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Short-term prediction of ammonia levels in goose houses via combined

feature selector and random forest
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(College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China)

Abstract: Ammonia concentration (NH;) is a dominant source of environmental pollution in geese housing and profoundly
affects the healthy growth of geese. Accurately forecasting NH; and analyzing its change trends in geese houses is crucial for
the survival of geese. A novel forecasting model was proposed by combining feature selector (CFS) and random forest (RF) to
improve the prediction accuracy of NHj; in this study. The developed model integrated two modules. First, combining mutual
information (MI) and relief-F, we propose that CFS quantify each feature’s importance values and eliminate the low-relation or
unrelated features. Second, a random forest model was built using K-fold cross-validation grid search algorithm (CVGS) to
obtain the RF hyperparameters to predict NH;. The simulation results show that the prediction accuracy was improved when
feature selection after quantification based on the CFS was used. The mean square error (MSE), root mean square error
(RMSE), and mean absolute percent error (MAPE) for the proposed model were 0.5072, 0.6583, and 2.88%, respectively. The
NH; prediction model (CFS-CVGS-RF) based on Combined Feature Selector, cross-validation grid search algorithm (CVGS),
and Random Forest (RF) exhibited the best prediction accuracy and generalization performance compared with other parallel
forecasting models and is a suitable and useful tool for predicting NH; in geese houses. The results of the research can provide

a reference for the machine learning method to monitor the dynamic changes of ammonia in goose houses.
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1 Introduction

China is the largest geese producer in the world. According to
the data published by the China Statistics Bureau in the 2019
National Economic and Social Development Statistical Bulletin, the
output of poultry meat and poultry eggs in China was 22.39 million t
and 33.09 million t, respectively. The total output value of
waterfowl exceeds 160 billion RMB yuan'!. Due to the increasing
consumption of poultry products and an increase in exports, more
poultry coops will be built. Historically, outbreaks of poultry
disease and even mass deaths are almost inevitable due to the rapid
expansion of breeding scale, lack of scientific management, and
environmental degradation of the poultry housing®™. Presently, NH;
produced in poultry houses poses the most significant concern for
poultry health®. NH; produced through the decomposition of feces
and urine by microorganisms is a primary factor in the
environmental pollution in poultry coops and can damage the health
of the respiratory system, eyes, paranasal sinuses, skin, and other
organs™*’. The high concentrations of NH; directly harm poultry’s
immune function, health, and growth capability®®”, giving rise to
various diseases and leading to economic losses. Currently, research
on the influence of NH; on poultry has focused on laying and
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broiler hens. In contrast, the effects of NH; on geese have not been
widely discussed®. However, meat farming and laying geese in
China are gradually transforming from outdoor or semi-outdoor to
indoor. Therefore, the hazards associated with NH; are expected to
pose a severe problem for meat geese production. Due to the severe
implications of NH; on poultry health, there is a need to provide a
beneficial and stable environment for poultry, which is suitable for
the complex nature of NHj for its modeling and prediction.

In recent years, several intelligent algorithms have been
proposed to predict NH; levels®'. Artificial neural networks
(ANN), support vector machine (SVR), and decision tree (DT) are
useful tools. They have been widely used for solving complex
prediction problems. However, DT often faces the over-fitting issue,
so it performs well on the training data set but not on the test set.
SVM uses the quadratic programming approach to measure the
supporting vector making it difficult in large-scale training sets to
implement and make its output heavily dependent on the choice of
learning integrates the
prediction of several foundation estimators established with a given

various hyperparameters'’. Ensemble
learning algorithm to enhance the generalization performance over a
single estimator. It has become a hotspot in prediction and has been
successfully applied in some fields"”. Random forest (RF) is a
representative ensemble learning method. Compared with the
methods mentioned above, RF with fewer hyper-parameters seldom
over-fits and is relatively robust to outliers and noise!*'".

