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Abstract: Crop rows detection in maize fields remains a challenging problem due to variation in illumination and weeds 
interference under field conditions.  This study proposed an algorithm for detecting crop rows based on adaptive multi-region 
of interest (multi-ROI).  First, the image was segmented into crop and soil and divided into several horizontally labeled strips.  
Feature points were located in the first image strip and initial ROI was determined.  Then, the ROI window was shifted 
upward.  For the next image strip, the operations for the previous strip were repeated until multiple ROIs were obtained.  
Finally, the least square method was carried out to extract navigation lines and detection lines in multi-ROI.  The detection 
accuracy of the method was 95.3%.  The average computation time was 240.8 ms.  The results suggest that the proposed 
method has generally favorable performance and can meet the real-time and accuracy requirements for field navigation. 
Keywords: machine vision, crop rows detection, navigation, multi-ROI 
DOI: 10.25165/j.ijabe.20211404.6315 
 
Citation: Zhou Y, Yang Y, Zhang B L, Wen X, Yue X, Chen L Q.  Autonomous detection of crop rows based on adaptive 
multi-ROI in maize fields.  Int J Agric & Biol Eng, 2021; 14(4): 217–225. 

 

1  Introduction  

The progress of agricultural science is the most important 
indicator to measure the productivity of modern agriculture[1].  
Intelligent agricultural equipment can reduce farmers' work 
intensity and improve their work comfort, while increasing 
efficiency and quality.  In recent years, scholars have conducted 
various studies on intelligent operating systems for agricultural 
machinery.  

In different areas, a number of studies have been conducted 
to develop intelligent agriculture[2-4].  Among them, agricultural 
navigation technology usually relies on a global positioning 
system (GPS) for autonomous driving of agricultural machinery 
in the field[5-7].  However, in maize fields, GPS-based navigation 
systems can hardly ensure that vehicles travel between crop 
ridges, resulting in a high rate of seedling damage from wheels.  
More recently, machine vision has become increasingly 
popular[8,9].  As most crops are planted in rows, the navigation 
path of agricultural vehicles can be planned by crop rows 
detection.  Therefore, the field navigation of agricultural 
vehicles based on machine vision relies mainly on the 
development of crop rows detection algorithms[10].  With the 
crop rows detection based on machine vision, it is possible to 
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ensure that the vehicles travel between the crop ridges to avoid 
crushing seedlings. 

Though machine vision exhibits advantages such as low cost, 
large information capacity, crop row detection usually relies on 
complex algorithms.  Therefore, field navigation based on 
machine vision is unstable at times due to long computation time, 
and susceptibility to environmental changes.  Scholars have 
conducted many in-depth pieces of research on crop row detection.  
In recent years, many effective methods are proposed.  The 
popular methods are mainly classified into the following 
categories: 

1) Methods based on Hough transformation: Hough 
transform[11] is one of the most popular methods of straight-line 
detection.  It is typically used to separate geometric shapes with 
the same characteristics from others.  Rovira-Más et al.[12] used 
Hough transform to detect crop rows by extracting the region of 
interest.  After that, the most suitable travelling path was found by 
the connectivity analysis.  Bakker et al.[13] first corrected the 
image which was segmented into crop and soil based on grayscale 
image subsequently.  And the grayscale image was divided into 
three parts to compute Hough transform.  Finally, the three parts 
were combined into one image.  This method solves the problem 
of difficulty in establishing the region of interest due to the 
non-parallelism of crop rows.  However, its adaptability is limited 
because it needs to be based on a fixed camera angle.  The 
disadvantage of Hough transform is the long computation time due 
to the high computational volume.  Ji and Qi[14] presented a crop 
rows detection method.  It is based on randomized Hough 
transform (RHT)[15].  After that, they tested a color image.  
Compared with classical Hough transform, the computation time 
was significantly reduced.  Randomized Hough transform reduces 
the computation time to a certain extent, but its adaptability is still 
limited in maize fields with high weeds pressure. 

