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Abstract: This study proposed an approach for robot localization using data from multiple low-cost sensors with two goals in 

mind, to produce accurate localization data and to keep the computation as simple as possible.  The approach used data from 

wheel odometry, inertial-motion data from the Inertial Motion Unit (IMU), and a location fix from a Real-Time Kinematics 

Global Positioning System (RTK GPS).  Each of the sensors is prone to errors in some situations, resulting in inaccurate 

localization.  The odometry is affected by errors caused by slipping when turning the robot or putting it on slippery ground.  

The IMU produces drifts due to vibrations, and RTK GPS does not return to an accurate fix in (semi-) occluded areas.  None 

of these sensors is accurate enough to produce a precise reading for a sound localization of the robot in an outdoor environment.  

To solve this challenge, sensor fusion was implemented on the robot to prevent possible localization errors.  It worked by 

selecting the most accurate readings in a given moment to produce a precise pose estimation.  To evaluate the approach, two 

different tests were performed, one with robot localization from the robot operating system (ROS) repository and the other with 

the presented Field Robot Localization.  The first did not perform well, while the second did and was evaluated by comparing 

the location and orientation estimate with ground truth, captured by a hovering drone above the testing ground, which revealed 

an average error of 0.005 m±0.220 m in estimating the position, and 0.6°±3.5° when estimating orientation.  The tests proved 

that the developed field robot localization is accurate and robust enough to be used on a ROVITIS 4.0 vineyard robot. 
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1  Introduction

 

The use of robotic systems in agriculture is on the rise.  In 

recent years alone, a number of new solutions have been developed.  

While milking[1] and inspection[2,3] robots are already commercially 

available, it is still not the case for some promising solutions like 

robots for weeding[4], fruit picking[5], or spraying[6], which are still 

in the prototype phase.  One of the challenges is the working 

environment in nature with its changing conditions that affect the 

performance of such robotic platforms.  Hence, a robust 

localization algorithm[7-9] is needed, which presents a fundamental 

part of subsequent methods. 

Localization is the process performed by a robot in order to 

determine its position and orientation within a certain environment, 

enabling the robot to perform future decisions[10].  However, the 

localization cannot easily be solved due to sensory uncertainties 

that might occur and can accumulate errors over time.  A solution 
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to this challenge lies in the sensor fusion approach[11,12] which 

minimizes errors and maximizes the accuracy of the localization. 

Shalal et al.[13] described an approach to use localization based 

on camera and laser scanner data fusion to construct a local orchard 

map.  It does so by implementing Extended Kalman filter (EKF) 

to develop a local orchard map of the individual trees, which also 

helped to improve the precision of in row-navigation.  The authors 

report an average error of 0.103 m for position and 3.32° for 

orientation. 

The work from Chen et al.[14] presented a sensor fusion-based 

approach to localize a mobile platform by using readings from four 

diagonally placed ultrasonic sensors and cameras.  The ultrasonic 

sensors measure the distances to the tree trunks, while the cameras 

help to determine the angle at which the tree has been detected.  

This way an average localization error of 62 mm was achieved for 

the selected test cases, but no orientation accuracy was reported by 

the authors. 

Precise localization of the mobile wheeled robot is also 

presented by Nemec et al.[15] which was based on the sensory 

fusion of odometry (ODO), visual artificial landmarks, and inertial 

sensors.  It used simple implementation and is therefore 

interesting for real-time processing and low-cost hardware as it is 

approximately four times cheaper computationally than EKF filters 

and promises a Root Mean Square (RMS) error below 5 mm.  

However, it relied on landmarks, which are usually not present in 

outdoor environments.  In addition, the results were calculated 

based on simulations and real-world testing would pose additional 

challenges, affecting the overall results. 

As presented in the previous paragraphs, robotic systems 
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nowadays include several sensory systems.  These usually include 

inertial motion units, LiDAR systems, encoders, and global 

positioning systems.  Upon using the information provided by 

these sensors, several localization approaches can be built using 

one of the sensors.  The simplest is odometry which summarizes 

the movement of the wheels of the robot.  However, on wet 

soil/sand-covered surfaces or when the robot is turning, it might 

fail and produce errors due to the wheels slipping, which leads to 

incongruent encoder readings.  The inertial units include 

gyroscopes, accelerometers, and magnetometers to measure the 

angles of the rotations, and accelerations to produce speeds and 

relative positions of the robot while moving.  These systems are 

not perfect and can be influenced by other metallic objects in the 

proximity influencing the magnetometers, or they can be affected 

by noise, like the one produced by vibrations of internal 

combustion engines.  The third is satellite navigation systems, like 

RTK receivers, which are becoming cheaper and more accessible 

with time.  Of course, they still rely on the received signals from 

satellites and base stations that correct and improve the accuracy.  