Many studies have indicated that changes in NH; are related to
temperature, humidity, and other environmental factors. Xie et al.["”
used an adaptive neuron fuzzy inference system (ANFIS) to predict
NH; using indoor relative humidity, indoor temperature, pig
temperature, and other indicators. Zhu et al.'"”’ predicted NH; based
on a genetic algorithm (GA) and optimized backpropagation neural
network. Temperature, relative humidity, carbon dioxide, total
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suspended particulates, solar radiation, and atmospheric pressure
have been usually used as prediction indicators®. While these
models select some indicators as inputs to predict NH;, few studies
have considered the correlation between each feature and NH;, and
the methods used in these studies display several shortcomings. For
example, using vast data directly in intelligent models without
feature selection increases the training time and the risk of over-
fitting.

Moreover, the contribution of the algorithm optimization and
model combination may be lower than that of screening for good
prediction indicators'®. Thus, feature selection is necessary.
Extraction and selection are common operations in feature
engineering. Feature selection is better than feature extraction
concerning readability and understandability and will not alter the
primitive feature data®. Recently, mutual information-based
algorithms (MI) have played an increasingly significant role in data
mining and machine learning. These methods have good non-linear
and linear processing capabilities for considering the relation of
diverse sets of features™?!. However, mutual information
algorithms ignore the influence of the proportions of labels on the
correlation degree between features and label sets®!. The Relief
algorithm presented by Kira et al.® was initially used for two-
category problems. Relief-F, an extensively adaptable filter-based
feature evaluation technique®, was presented to cope with multi-
label data and regression difficulties and to adapt to many category
problems. In the study of Wang et al.®, the fusion of mutual
information and relief-F was proposed to improve feature selection
capability and bring a more accurate feature selection.

In this study, the NH; prediction was investigated. The aim of
this study was to accurately forecast NH; levels using the data from
an intelligent goose house Internet of Things system. To overcome
this challenging problem, an RF-underpinned framework was
designed that effectively predicts the NH; level. Although RF is a

promising approach, two challenges must be addressed. One is that
unrelated and redundant features give rise to a high cost of the RF
training process and decrease prediction accuracy. The second one
is the tuning of the parameters. There are three hyper-parameters:
the number of a tree, the size of sampling subsets, and the minimum
number of samples required to split an internal node. These hyper-
parameters affect the performance of RF, and currently, there is no
consensus regarding how their values should be set.

This study combined the feature selector with the RF and
designed a new hybrid prediction model for predicting NH; in
goose houses to address the abovementioned challenges. First, the
combined feature selector (CFS) that combines the MI and relief-F
evaluates the importance of prediction indicators. Then, the
parameter M was controlled to eliminate the low-importance
features. Finally, the parameters of RF are used by CVGS to build a
model for predicting NHj; in geese houses. The hybrid model makes
full use of the CFS and is highly suitable for selecting the prediction
indicators in this study.

2 Materials and methods

2.1 Study area and data source

The data used in this study were obtained from a waterfowl
breeding farm in Haifeng County (23°05'N, 115°19'E) in Shanwei
City, China. With an area of approximately 53.3 hm’, the farm is a
multifunctional integrated aquaculture base integrating waterfowl
breeding, seeding breeding, and intensive aquaculture. In this
experiment, the animals (stone goose) in the area were housed,
including a poultry house (25%16 m?), a playground (25%30 m?), and
(20x3x1 m’). Fans,
(temperature and light), and various sensors were installed for

a swimming pool control equipment
online monitoring of aquatic environment parameters in the geese

houses (Figure 1).
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Figure 1

Because geese house environment parameters are mainly
affected by physical and chemical factors, an [oT system (Figure 2)
was developed to monitor temperature, humidity, carbon dioxide
(CO,), total suspended particulates (TPS), NH; of the houses and
temperature, humidity, atmospheric pressure, and solar radiation of
the surrounding environment.

2.2 Combined Feature Selector

To fully evaluate feature importance between each feature and
target, MI and relief-F are both used in CFS. These processes
compute the feature importance of each feature to decide whether a
feature is eliminated or preserved. The parameter M is the threshold.
The feature can be eliminated with low feature importance by
controlling M. In this section, a module was introduced. Figure 3
shows the processes of CFS.

Schematic diagram of the breeding environment monitoring based on the Internet of Things.

