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Abstract: Excessive pesticide residues on Chinese cabbage will be harmful to people’s health.  Therefore, an identification 
system was designed for qualitative analysis of lambda-cyhalothrin residues on Chinese cabbage leaves.  In order to extract 
discriminant information from mid-infrared (MIR) spectra of Chinese cabbage effectively, fuzzy uncorrelated discriminant 
vector (FUDV) analysis was proposed by introducing the fuzzy set theory into uncorrelated discriminant vector (UDV) analysis.  
In this system, the Cary 630 FTIR spectrometer was used to scan four samples of Chinese cabbage with different concentrations 
of lambda-cyhalothrin.  The MIR spectra were preprocessed by standard normal variable (SNV) and Savitzky-Golay 
smoothing (SG).  Next, the high-dimensional MIR spectra were processed for dimension reduction by principal component 
analysis (PCA).  Furthermore, UDV, FUDV, and some other discriminant analysis algorithms were used for feature extraction, 
respectively.  Finally, the K-nearest neighbor (KNN) classifier was employed to classify the data.  The experimental results 
showed that when FUDV was used as the feature extraction algorithm, the identification system reached the maximum 
classification accuracy of 100%.  The results indicated that FUDV combined with MIR spectroscopy was an effective method 
to identify lambda-cyhalothrin residues on Chinese cabbage. 
Keywords: Chinese cabbage, mid-infrared spectroscopy, fuzzy uncorrelated discriminant vector, uncorrelated discriminant 
vector, lambda-cyhalothrin residues 
DOI: 10.25165/j.ijabe.20221503.6486 
 
Citation: Wu X H, Zhang T F, Wu B, Zhou H X.  Identification of lambda-cyhalothrin residues on Chinese cabbage using 
fuzzy uncorrelated discriminant vector analysis and MIR spectroscopy.  Int J Agric & Biol Eng, 2022; 15(3): 217–224. 

 

1  Introduction  

As a green and healthy vegetable, Chinese cabbage is very 
popular among consumers in China.  Due to the widespread use of 
pesticides in agricultural production, there are more and more cases 
of food poisoning caused by pesticide residues[1] in recent years.  
In the cultivation of Chinese cabbage, one of the most commonly 
used insecticides is lambda-cyhalothrin, which is used to control 
various pests.  As a pyrethroid insecticide, lambda-cyhalothrin is 
very harmful to the human body.  Research results showed that 
regular consumption of foods containing pyrethroid pesticide 
residues increases the risk of developmental and neurological 
diseases in children aged 3-11[2].  Pyrethroids can disrupt 
reproductive hormones, thereby destroying the male reproductive 
system[2].  Therefore, it is necessary to design an efficient, fast and 
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accurate identification system to analyze lambda-cyhalothrin 
residues for the health of consumers[3-5]. 

Several detection methods, such as quantum dots (QDs)[6], 
laser light[7], and spectroscopy, have been widely used in the 
detection of pesticide residues.  Spectroscopy has the advantages 
of being fast and non-destructive and does not need complicated 
sample pretreatment, so it is widely used in agricultural production 
and food detection[8].  Spectroscopy technology commonly 
includes near-infrared (NIR) spectroscopy[9,10], mid-infrared (MIR) 
spectroscopy[11] and hyperspectral imaging (HSI) technology[12,13].  
The wavelength ranges of NIR and MIR are 780-2526 nm and 
2526-25 000 nm, respectively.  Spectral information of MIR 
arises from fundamental molecular vibrations in functional groups, 
and NIR spectra contain spectral information on overtones and 
combinations of fundamental vibrations.  In comparison, MIR is 
more sensitive than NIR in detecting complex molecular structures.  
HSI is a combination of imaging technology and spectral detection 
technology.  HSI can obtain the external image features of the 
sample while collecting spectral information.  However, the 
detection process of HSI is so complicated that it is not conducive 
to large-scale use.  In order to study a fast and accurate pesticide 
residues identification system, this study used MIR spectroscopy to 
collect spectral information.  Some research results showed that 
MIR can effectively obtain the characteristic information of 
agricultural products and food.  For example, Yang et al.[14] 
studied a model composed of MIR and partial least squares 
regression (PLSR) to detect pesticide residues in Chinese herbal 
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medicines.  Etzion et al.[15] took raw milk as the research object, 
and utilized MIR spectroscopy to detect protein concentration in 
milk.  Yang et al.[16] used MIR spectroscopy to determine the 
nitrate content in Chinese cabbage.  With the development of 
instrument and software technology, some emerging technologies, 
such as attenuated total reflectance (ATR) technology, are widely 
used in the field of agricultural products and food detection.  ATR 
has the advantages of simple operation and high detection 
sensitivity.  Su et al.[17] used ATR-MIR spectroscopy to identify 
potato varieties and detected potato doneness degree.  The above 
researches proved that the models established using MIR were 
effective in identifying the variety and quality of agricultural and 
food products.  These researches provided the theoretical 
reference for this study.  Based on the above researches, the 
purpose of this study was to explore the potential of ATR-MIR for 
detecting lambda-cyhalothrin residues on Chinese cabbage leaves. 