2) Methods based on horizontal strips: One of the difficulties 
in crop rows detection is that the crop rows in the image are not 
parallel.  Okamoto et al.[16] divided the corrected image with 
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perspective transformation into five horizontal image strips.  
Feature pixel values were projected vertically to locate the center 
points for crop rows detection.  This method is difficult to adapt to 
field images obtained with different camera angles.  To 
address this problem, Sogaard and Olsen[17] divided the image into 
several horizontal strips and positioned crop rows in each grayscale 
image strip without using a perspective transformation.  This 
method solves the problem that crop rows are hard to be positioned.  
Si et al.[18] divided the image, ascending and descending points 
were positioned in each image strip for least squares-based crop 
rows detection.  Ospina and Noguchi[19] detected the contours of 
crops in each image strip.  The least squares method was used to 
extract navigation line based on the geometric center points of the 
contours.  The methods above are possibly affected by weeds, 
partial missing of crop rows and camera shake. 

3) Methods based on vanishing point: Pla et al.[20] proposed a 
crop rows detection method based on a vanishing point.  After the 
image was segmented into crop and soil, the skeleton features of 
each crop row were extracted by vanishing point to serve as a 
baseline for linear fitting.  After the detection lines were 
computed, the vanishing points were detected to recover crop rows.  
Jiang et al.[21] searched for the feature points through a moving 
window.  Hough transform was used to detect all possible crop 
rows.  Finally, the vanishing point was computed by k-means 
clustering.  The method based on the vanishing point can adapt to 
different field conditions.  However, complex maize field 
conditions make skeleton extraction hard.  Moreover, the method 
requires high computing power, and its computation time still 
needs to be optimized. 

4) Other methods: Zhang et al.[22] carried out a vertical 
projection method to position the feature points, and they were 
clustered for linear fitting.  Jiang et al.[23] used linear regression 
method to detect crop rows based on the region of interest, which 
depended on the estimation of central points.  García-Santillán et 
al.[24] proposed a new method of curved and straight crop rows 
detection.  Extraction of starting points, location of micro-region 
of interest (micro-ROI) and regression analysis are the cores of the 
method.  Li et al.[25] determined the center position by the 
boundary features of crops, then clustered candidate points, and 
finally extracted the navigation path by Hough transform.  The 
methods above combine the advantages of previous methods in 
terms of accuracy, but all candidate feature points are computed 
simultaneously when detecting crop rows.  In the images taken by 
the camera, the crop rows located at the edges (non-travelling area) 
are not very meaningful for navigation.  Therefore, the methods 
are susceptible to interference in the scenario of dense crop 
distribution, high weeds pressure, and crop rows partial missing, 
which will lead to longer computation time and lower accuracy in 
determining feature points. 

According to the above methods, we found few crop rows 
detection methods based on selecting travelling area as ROI.  
Montalvo et al.[26] successfully detected crop rows with high weeds 
pressure by determining the ROI of images and least-squares 
method.  But the number and distribution of crop rows were 
known beforehand from previous work.  Establishing adaptive 
ROI is essential for accurate and real-time navigation.  To address 
the problem, considered the algorithms proposed by previous 
scholars, this paper proposed a crop rows detection method based 
on multi-ROI.  The objectives of the study are to be able to 
achieve strong adaptability in different field conditions, including 
different illumination, weeds pressure and camera position.  The 

accuracy of navigation line should meet the allowable requirement 
of agricultural vehicle navigation.  The computation time of the 
algorithm should be within a reasonable range and with a good 
real-time performance. 