2.2.1 Relief-F

The relief algorithm is an effective filtered feature selection
method proposed by Kira and Rendell™. The relief algorithm is
initially limited to the classification of two types of data, so the
relief-F algorithm, which Kononeill later extends, can solve the
multi-class and regression problems™. This algorithm is a weighted
algorithm that assigns weights to each feature according to the
relevance of the target. The larger the feature weight, the higher the
contribution of the feature, and vice versa, the lower the feature
classification contribution.

The relief-F algorithm estimates feature weight according to the
degree of distinguishing samples close to each other based on the
value of the feature. The relief-F algorithm randomly selects a
simple X; (X; has classified p) from training set D, which has |y|
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Figure 3  Structure of combined feature selector (CFS)

class. Then searches for & of its nearest neighbors from the same
class, called near-hit X; ,;, and also & nearest neighbors from each of
the different classes, called near-miss X;;,,, (=1, 2, ..., V|; j#p),
then the weight of feature L (") can be computed as follows:

6= Y ~diff (XXE,) D (axdiff (XXE,)°) (D)
J#p

i

where, ¢/ is the proportion of class j samples in data set D, diff(<,
b) denoted distance between simple @ and b in feature j, diff() is
defined as,

Y — b/ [P .
#, if j is continuous
max(j) — min(j)

H J Y = . .
dafk (a b ) -0, if j is discrete and a’ # b’

1, if j is discrete and o’ = &’
(2)

2.2.2  Mutual information estimator

MI was selected based on its information theory background
among the estimates of independence between random variables.
MI(X, Y) between the two random variables X and Y is defined by
the common information found in two variables with a joint
probability distribution P(X, Y). MI(X, Y) computes the degree of
correlation between vector X and target vector Y and is given by

P(x,
MI(X, Y) = L L P(x,y)log (%}f&)) dxdy A3)

where, P(x, y) is the probability density function of random variable
Z=(X, Y), P(x) and P(y) represent the marginal probability density
function of X and Y, respectively. In fact, since P(x, y) is usually

unkonwn in advance, some methods should be used to estimate
MI(X, Y). K-nearest neighbor is a non-parametric method that has
been confirmed to be useful in MI estimation®”. For the K-nearest
neighbor, Euclidean distance was used as a distance metric, and the
maximum norm for the space Z=(X, Y) is written as,

llz = 2’1l = max {[lx— x|l Ily - ¥'lI} 4

Let x(i)/2 represent the distance from z; to its kth neighbor, and
x(i)/2 and x,(7) represent the distance between the same points
projected into the X and Y subspaces. It is clear that:

«(i) = max { k,(),&,(0) } Q)

Then, we denote by 7,(i) the number of points for which the
distance from x; is strictly less than x(7) and by #y(7) the number of
points for which the distance from y; is strictly less than (7). This
study noted that (i) is not a fixed value, and #,(i) and #,(7) is also
not fixed. (---) denotes both all i€ (1, ..., N) and all realizations of
the random samples.

> EL-@)]

()= (6)

N
The estimate for MI by K-nearest neighbor is then:

IXY) =y = (W@ + D+ (n,+1) ) +w(N) @)

where, y() is the di-gamma function and satisfies the recursion
w(x+1)=w(x)+1/x and w(1)=—C, where C=0.577 215 6 is the Euler-
Mascheroni constant. If MI is equal to 0, the two random variables
are independent and higher MI values mean higher dependency.

2.3 Random Forest.

The RF algorithm is a non-linear ensemble model that
establishes and averages a large number of random distribution DT
for regression or classification tasks®!. A DT or classification and
regression tree (CART) that constructs the RF is a non-parametric
model. According to the complexity of the input data, the tree grows
in the learning process. Decision nodes and leaf nodes are the main
components of DT. Each input sample is estimated by a test
function of decision nodes and passed to different branches
according to the features of the sample. Let us denote by X={x,, x,,
X3, ..., X,} the input vector with n features, Y is the output scalar, and
D,, is the training set with m observations which can be written as
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follows:
D, ={(X,,Y),(X,,Y)),(X;,Y3)....(X,,Y,)},X€R . YeR  (8)

At each node, the input data are split by a specific algorithm in
the process of training to optimize the parameters of the split
function to the fit data set D,. In the first step, the DT must be
optimally split among all variables. The splitting procedure begins
at the root node, and each node uses its split function for the new
input X. This operation is recursive until a leaf node appears. The
tree stops growing either when the maximum number of levels is
reached or when the observation number of a node is less than a
predefined number. The result of the DT learning process is a
prediction functionT(D,,, X) generated over D,,.