In general, their performance is good, but in some cases such as 

outside interferences of the signal, canyon effects, and occlusions 

by trees or buildings, they will produce inaccurate or false readings.  

The last type of sensor is the LiDAR sensor which has its 

limitations in range, placement on the robot, and the number of 

channels.  Like this, all can fail or is insufficient at a given time, 

so a smart switching algorithm is required to include or exclude 

their readings in a given time frame.  In this work, one such 

approach was presented and evaluated on a prototype vineyard 

robot.  

2  Materials and methods 

2.1  Rovitis and Rovitis 4.0 robots 

Rovitis is a vehicle concept for the management of grapevine 

fields[11] which reduces the harm that frequent contact with 

chemicals may lead to[17].  For example, in a single yearly 

production season, a vine grower may come in contact with 

potentially harmful products at least 16 times for every hectare.  If 

this is done via the robot, it reduces the exposure of the vine grower 

to chemicals and if this is done in autonomous mode, the vine 

grower may do some other work while the chemicals are applied to 

the plants.  All this is possible with an assembly of mechanical, 

mechatronics, and electrical hardware components controlled by 

computer programs installed on an onboard computer unit.  

To build a reliable field robot localization, two different robots 

were used.  The original Rovitis robot[16] was used when the 

algorithm in this study was developed, and the Rovitis 4.0[16] was 

used to finetune the parameters and evaluate the results.  

The original Rovitis vineyard robot was based on a 414HY 

Dodich excavator machine (Dodich, Italy), that was modified with 

variable displacement closed circuit axial piston pumps.  The 

human-machine interfaces were removed, in order for it to be used 

as a field robot.  The newer Rovitis 4.0 is based on a 

RoboGREEN remote-controlled platform (Energreen, Italy) with a 

40 Horse Power (HP) engine, where the main difference is that it 

uses tracks, while the Dodich platform used wheels.  Both 

platforms were retrofitted with IT systems and are based on a 

skid-steer drive principle.  For ensuring mechanical safety, a set of 

mechanical bumpers were installed on both platforms with sensors 

mounted on the proper points of the platforms. 

Both platforms include mechatronics and electrical hardware 

for providing a way of automatic guidance to the robots.  The 

onboard computational unit is in charge of the overall control, with 

all sensors connected to efficiently control the peripherals.  To 

control the platform, proportional pressure control drivers were 

included to regulate the amount of oil going onto the oil motors, 

with an electrical regulator as an interface and an electric linear 

actuator for throttle control. 

Sensors were mounted on the platform to provide 

environmental input data for the control algorithms.  These 

include the following sensors: a Micro-Electro Mechanical 

System-based (MEMS-based) Phidgets spatial Inertial Motion Unit 

(IMU)[18], a SICK LMS111[19] for Rovitis, and a Velodyne 

VLP16[20] for Rovitis 4.0 LiDARs, wheel encoders, and a Piksi 

RTK-GPS receiver[21]. 

The mechanical base is controlled by the developed control 

algorithms installed on the onboard computational unit.  The 

chosen operating system is Ubuntu Linux 16.04 LTS distribution 

with an installed meta operating system, ROS[19]. 
 

 
a. Original Rovitis 

 

 
b. Rovitis 4.0 

Figure 1  Original Rovitis and the Rovitis 4.0 robots  
 

2.2  Localization 

The process of determining the robots’ pose and orientation in 

space is called localization.  For the 2D case, the robot’s current 

position p can simply be represented by a vector as, 

x

y



 
 
 
 

p                      (1) 

where, x and y are coordinates; θ is the orientation of the robot 

based on an initial set coordinate system.  When the robot moves 

and reaches a new coordinate in space, going from pn to pn+1, it 

might have a new orientation as shown by Equation (2). 
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where, xn and yn are the current movements along X- and Y-axes, 

accordingly; θn represents the change of orientation from the last 

calculation of localization or step n.  The parameters used for the 

new step can be produced by using different sensors, as shown by 

Equation (3). 
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where, weights a, b, and c can use all of the sensors equally, put an 

emphasis on one and (partly) discard the other(s), or simply enable 

the best one in a given situation, as shown in Section 3. 