2  Materials and methods 

The key insight of the method presented in this study is to 
extract the travelling area as the region of interest (ROI).  The 
crop rows are detected in ROI as shown in Figure 1.  And the flow 
chart is presented in Figure 2.  First, an initial midpoint was set, 
and the image was divided into several horizontally labeled image 
strips.  The feature points were positioned in the first strip to 
determine the initial ROI.  Then, the ROI window was shifted 
upward and the initial midpoint was renewed as the center of ROI.  
In the second image strip, the operations in the first strip were 
repeated based on renewed ROI and midpoint.  The operations 
above are repeated across all image strips until multi-ROI was 
determined.  Finally, the least square method was carried out to 
detect crop rows in multi-ROI. 

 
Figure 1  Navigation of agricultural vehicle in maize fields 

 
Figure 2  Major process of crop rows detection 

 

2.1  Image acquisition and processing equipment 
The images were taken at the Wanbei Comprehensive 

Experimental Station of Anhui Agricultural University (116°97′E, 
33°63′N), Huigu Town, Yongqiao District, Suzhou City, Anhui 
Province, China.  For image collection, a complementary 
metal-oxide semiconductor (CMOS) camera was used.  The 
camera was installed on the agricultural vehicle at 1.5 m above 
ground, with a 30° downward vertical angle.  The image size was 
1920×1080 pixels.  The frame rate was 12 frames/s.  The video 
was saved in AVI format.  The video was collected on July 8, 
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2019 (illumination intensity: 102 300 lx) and July 14, 2019 
(illumination intensity: 149 200 lx) under natural illumination 
conditions.  The distance between rows was 60 cm, and the 
velocity of the vehicle was 0.5 m/s.  The video contained 2 890 
frames, and the growth period of maize was the three-leaf stage.  
The images were taken from the video of crop rows in front of the 
vehicle.  The chassis of the vehicle traveled along the crop rows.  
The images are shown in Figure 3.  The algorithm was 
implemented in Python (version 3.6.6).  LAPTOP-K8UQ8410 
(Lenovo, Beijing, China) was used with an Intel(R) Core(TM) 
i5-8300H core processer at 2.30 GHz and 8.00 GB of random 
access memory (RAM).  The camera communicated with a laptop 
through a network port. 

 

 
a. Type-1 field (illumination intensity: 149 200 lx) 

 

 
b. Type-2 field (illumination intensity: 102 300 lx) 

Figure 3  Original images with different maize field conditions 
 

2.2  Image preprocessing 
Because of the complex environment in maize fields, the 

images collected by the CMOS camera contain a fair amount of 
interference information.  In order to reduce the noise, the edges 
of images were appropriately cropped.  And the images were 
segmented into crop and soil. 
2.2.1  Image segmentation 

It is critical to properly distinguish crop and soil for subsequent 
image processing.  To do so, choosing desirable color space is the 
primary problem.  Red (R), Green (G), Blue (B) color model is 
commonly used to extract green plants like crops[27-29].  As 
presented in Figure 3, there is a substantial difference between the 
green component of crop and soil.  The Excess Green algorithm 
(ExG)[30] can effectively suppress weeds, shadows and weaken the 
influence of illumination on subsequent image processing.  Before 
that, the R, G, and B channels need to be normalized as follows: 

,  ,  B G Rb g r
R G B R G B R G B

= = =
+ + + + + +

, 1b g r+ + =  

                  (1) 
where, B, G, and R are image color components; b, g, and r are 
normalized values of B, G, R. 

By the abundant experiment survey and data analysis, the 
improved ExG for each pixel is as follows: 

ExG = 1.8g – 1.1r – 0.8b               (2) 

The gray-scale images of different illumination and weeds  
pressure are shown in Figure 4. 

After the original images were converted to gray-scale images, 
binary images were obtained with Otsu’s method[31].  Results are 
shown in Figure 5.  