The RF regression model can offer powerful prediction ability
and is an extension of the DT. The main characteristics of RF
include bootstrap resampling and random feature subsets. An RF is
an ensemble of P DT T(D,‘”,X),T(D/Z“,X),...,T(ijx,X)A Here, (D),
D?,...,D") are the bootstrap samples obtained by random sampling
of m observations with replacement from D,, where each
observation has the probability of being drawn was 1/m. This
sample process is known as bootstrap resampling. During the
splitting of each node, only a small part of n features are randomly
selected instead of all features; this is known as random feature
selection. The ensemble learning result P output Y, = T(D,'n,X),
Y, =T(D*,X), ..., Y,=T(Dr

m>

X). Then, the final estimation output
Y is the average of P output, which is described as follows:

¥= }DZ::Y,: ;Z:jrw;,m ©)

where, Y, is the output of ith DT, i=1, 2, 3, ..., P. The framework of
RF regression is illustrated in Figure 4, and its training process can
be summarized as:

Step 1: Obtain bootstrap samples from the training data set by
bootstrap resampling;

Step 2: Generate a regression DT by full use of the bootstrap
sample drawn in step 1 with the following modification: at each
node, select the optimal split among a random subset sampled in

X=Xy, X,y X,)
D,={(X, 1), (X3, Y1), (X, Yo}

l

Bootstrap samples setx,

(D D%, ..., D)
l DT P
b, 4

l

IDT1 l

DT2 | |

| | | l

Output Output Output
V=10, 0| |1=10;, X) ¥=1(D}, X)
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Note: DT: Decision tree.

Figure 4 Framework of random forest regression

input variables (mtry) instead of all of them;

Step 3: Repeat Steps 1 and 2 until the P DT tree is generated,;

Step 4: Aggregating the output of P tress by an average method
to forecast unknown data.

2.4 Cross-validation grid search

According to the previous section, the RF algorithm was
noticed to have two important parameters: 1) P is the number of
decision trees that are the base estimators of RF; 2) mtry is the size
of the random feature subset.

Generally, a variance of RF decreases as P grows. More
accurate predictions are likely to be obtained by choosing a large
number of trees, but there is no common setting for P
Additionally, mtry is also a sensitive parameter, and increasing mtry
can improve the intensity of each DT but the relation among DT
will also be increased. This means that the total strength of RF may
be decreasing. Therefore, it is necessary to optimize the parameters
of RF and select the optimal RF parameters.

The grid search (GS) algorithm™, currently the most widely
used method for parameter optimization, is a highly suitable model
with fewer hyperparameters. GS exhaustively generates candidates
from a grid of parameter values specified by the user parameters,
then trains each candidate set of parameters and marks the model’s
score, finally obtaining the optimal combination of parameters. GS
optimizes all of the model’s parameters to guarantee that the given
best parameter combination is the optimal global solution in the pre-
setting grid.

At the same time, learning the parameters of a model and
testing it on the same data set is a mistake. In this case, the model
that merely repeats the samples it learned will have a high score.
We combine K-fold cross-validation (CV) and grid search (GS) to
avoid this. The score is evaluated based on the mean square error
(MSE) average value given from K iterations. Finally, the optimal
parameter combination with the lowest MSE is obtained. The
specific steps are described as follows:

Step 1: Partitioning the train data into equal-size & sets;

Step 2: Setting the scale of all of the parameters and
exhaustively generating candidates from the parameter space;

Step 3: A model with parameters combination is trained using
K—1 of the folds as the training set. The MSE of the model is
computed on the remaining part of the data;

Step 4: Each of the K folds followed the Step 3 procedure;

Step 5: The score measured by CVGS is the average of the
values computed in Step 4. Then, the parameter combination with
the lowest MSE is identified as optimal.