With each iteration of localization, an error is produced as a 

difference between the accurate and actual parameters caused by 

roundup and measurement errors (En) of the sensors shown in 

Equation (4). 

accurate| |n nE p p                  (4) 

where, paccurate represents the true coordinates and orientation of the 

robot.  In order to achieve the most accurate localization En must 

be minimal as shown by Equation (5). 

accurate accurate accuratemin(| |,  | |,  | |)n ODO IMU GPSE p p p p p p     (5) 

where, pODO, pIMU, and pGPS correspond to the coordinates and 

orientation calculated from the odometry, IMU sensor, and GPS, 

respectively.  Which sensor can produce a minimal En, can be 

determined empirically or by comparing the reading with the other 

sensors. 

 
a. Field robot localization 

(FRL) 

b. Odometry (ODO) c. Inertial motion unit (IMU) d. Real Time Kinematics Global 

Positioning System (RTK GPS) 
 

Figure 2  Sensor-specific state machine for choosing the right robot localization sensory system 
 

2.3  Field robot localization algorithm 

Well known and widely used localization algorithm in the 

ROS community was developed by Charles River Analytics[7,8].  

However, the reasons why it was not used as part of the Rovitis 

robot should be made clear.  The robot itself is built on different 

sensory systems that might produce accurate readings most of the 

time, but there are situations when they fail.  In these cases, the 

approach misses completely and should not be used on a robotic 

system, including low-cost sensory systems.  

So, in order to successfully localize the robot, a custom-made 

field robot localization (FRL) algorithm was developed that uses 

three different sensory systems in combination with information 

regarding the linear and angular speeds set by the path or row 

following algorithms.  The information regarding wheel 

movement, and odometry, is captured by REP200[23] and 

connected to Phidgets high-speed encoder[24], inertial information is 

provided by Phidgets spatial IMU[18], and Navsat Pixi RTK-GPS[18] 

for the satellite navigation part.  The RTK-GPS system used 

default settings and measurements from the GPS and GLONASS 

satellites.  As explained in the introduction, none of these sensors 

is accurate enough to produce good localization results on their 

own.  This is the reason why a sensor-specific state machine was 

implemented to solve this problem and as depicted in Figure 2.  

The following paragraphs summarize the situations where each 

sensory system is acceptable at a time and which one should be 

temporarily discarded. 

The odometry-based system works well when the robot is 

moving straight.  So, it is used to calculate the position of the 

robot when linear speed is more than 0 and angular equal to 0 or 

close to 0 if no other sensor system is available at that time.  If the 

robot is turning, the odometry is disabled due to the nature of the 

skid steer system, which causes the slipping of the wheels/tracks 

used for moving and turning the robot. 

The low-cost inertial unit on the robot works great when the 

internal combustion engine of the robot is now working, but when 

it is, it is greatly affected by the vibrations caused by the engine.  

The vibrations cause noise, and the readings drift over time, even if 

the robot is not moving.  This means that, in general, the readings 

from this sensor would be rejected, but as the robot lacks 

information regarding the orientation when rotating, it can be used 

differentially in a short period of time to calculate the orientation of 

the robot for a short time frame when there is no alternative.  

Once the other sensors produce good enough readings, the 

estimates of the IMU sensor are fixed, and the sensor is reset. 

Navsat Pixi offers an accurate RTK-GPS system that, in most 

situations, works well.  The system, of course, has to have a fix 

and has to receive accurate information; when the receiver on the 

robot is connected to the base station, with no occlusions due to 

buildings or any other obstacles, when enough satellites are present, 

and when there is no outside interference, e.g., Signal to Noise 

Ratio (SNR) is low.  This can be monitored by looking at the 

statuses produced by the Pixi system and is used to calculate the 

position, in all cases when available, and orientation when the robot 

is moving on a pseudo-straight path.  The system is, however, 

disabled when the robot is not moving as the GPS locations 

randomly move around a correct position, which produces wrong 

calculations of the orientation. 

3  Results and discussion 

In order to evaluate the field localization system, the robot was  
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driven manually by remote control to teach it and then repeated in 

the drive in autonomous mode.  The location was chosen with the 

intention to give the sensors the worst possible conditions for 

accurate localization, so, the drive took place behind a big 

metal-enclosed building, positioned on the far left from the robot 

starting point, and on a sand-covered surface.  The height of the 

building party occluded the GPS base station, and its metallic parts 

interfered with the magnetic readings of the IMU, while the 

sand-covered surface caused additional errors in the odometry.  

Figure 3 shows the movement of the robot at three different 

positions with a clear path in the sand that was made when the 

robot was taught what to do.  The first image depicts the starting 

position with an orientation of 1.0°, the second in movement with 

an orientation of 95.5°, and the third after completing a rough half 

of the path with a current orientation of 187.0° compared to starting 

orientation.  These orientations and current positions were 

calculated via images taken by a hovering DJI MAVIC 2 drone 

(DJI, PRC) to determine the real robot's position and orientation. 
 

   
a. At 1.0° b. At 95.5° c. At 187.0° 

 

Figure 3  Images taken by a DJI MAVIC 2 drone  used as ground truth with three different orientations of the robot 
 

Three different sensory systems produce independent position 

and/or orientation estimates, where the goal is to get the best 

possible precision with a real-time localization system needed for 

subsequent steps like path following.  