 

 
a. Type-1 field (illumination intensity: 149 200 lx) 

 

 
b. Type-2 field (illumination intensity: 102 300 lx) 

Figure 4  Gray-scale images obtained with improved ExG 
 

 
a. Type-1 field (illumination intensity: 149 200 lx) 

 

 
b. Type-2 field (illumination intensity: 102 300 lx) 

Figure 5  Binary images obtained with Otsu’s method 
 

2.2.2  Morphological processing 
After the binary images were obtained, obvious impulse noises 

appeared in Figure 5b due to weeds.  Therefore, binary images 
were further de-noised by a mathematical morphological open 
operation based on the kernel as follows: 

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

K

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

                (3) 

The results are shown in Figure 6. 
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a. Type-1 field (illumination intensity: 149 200 lx) 

 

 
b. Type-2 field (illumination intensity: 102 300 lx) 

Figure 6  Binary images after morphological processing 
 

2.3  Region of interest selection 
When the agricultural vehicle is traveling in maize fields, only 

the crop rows in the traveling area need to be selected for detection, 
while the crop rows at the edge of the image are less useful.  In 
this study, travelling area is selected for crop rows detection to 
improve the accuracy and computational efficiency. 
2.3.1  Image division 

Because crop rows in the images are not parallel, ROI cannot 
be extracted by delimiting a simple geometric area.  For ease of 
ROI selection, the image was divided into N horizontal strips with 
Δh height interval along the vertical direction.  N is calculated as 
follows: 

HN
h

=
Δ

                     (4) 

where, N is 10 in this study; H is the height of image, pixel; Δh is 
the height of image strip, pixel.  The divided image is shown in 
Figure 7a. 
2.3.2  Initial ROI determination 

The bottom image strip (Horizontal strip 10) was picked to 
determine the initial ROI.  Initial midpoint MO is set to (Mx0, My0), 
where Mx0=W/2; My0=H; W is the width of image, pixel.  This is 
temporarily inaccurate.  To properly convert the initial midpoint 
coordinate to the actual midpoint coordinate, the pixel values of 
each column need to be projected vertically.  Afterwards, the 
initial ROI was determined based on the projected image strip, 
which proceeded as follows:  

The image strip was scanned, and the pixel sum (Z(i)) of each 
column was calculated based on Equation (5): 

( )

( , ) 255
0

( ) , ( ) , 1,2,...,
h i

p i j
j

h i n Z i a i W=
=

= = =∑
   

     (5) 

where, i is the column coordinate; j is the row coordinate; p(i, j) is 
the pixel value of coordinate p(i, j); h(i) is the number of points 
with 255 pixels value; a is a positive real number, a=1 in this study.  
The projected image is shown in Figure 7b. 

The projected image may be affected by the residual noise in 
the binary image, thus a threshold T is set for filtration.  If the 
value of Z(i) is less than T, it was set to 0 as described in Equation 
(6).  T is calculated as described in Equations (7) and (8). 
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where, M is the average value of column pixels; E is the standard 
deviation of column pixels. 

Distances between feature points (Z(i)≠0) in the projected 
image are recorded by scanning along the pixel column axis.  The 
feature points are marked as candidate clustering points.  An L 
value is set as the distance threshold for clustering.  The 
neighboring candidate clustering points with a distance less than L 
are grouped together.  

After the clusters are obtained, they are scanned from MO 
along the column axis.  The column coordinates of two nearest 
point classes to MO are subsequently obtained and respectively 
stored in clustering sets CLeft and CRight, as Figure 8a shown.  The 
width of ROI is finally determined based on clustering sets, and 
calculated from Equation (9).  The result is shown in Figure 8b.  
After that, the coordinate of midpoint MO is renewed based on 
Equation (10).  A point set Q is then created to store renewed MO. 