3 Hybrid prediction model based on CFS-CVGS-RF

This study proposed a CFS-CVGS-RF model to predict NH; in
a geese house. The methodology for conducting this model is shown
in Figure 5. The implementation process for NH; prediction based
on CFS-CVGS-RF can be described as follows:

Step 1: Data normalized processing. Different data of geese
house environment has other units and dimensions. Using the
original data directly will make the model complex and decrease the
prediction performance. To address this problem, we use
normalization that can eliminate the difference between the data
units and dimensions and facilitate the study of the correlation
between environmental factors. The normalized process method is
described by

, yi—y
P (10)
Ymax ~ Ymin
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Figure 5 The schematic of the proposed methodology.

where, y; Are the normalized data; y,,, and y;, are the max and
min values of the original data; y; and y are the original data and
their mean.

Step 2: Feature selection based on CFS. CFS selects the
features that are strongly related to NH; and eliminates the low-
importance factors. The remaining features are used as the input to
the regression model. CFS reduces the dimension of input and
solves the problem of information redundancy. In the CFS process,
we first compute linear and non-linear correlation strengths between
each environmental factor and target (NH;) by using relief-F and
MI, respectively. After normalization, the final feature importance
is the sum of two dimensions of the important values of features.
Then, threshold M is set to the screen factor with feature importance
lower the M.

Step 3: CVGS-RF modelling. RF has two key parameters,
namely, the number of DT P and the size of the random feature
subset mtry. To find the optimal values of these two parameters, the
CVGS method was adopted. In the CVGS process, the grid
coordinates of the parameters were first established. In this study,
combining the RF-related literature™ and the experimental
parameters of wave motion, set P=[2, 1000] and mtry=[2, 4]. Then,
the data set is divided into K subsets, where 10-fold (4~=10) cross-
validation is considered to be better®. After £ parallel operations,
each parameter’s combinations have kK MSE. According to the mean
of each calculation result, the parameter was selected in
combination with minimum average MSE as the optimal parameters
and established the RF model using these values.

Step 4: Result output denormalization. Denormalize the output
to obtain the results in the normal dimension. The denormalizing
process is described by

Vi =Y Omax = Ymin) + ¥ (11)

where, y; is the denormalized data, y,.. and y., are max and min
values of original data, and y, and y are the original data and
their mean.

4 Results and discussion

4.1 Data collection

This article used a simulation model to validate the proposed
method’s performance. The NH; was tested in a high-density geese
culture farm from September 10" to September 27", 2019, in
Sanwei City, Guangdong province. The details for some data are
listed in Table 1. Figure 6 shows the feature importance computed

by CFS for each factor, and the performances of different threshold
M are listed in Table 2.

Table 1 Some of the original experimental data collected on
September 10-27, 2019
Indoor Outdoor Atmos-
Time 0% iy C0 TPS/ NH emper: iy ohere o
o (%6RH) & lug g a/;‘ée /%RH pr‘j;?re J(W-m?)
00:00 259 72.1 570 7 18 27.55 9394 101.11 1.27
00:20 25.7 70.6 578 8 23 27.6  94.07 101.08 1.31
00:40 259 69.7 573 7 20 2734 9457 101.09 1.3
4

01:00 256  70.6 578 21 27.57 9499 101.11 1.28
21:40 26.7 67.7 614 9 19 30.18 68.85 101.05 131

22:00 25.9 712 550 13 19  29.72  73.88 101.04 1.31
22:40 25.7 68.9 661 15 21 30.06 77.69 101.06 1.31
23:00 26.0 65.6 602 11 20 3037 82.14 101.08 1.31
23:20 25.8 65.6 574 9 19 3027 84.44 101.06 1.31
23:40 25.8 654 597 12 18 29.8 87.09 101.06 1.31
Solar radiation = Relief-F
.  M]
Atmospheric pressure Relief-F+MI

Outdoor humidity
Outdoor temperature
TPS

Co,

Indoor humidity

Indoor temperature

0 02 04 06 08 1.0 1.2 14 1.6 1.8 2.0

Feature importance

Figure 6 Feature importance computed by Relief-F and MI

Table 2 Simulation results of CFS

M Accuracy  Running time/s Eliminated feature
0 82.0% 6.817
1.0 88.1% 6.489 Solar radiation
1.2 94.3% 6.286 Atmospheric pressure
1.4 95.6% 5.850 Outdoor temperature Indoor humidity
1.6 78.5% 5.194 TPS Indoor temperature
1.8 16.1% 4.945 CO,
2.0 NaN NaN Outdoor humidity

