dense cultivation areas.  

The third transplanted area could not enter the full heading status 

until harvest.  

 
Figure 5  Records of the ratio of panicles in the heading stage 

 

From the perspective of the panicle distributions, the sparse 

and dense regions of the earliest transplant showed the fastest 

growing speed compared with the other two transplants.  

Meanwhile, crops in the second transplant areas were still growing 

separately with little crossing.  The third transplant region grew 

slowly because the appropriate growth window was missed.  With 

reference to the cultivation density of the various regions, the dense 

cultivation of the first transplant showed the most rapid growth 

overall, and the sparse cultivation of the second transplant had 

greater panicle density than the dense cultivation within the same 

transplant on 20 August.  In conclusion, the changes in panicle 

distributions generally obey the same growth trend as what is 

recorded by a manual check.  The proposed system can reflect the 

differences during rice growth and should be reliable enough. 

3.3  Accuracy of the prediction 

In 2019, the harvest was conducted on 27 August.  The final 

number of panicles was counted at harvest.  To compare the real 

number of panicles with a predicted total, the growth model would 

predict the amounts on 27 August by the growth model.  As the 

third transplant areas, 3S and 3D, could not enter the full heading 

status, these two areas would not fit the assumption of the growth 

model.  Therefore, they were removed from the prediction.  

Eventually, the results are shown in Table 2 and the fitted models 

are shown in Figure 6, where the numbers of titles denote the 

sequence of transplant date (1, 2, or 3) and the capitals denote the 

cultivation type, D (dense) or S (sparse).  The errors in Table 2 are 

normalized as 
|   |

100%
 

Predicted Amount Truth Amount

Truth Amount


 .  As 

shown in Table 2, the model of 1D area has the best fitness and 

acquires the minimum error.  Relatively, the 1S and 2D areas 

show unexpected results.  The predicted amount of the 1S area is 

much larger than the true amount.  On the contrary, the predicted 

amount of the 2S area is far less than the truth.  The model 

belonging to 2D cannot even show the straightforward turning 

change due to its slowest growth status.  The potential factors 

causing such unreliable results will be discussed through combing 

with Figure 6. 
 

Table 2   Results of panicle amount prediction 

No. R
2 

RMSE Truth amount Predicted amount Error 

1S 0.70 194.62 452 699 54.64% 

1D 0.91 88.79 795 714 10.18% 

2S 0.73 84.85 418 317 24.16% 

2D 0.78 60.81 618 328 46.92% 
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Figure 6  Panicle growth model 

 

In conclusion, the overall R2 is higher than 70%, the average 

RMSE is 107.27 and the average error is 33.98%.  The reasons 

potentially causing errors of the prediction are concluded as 

follows: 

  Due to the continuous rainfall for about one week in the 

middle of August, it should be mentioned that no flights were 

conducted in this period.  This is the critical factor that there were 

no records during the important turning period except the 1D area.  

Because the 1D area was the first area that all crops in the 1D area 

could have at least one panicle emerging from the stem, the 1D 

area should be the first one to enter the fast growth stage.  Thus, 

the result of the 1D area performed well.  

  On the other hand, due to the loss of records during the 

turning period, the final predictions of other areas were highly 

affected by the last three records.  However, within the last three 

records, most rice had been in the mature stage, and panicles had 

changed to yellow with a larger size of fruits.  The changes of 

color and texture made huge differences of panicles between the 

heading stage and the mature stage.  The larger size of panicles 

made the view of frames overcrowded.  These two reasons caused 

the disappointing accuracy of the trained Mask R-CNN.  The 

DBSCAN algorithm could also be affected and lead to errors in 

removing repetition and noises. 

3.4  Errors and uncertainties 

The combination of light consumer-level UAVs and 

state-of-the-art computer vision technology for high-throughput 

analysis provides a new method of field-based phenotyping that 

eliminates labor-intensive and time-consuming work.  However, 

there are errors and uncertainties that can drop the overall 

performance of the proposed system.  The key points are 

discussed to improve the proposed system in the future and avoid 

potential faults. 

(1) Blurring: The accuracy of the Mask R-CNN when using an 

over blurred image can be significantly low.  The strong wind 

from the rotors or natural wind can cause such heavily blurring.  