Right Left ROImax min ,  1.2D C C W D= − =         (9) 

Right Left

( 1)

max min
,  1,2,...,2x

y y
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M

N
M M h

μ

μ μ

μ
−

+⎧ =⎪ =⎨
⎪ = − Δ⎩

     (10) 

where, D is the distance between crop rows; WROI is the width of 
ROI; Mxμ is the column coordinate of the center point of ROI; Myμ 
is the row coordinate of the center point of ROI; My(μ-1) is row 
coordinate of the center point of the previous ROI. 

 
a. Divided image with horizontal strips 

 
b. Projected image of the first horizontal strip 

Figure 7  Image division and projected images 
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a. Clustering sets classification 

 
b. Details of initial ROI 

Figure 8  Initial region of interest (ROI) determination 
 

2.3.3  Multiple ROI (Multi-ROI) determination 
The crop rows in the images gradually converge as the camera 

distance increases.  According to this characteristic, after the 
initial ROI is obtained, the ROI window is shifted along the height 
direction with a step size of Δh.  It means that the ROI window 
obtained in the previous steps is applied to the next image strip.  
The vertical projection and clustering algorithm in Section 2.3.2 are 
repeated based on the renewed ROI and MO.  And we can 
determine the ROI window for each image strip in turn to extract 
multi-ROI.  Furthermore, the field condition is usually complex 
and variable.  If feature points cannot be detected due to partial 
missing of the crop rows, the previous ROI window is returned as  

 

 
a. Type-1 field (illumination intensity: 149 200 lx) 

 

 
b. Type-2 field (illumination intensity: 102 300 lx) 

Figure 9  Multi-ROI extraction results of the original images 

the new ROI window.  In particular, the pixel range of the first 
image strip is designated as the initial ROI when no feature points 
are detected.  The multi-ROI of the original two sets of images 
with different illuminations and weeds pressures are shown in 
Figure 9.  The details of the results are shown in Figure 10. 

 
Note: The numbers (red) refer to the sequence numbers of image strips and their 
ROIs. 

Figure 10  Details of muti-ROI 
 

2.4  Navigation line extraction 
After multi-ROI is obtained, the navigation line is extracted 

through the point set Q.  It should be noted that the initial 
midpoint is an estimated point, which has no practical significance 
for the extraction of navigation line.  Therefore, point set Q does 
not include the initial estimated midpoint.  

The least squares method (linear regression) is to find the best 
function fitting for the data by minimizing the sums of squares 
error.  When the feature data is less, this method can lead to 
improvement in the speed of linear fitting.  Now a set of points 
containing N feature points (shown as Equation (11)) is obtained by 
the total operations above. 

Q ={(Mxμ1, Myμ1), (Mxμ2, Myμ2), …, (MxμN, MyμN)}    (11) 
Now, the problem is to find its linear function y=f(x).  It is not 

likely to obtain an accurate function due to the nonlinear distribution 
of feature points.  But it can find an approach to minimize the sum 
of the squared deviation of the distance between f(x) and points in 
set Q.  Suppose the equation of the regression line is 

y = ωx + b                   (12) 
To further obtain Equation (12), the optimal combination of ω, 

b needed to be found and calculated as Equations (13) and (14).  
Results are shown in Figure 11. 

1 1

1 1,  
N N

i i
i i

x x y y
N N= =

= =∑ ∑             (13) 

  
1

2

1

N

i i
i

N

i
i

x y N xy
b

x N x

y bxω

=

=

⎧
−⎪

⎪ =
⎨ −⎪
⎪

= −⎩

∑

∑                (14) 

3  Results and discussion 

After the navigation line was extracted, detection lines of crop 
rows were again extracted in multi-ROI by the least squares 
method.  In order to ensure that the algorithm performs well under 
various conditions, the images of maize plants at the jointing stage 
(the height of the plant was about 70 cm) were used for testing.  
The results are shown in Figure 12.  Compared with the three-leaf 
stage, the maize plant at the jointing stage is denser and taller and 
the leaves are severely obscured, making it difficult to distinguish 
the crop rows at the edge of the image.  By determining traveling 
area as ROI, this method limits the detection in the effective range, 
and still has a good performance. 
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a. Linear regression of Type-1 field b. Linear regression of Type-2 field 

 

 

 

 
c. Navigation line of Type-1 field d. Navigation line of Type-2 field 

 