The geese house environment data considered in this
investigation include the data obtained at intervals of 20 min from
September 10 to September 27, 2019. 72 data collected per day
yield a total of 1296 observations samples. Some of the original
data are listed in Table 1. For model generation, the first 864 sets of
the data were used for model training, and the remaining 432 sets
were used as the testing data to estimate the prediction performance
of the constructed model.

4.2 Performance criteria

For a reasonable evaluation of each prediction model, three
commonly used error standards are proposed to measure the model’s
prediction accuracy, including MSE, RMSE, and MAPE. The
relevant calculation formulae are

| — ,
MSE = NZ(y,»—yﬁ) (12)
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RMSE = (13)

yi—9

MaxAPE = Max % 100% (14)

~
i

4.3 Results and discussion

A script was designed with Python 2.7 vision following the
system framework to confirm the superiority of the framework
constructed in this work, as described in Section 3. The script was
executed on the Winl0 operation system with Intel Core i5, 4 GB
RAM, and a 500 GB hard disk. The optimal parameter combination
(P=500, mtry=3) was used for the prediction model of NH; by the
CVGS algorithm. According to Figure 6 and Table 2, the used
features include outdoor humidity, TPS, CO,, and indoor
temperature as the optimal input for the model to forecast NH; in
this study.

Following the method introduced in this study, we used relief-F
to compute the linear relation strength between each factor and
NHj;, and we use MI rather than relief-F to compute the non-linear
relation strength.

Figure 6 shows the normalized results of relief-F and ML. It is
observed that outdoor humidity has the highest relation and solar
radiation has the lowest relation with NH;. The threshold M was
changed from 0 to 2 to find the optimal input feature combination.
The sensitivity test results of M were listed in Table 2, and it is
observed that the combination of outdoor humidity, TPS, CO,, and
indoor temperature features was the optimal input combination.

Figure 7 shows the change in the fitness value, with the three
convergence curves showing the best fit for RF. Three fitness
curves show that after growing 100 trees, the MSE decreases very
slowly and converges after 500 trees, and mtry=3 results in the
lowest MSE. The P and mtry combinational parameters of the

25 T
=
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=
5 20
3
=]
3
<
‘g
g 15+
g 3 - - - Original ammonia data
< & —— CFS-CVGS-RF

1 — CVGS-RF
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a. Ammonia concentration
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optimal CVGS-RF model are 500 and 3, respectively. The MSE
values for different parameter combinations are shown in Figure 7.
It is observed that after growing 100 trees, the MSE value decreases
very slowly and converges after 500 trees, with mtry=3 resulting in
the lowest MSE.

14
13} — mty=2
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Figure 7 Results of K-fold cross-validation grid search

Two types of comparison were designed to analyze and
compare prediction performance: 1) horizontal comparison between
the model with CFS and the model without CFS; 2) vertical
comparison between the models used in this paper with other
parallel models. The horizontal comparison includes the CVGS-RF
model. The vertical comparison consists of the benchmarks used in
this DT, support vector machine, and back propagation neural
network (BPNN). These models used data sets to verify the
performance forecasted by the models in this paper. They predicted
the NH; content of the last 72 test sets corresponding to the last 24
h. Figure 8 and Figure 9 show the prediction curves and the error
bar plot. Figure 8 shows the NHj; series prediction result of the
combined model based on CFS-CVGS-RF. The performance
estimation statistics of the testing are listed in Table 3.