Improper flight speed can also cause the same result because of the 

relatively slow shutter speed.  The flier should consider the 

balance between height and resolution and should try to avoid 

taking off when the wind speed is too great.  

(2) Cover: Panicles at the lower stem are hidden under the top 

canopy in the image and covered by leaves during the early 

heading stage.  Even though panicles had grown, they were 

covered by other panicles that densely surrounded them.  

Choosing an appropriate observation window need to be carefully 

decided. 

(3) Size: On the one hand, panicles can be too small to detect 

during the early heading stage.  Small object detection is a 

difficult challenge for computer vision tasks.  Extremely small 

objects only contain little information, and scaling images can 

cause information loss.  In this study, each full image was divided 

into many patches with overlap, and the patches were fed to the 

trained Mask R-CNN without scaling.  On the other hand, most 

panicles are excessively large and intertwine with surrounding 

panicles by harvest time.  Specifically, such chaotic scenes can 

highly affect the accuracy of the detector.  Therefore, it is 

recommended to implement the proposed system before rice enters 

the mature stage. 

(4) Maturity: The dataset acquired in 2018 did not include  
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mature panicles.  When rice enters the mature stage, the features 

of the panicle change greatly in terms of color, texture, shape, and 

size.  It was difficult for the trained Mask R-CNN to recognize 

mature panicles.  Meanwhile, most crops in the paddy field had 

entered the mature stage after 20 August, and the trained Mask 

R-CNN predicted objects with relatively poor accuracy. 

In addition to the factors mentioned, many uncertainties in the 

natural environment reflect the complex and heterogeneous 

condition of real fields.  These uncertainties are difficult to control 

and should be carefully addressed in these specific scenes.  

3.5  Discussion 

Even though the proposed platform has several advantages, 

some deficiencies must be overcome.  (1) Uncertainties caused by 

natural conditions, such as changing illumination, rainfall, and 

strong winds, can greatly affect the performance of the proposed 

platform, and so the platform is not useful in extreme weather.   

(2) The Mask R-CNN heavily relies on computational resources, 

and it cannot provide real-time processing.  For solving the 

mentioned problems, we have contemplated mounting a neutral 

density (ND) filter to prevent overexposure, and accelerating 

computation using a cloud server in the future.  Moreover, in this 

study, the overlaps and repeated detections were not solved 

perfectly.  Sampling analysis, instead of continuous detection, 

would be an option to resolve this issue.  Tracking the detected 

objects through continuous video frames could be another solution 

to resolving the filtering overlap. 

4  Conclusions 

Using the proposed system makes it possible to intuitively 

visualize the change in rice growth status during the heading stage.  

In particular, the growth speed and panicle distribution among 

different parts were clearly visualized during the middle and 

preliminary stages of the rice heading.  Under a proper flight 

configuration, the Mask R-CNN performed very well in capturing 

complicated scenes and achieved precision, recall, AP, and 

F1-score of 82.46%, 80.60%, 79.46%, and 79.66% respectively.  

This performance was verified using another rice variety in 2019 

and was sufficiently generalized.  The light consumer-level UAVs, 

as a high-throughput phenotyping platform, provide an opportunity 

to implement this system not only in the limited area of a whole 

field but also over widespread agricultural production areas due to 

their excellent flexibility.  UAVs can easily enter any location that 

cannot be observed using tractors and fixed platforms.  

Furthermore, the light consumer-level UAVs are relatively cheaper 

than high-load UAVs, and their operations are novice-friendly.  

The original intention of this study is to develop an easy-to-go 

system for those who will use it in real agricultural production. 

Up to the present, agricultural production has met the 

revolution of which labor-intensive and time-consuming processes 

have been transformed by the predominance of high technology.  

The increase in the use of high technology promotes agricultural 

information data-driven methods as new methods covering all 

aspects of agricultural production.  For the proposed system, it can 

see the turning point that multidisciplinary fusion leads to new 

development.  The proposed system can be applied not only to 

phenotyping analysis but can also be expected to become a source 

of agricultural data.  Given the high resolution of the generated 

maps, data can be treated as an accurate reflection of ground 

conditions or as a sampling of data that has value in other 

applications.  The idea of using such a phenotyping system for 

future research is offered. 
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