Figure 11  Results of linear regression based on least squares method 
 

  
a. Type-1 field b. Type-2 field 

  
c. Type-3 field d. Type-4 field 

  
e. Type-5 field f. Type-6 field 

Note: Blue line is the navigation line, dark blue line is the detection line. 
Figure 12  Results of crop rows detection (Type-1 and Type-2 are original input images, Type-3 to Type-6 are jointing stage images) 
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To verify the navigation accuracy, drawn lines were selected 
for evaluation.  Drawn lines were marked in strict accordance 
with agronomic requirements during the preparation process, 
choosing the most reasonable navigation path to exclude weed 
interference and making drawn lines and crop rows as parallel as 
possible.  Drawn lines were marked in red as shown in Figure 14.  
Error angle ∆θ is defined as the angle difference between the drawn 
line and navigation line.  Error angle is calculated as follows: 

180( arctan )
2

a

kθ

θ θ θ

⎧ π
= + ×⎪

π⎨
⎪ Δ = −⎩

          (15) 

where, θ is the angle between the navigation line and the middle 
axle of the agricultural vehicle chassis, (°); k is the slope of the 
navigation line; ∆θa is the angle of the drawn line, (°).   

To further verify the reliability and real-time performance of 
the algorithm of this paper, 100 frames (Maize plant at three-leaf 
stage) from the video captured by the agriculture vehicle were 
randomly selected to compare the algorithm with HT, HS[18], and 
that proposed by Jiang et al.[21] and Zhang et al.[22] 

The error angle between the drawn line and navigation line is 
not the only variable when accuracy is defined.  In practical 
calculation, the accuracy is also related to the offset distance of the 
two lines.  Even if the error angle is small, when the offset 
distance is high, it can still be considered that the detection result is 
poor as shown in Figure 13.  l1 is a navigation line with the error 
angle of ∆θ computed by a method, and l2 is a navigation line 
computed by other methods.  Obviously, the error angle of l2 is 0°, 
but it does not mean that the detection result is excellent.  On the 
contrary, because of the large distance from la, its accuracy can still 
be considered poor.  Therefore, this paper introduces the error 
angle and offset distance when the accuracy is defined. 

 
Note: la is the drawn line; l1 and l2 are the navigation lines extracted by different 
algorithms. 
Figure 13  Error analysis between navigation line and drawn line 

made by different algorithms 
 

As the error angle gets closer to 90°, the accuracy is considered 
to be lower.  The width of the bottom of ROI (Wbottom) is regarded 
as the error range of the offset.  The greater the offset distance of 
the navigation line, the lower the accuracy.  And the maximum 
distance between the endpoints of the two lines at the edge of ROI 
(max{d1, d2}) is used as an index to measure the offset distance.  
From the above method, the accuracy (A) is calculated as follows: 

1 2

bottom

max{ , }

1 100
90

d d d
dA

W
θ

Δ =⎧
⎪

Δ Δ⎛ ⎞⎨ = − − × %⎜ ⎟⎪ ⎝ ⎠⎩

         (16) 

The result of the comparison is shown in Table 1. 
The results revealed that the average detection accuracy of HT 