The first step to evaluate the approach was to show a problem 

with the low-cost sensors and use their readings with the usually 

applied robot localization from the ROS repository[7,8].  In order to 

ensure the same conditions for robot localization and field robot 

localization, a BAG file[25] was recorded while the robot was 

driving in autonomous mode, and they were replayed to capture the 

data from the two algorithms.  Figure 4 depicts the results of the 

robot localization algorithm presented by the software RVIZ. 
 

 
Note: The start of the red arrow represents the position and the orientation of the 

red arrow the orientation of the robot. 

Figure 4  Results of the robot localization as presented by RVIZ 
 

The robot localization from Figure 4 starts in the middle of the 

map and continues to go the right, but once it gets too close to the 

building (located at the lower right corner of the pictures from 

Figure 3) behind the GPS correction signal coverage, it starts to 

show effects caused by the bad GPS signal, metallic object 

interferences, vibration caused drifts of the IUM and slipping on 

the wheels on the sand during the left turn.  This completely turns 

the orientation and positions of the robot and even positions the 

robot going the wrong way. 

In the next step, the field robot localization is evaluated by 

using the same bag file and providing the same conditions as for 

the robot localization.  In order to assess the real position of the 

mobile robot in the outdoor test environment, a ground truth 

reading is provided from the video recording made by a DJI 

MAVIC 2 drone with a 4K camera, which was hovering above the 

robot while it was performing the test as shown in Figure 3.   

The ground truth data regarding the actual position and 

orientation of the robot were calculated from each video frame with 

the help of OpenCV’s template matching algorithm[26], where 720 

templates were prepared and used to compare it with each frame to 

determine the best possible match and the right position/orientation 

of the moving robot.  This provided a per-pixel accuracy that 

corresponds to 0.012 m in metric dimensions and 0.5° accuracy of 

orientation. 

The comparison of the field robot localization with the ground 

truth data is shown in Figures 5 and 6 for orientation and position 

respectively.  The blue line presents the readings from the field 

robot localization, while the green line represents the ground truth 

data.  By comparing the data, it can be concluded that the 

algorithm made an error of 0.005 m±0.220 m in estimating the 

position and 0.6°±3.5° when estimating orientation.  The average 

position and orientation data were low, while the standard 

orientational deviation was rather high, which could be explained 

by an initial offset of the drone not facing exactly 0° like the robot.  

The orientation estimate was initially produced by the last saved 

good orientation and then adjusted according to the new GPS fixes 

as long GPS was accurate enough (iterations around 220), then it 

switched to differential IMU readings (iterations around 320) and 

back to GPS.  Around iterations 480-600 the situation repeated as 

the robot was driving close to the trees that occluded a clear view of 

the base station. 

 
Figure 5  Orientation of the robot calculated with the FRL versus 

the ground truth data 
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Figure 6  Position of the robot calculated with the FRL versus the 

ground truth data 
 

The position of the robot was initially produced by the last 

saved good position and then adjusted according to the new GPS 

fixes as long GPS was accurate enough (second left turn, upper left 

part of the figure), then it switched to odometry while the robot was 

driving straight (lower left side of the figure) and combined IMU to 

complete the turn.  When the robot completed the third left turn it 

got accurate GPS fixes (small step at the end of the third turn).  

Similar to the orientation from Figure 5, the situation around the 

final straight movement, is followed by the last turn. 

5  Conclusions 

The usual approach when building a robust robotic solution is 

to use a high-grade, high-cost sensory system.  In this study, a 

different approach was investigated with low-cost sensors to make 

the solution more commercially accessible and available to a wider 

range of users that can afford it.  This may lead to problems if the 

sensors fail in some situations, which results in an inaccurate 

localization.  To solve this, the presented approach used data from 

all the available sensors, including wheel odometry, inertial-motion 

data from the IMU, and a location fix from an RTK GPS, where the 

challenge of localizing the robot is solved with a sensor fusion 

algorithm that works by selecting the most accurate readings in a 

given moment to produce a precise pose estimation. 

The sensor fusion approach was based on a straightforward 

state machine that chose which of the readings for which of the 

sensors should be used at a given moment.  This can produce a 

robust enough mechanism but with low-cost sensors that can, as 

shown in Section 3, outperform some of the widely used 

approaches in robot localization.  

Currently, the developed approach is being tested on two 

vineyard robots beyond the evaluation test presented in this study 

in day-to-day operation.  One of the possibilities of improvement 

that could be seen is to include the readings from the LiDAR sensor 

and improve the accuracy with the help of Simultaneous 

Localization and Mapping (SLAM) algorithms which will be 

investigated in the future. 
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