For a more accurate comparison of the performance of five
models, this article computes the MSE, RMSE, and MaxMAPE of
1.4

MSE

CFS-CVGS-RF  CVGS-RF
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Figure 8 Horizontal comparison results


https://www.ijabe.org

November, 2023

Huang J D, etal. Prediction of ammonia levels in goose houses via feature selector and radom forest

Vol. 16 No. 6 83

25 7
]
=
2
£ 20t
=]
3
=]
8
<
g :
g 15
5 - - - Original ammonia data
< —— CFS-CVGS-RF
VO e DT
10 . . . . . . .
00:00 03:20 06:40 10:00 13:20 16:40 20:00 23:20
Time
a. Comparison of prediction results between
the proposed method and DT
25 l'ln
]
2
£ 20t
=]
3
<
5]
Q
<
k=]
g2 15r
g - - - Original ammonia data
< ! — CFS-CVGS-RF
. SVM
10 A A L L A . L
00:00 03:20 06:40 10:00 13:20 16:40 20:00 23:20
Time
c. Comparison of prediction results between
the proposed method and SVM
L)
24 I
R
s
£ 20
3
§ 18
£ 16
g
E 14 - - - Original ammonia data
< Ll —— MI-CVGS-RF
Vi BPNN
10 2 I I I I n 1
00:00 03:20 06:40 10:00 13:20 16:40 20:00 23:20
Time

e. Comparison of prediction results between
the proposed method and BPNN

1.6
1.4
1.2
1.0
0.8

MSE

0.6
0.4
0.2

0

CFS-CVGS-RF DT SVM  BPNN

b. Comparison of MSE for all methods

RMSE

CFS-CVGS-RF DT SVM  BPNN

d. Comparison of RMSE for all methods

0.12

0.10

0.08

0.06

MaxMAPE

0.04

0.02

CFS-CVGS-RF DT

SVM  BPNN

f. Comparison of MaxMAPE for all methods

Figure 9 Vertical comparison results

Table 3 Comparison of NH; prediction results

Model CFS-CVGS-RF  CVGS-RF DT SVM  BPNN

MSE 0.5072 1.2658 0.7922  1.5179  0.6667

RMSE 0.6583 1.2851 1.2047 1.7400 1.1764
MaxMAPE/% 2.88 9.10 7.04 11.25 6.23

those models for which the details are shown in Table 3. The MSE,
RMSE, and MAPE of CFS-CVGS-RF and GS-RF were 0.5072,
0.6583, 2.88%, and 1.2658, 1.2851, 9.10%, respectively. These
values are the best estimation indexes among the five models.
Figure 10 shows the prediction residual distribution condition of
five models. It is observed that CFS-CVGS-RF has fewer outliers
and an overall error closer to zero for the residual error compared
with other models. This means that CFS-CVGS-RF has more
stability for forecasting results and is more suitable for predicting
NH,.

It is observed from the figures that the prediction curve of the
CFS-CVGS-RF model is closer to the original value than the
prediction curves of the other four models and has better accuracy

than the other four models It can be seen from the prediction error
box plot that the CFS-CVGS-RF model has smaller error
fluctuations than the other model, and the CVGS-RF model using
feature combination after feature selection by CFS has smaller
forecast error fluctuations than CVGS-RF without feature selection,
indicating that CFS is effective.
4.4 Conclusions and future work

This study proposed a novel NH; prediction hybrid model (CFS-
CVGS-RF). The CFS-CVGS-RF model combines four methods:
relief-F, mutual information, K-fold cross-validation grid search
optimization algorithm, and random forest. The experimental data
was collected from a geese house environment in a monitored
aquaculture factory farm in Sanwei, China. Results showed that the
proposed hybrid method CFS-CVGS-RF has better forecasting
performance than CVGS-RF, DT, SVM, and BPNN, as measured
by MSE, RMSE, and MaxMAPE. Furthermore, CFS-CVGS-RF can
effectively consider the linear and non-linear relations between the
input features and the target, reduce redundant information, and
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improve the model’s prediction performance by screening the
unrelated or low-relation features.

This study has several limitations that require further research.
First, predicting NHj; is a very complex issue that is influenced by
many factors. However, due to equipment limitations, we cannot
monitor more related factors that may strongly influence NH;.
Second, concerning experimental time, in the future, we plan to
collect data in other months to verify whether the proposed model is
useful for a different season. Finally, we plan to investigate using
other ensemble strategies instead of a simple averaging method to
improve the RF, such as weighted averaging, and weighted voting.
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Figure 10 Boxplot of residual error in different models
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