was 78.2%.  When the weeds pressure was high and crop leaves 

were dense, there were greater error angle values.  The average 
error angle was 5.76°.  And it came the problem of long 
computation time.  Real-time performance was poor.  Compare 
with HT, the average error angle of HS was smaller, but the 
accuracy was lower.  The major reason was that the distribution of 
crop rows was not symmetric due to camera shake.  Though HS 
accurately computed the navigation angle and detection lines by 
computing the feature points, the navigation line shifted to the side 
for more crop rows, which led to a decrease in accuracy.  The 
methods proposed by Jiang et al.[21] and Zhang et al.[22] had better 
accuracy compared to HT and HS.  The method proposed by Jiang 
et al.[21] is an improved method based on Hough transform, which 
detects vanishing points through k-means clustering to exclude 
wrong crop rows.  But it needs to set the value of k in advance.  
When the vehicle travels in the maize field, crop rows at the image 
edges affect the accuracy of the whole algorithm, and its real-time 
performance is weak because all the candidate feature points and 
Hough transform were computed.  When determining the crop 
rows, the core of the method proposed by Zhang et al.[22] is to 
accurately classify the candidate points and determine which crop 
rows they belong to.  Although the accuracy and real-time 
performance of the method were generally good, the range of 
feature points in the image (bottom two-thirds of the image) and 
the number of rows need to be determined in advance, which 
requires active parameter adjustment for different field conditions.  
When more crop rows were shown in the image, computing all 
feature points affected the real-time performance.  The method 
proposed in this paper could effectively solve the above problems.  
By determining the adaptive ROI and detecting crop rows in the 
ROI, the method had achieved a better result in terms of 
adaptability, stability and real-time performance by comparing the 
accuracy, standard deviation (S.D.) of accuracy and computation 
time with other methods.  The average accuracy was 95.3% and 
the standard deviation was 0.023.  Both the highest and lowest 
accuracy could meet the requirements of field navigation.  The 
computation time of one frame of the image was 240.8 ms 
(standard deviation was 11 ms), which could meet the real-time 
requirements of agricultural machinery travelling in the field. 

 

 
a. Drawn lines of crop rows 

 

 
b. Drawn lines (red), navigation line (blue) and detection lines (dark blue) 
Figure 14  Comparison of detection lines, navigation line and 

drawn lines 
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Table 1  Performance of different methods in terms of accuracy, error angle and computation time when velocity of vehicle was 
0.5 m/s 

Accuracy/% Time 
Methods θΔ /(°) 

Highest Lowest Average S.D. Computation/ms FPS 

This study 1.63 98.3 91.2 95.3 2.3 240.8 4.15 

HT 5.76 84.3 65.9 78.2 5.3 593.6 1.68 

HS 3.56 78.9 46.2 66.8 8.8 353.2 2.83 

Jiang et al.[21] 2.87 93.1 72.8 82.0 5.4 618.5 1.62 

Zhang et al.[22] 1.92 93.7 84.5 89.2 2.6 404.3 2.47 

Note: θΔ  is the average value of error angle; HT is the method based on Hough transform; HS is the method based on horizontal strip; S.D. is the standard deviation of 
accuracy; FPS is the frames per second of video. 

 

The differences in accuracy between different methods were 
analyzed with Wilcoxon rank-sum test[32].  The results showed 
that z-values of HT, HS, Jiang et al.[21] and Zhang et al.[22] were 
−12.218, −12.092, −12.016 and −11.180 respectively with 
p-Values<0.01 compared to the method in this paper.  Significant 
differences are detected with accuracy (p-Value<0.01).  It 
suggests that the method in this paper has obvious superiority. 

4  Conclusions 

Based on machine vision, a crop rows detection method for 
field navigation was presented.  Due to the variable and complex 
environment of maize fields, crop rows detection based on machine 
vision generally relies on complex algorithms, which leads to poor 
real-time performance and adaptability.  To address the problem, 
a crop rows detection method based on adaptive multi-ROI was 
proposed.  The image was segmented and divided into 10 
horizontal strips.  Subsequently, the initial ROI and midpoint were 
determined in bottom strip.  Then, the initial ROI window was 
shifted upward along the height direction and applied to the next 
image strip.  ROI and midpoint were renewed repeatedly until 
multi-ROI was determined.  Crop rows were finally detected in 
multi-ROI.  The detection accuracy of 1920×1080 pixels images 
was 95.3% (standard deviation was 0.023), and the average 
computation time was 240.8 ms (standard deviation was 11 ms).  
The method in this paper was compared with four existing methods.  
After performing Wilcoxon rank-sum test, it suggests that the 
method has great robustness and real-time performance. 
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