Fisher's linear discriminant analysis (LDA)[18] is an important 
tool in statistical pattern recognition.  LDA aims to find a 
discriminant vector set that makes training data the biggest ratio of 
between-class distance to within-class distance.  At the same time, 
the discriminant vectors are mutually orthogonal.  But the 
projections of the training samples on the feature space of the 
discriminant vector set are statistically correlated[19].  In order to 
solve this problem, uncorrelated discriminant vector (UDV) 
analysis[20] added uncorrelated constraints when computing the 
discriminant vector set.  So the discriminant vector set obtained 
by UDV is very effective when it is applied in classification.  

MIR spectral data sets more and less contain the overlapped 
data points that traditional classification methods are difficult to 
distinguish.  So this article introduces fuzzy theory on the basis of 
UDV to solve this problem.  Fuzzy set theory was established by 
Zadeh[21] is widely used in many fields such as pattern recognition, 
image processing, and data mining.  This theory was designed to 
deal with poorly defined concepts.  It allows the fuzzy 
membership of samples to change between one (complete 
belonging) and zero (complete exclusion), instead of taking a value 
of one and zero as in ordinary set theory.  A number of examples 
can prove fuzzy classification algorithms are always better than 
traditional methods when dealing with some problems.  For 
example, Wu et al.[22] studied the model of fuzzy Foley-Sammom 
transformation (FFST) to classify Chinese vinegar varieties, and 
researched fuzzy discriminant principal component analysis 
(FDPCA) to deal with overlapped data points[23].  Chen et al.[24] 
studied the method of fuzzy linear discriminant analysis (FLDA) to 
deal with overlapped data points.  Lin et al.[25] created fuzzy 
support vector machines (FSVM) to reduce noises and outliers.  
Ning et al.[26] studied the application of fuzzy C-means clustering 
in image analysis of critical medicine.  Cadenas et al.[27] used 
fuzzy K-nearest neighbor classifier to deal with imperfect data.  In 
order to qualitatively analysis of pesticide residues on Chinese 
cabbage effectively and quickly, this study proposed fuzzy 
uncorrelated discriminant vector (FUDV) analysis to extract 
discriminant information from the collected spectral data of 
Chinese cabbage.  FUDV was designed by introducing fuzzy set 
theory into UDV.  

In this study, the identification system of pesticide residue 
levels on Chinese cabbage contains two parts: spectral data 
collection and machine-learning algorithms.  The part of 
machine-learning algorithms consists of five algorithms: standard 
normal variable (SNV), Savitzky-Golay smoothing (SG), principal 
component analysis (PCA), FUDV, and K-nearest neighbor (KNN) 

algorithm.  SNV and SG are commonly used for preprocessing 
spectral data.  PCA[28] and FUDV are feature extraction 
algorithms, and they are applied for reducing the data 
dimensionality and extracting features.  KNN is a common 
classifier and is utilized to acquire the classification accuracy of 
this model.  

2  Materials and methods 

2.1  Uncorrelated discriminant vector analysis 
The objective of UDV is to find a transformation matrix that 

consists of uncorrelated discriminant vectors linearly transforming 
the data into the uncorrelated feature space, and UDV tends to find 
a linear transformation matrix that maximizes the ratio of the 
between-classes scatter Sb to the within-classes scatter matrix Sw in 
the uncorrelated space. 

Suppose the following data set of training samples is given as 
X={x1, x2, x3, …, xn}.  The sample xi belongs to one of c classes 
(ω1, ω2, ω3, …, ωc).  Then some definitions and equations of 
UDV are given as follows[20]: 
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where, ai is the mean of samples in class ωi, 1≤i≤c; Ni is the 
number of samples belonging to class ωi; xk is the kth sample of 
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where, Sb is the between-class scatter matrix; a is the mean of total 
samples. 
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where, Sw is the within-class scatter matrix. 
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where, St is the total scatter matrix of the whole data set; N is the 
number of all samples.  To obtain the find discriminant vector set 
φ, UDV defines the discriminant criterion function JF(φ) as[20]: 
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where, S
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b is the between-class scatter matrix Sb in uncorrelated 

space and S
u
b = VTSbV.  S

u
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uncorrelated space and S
u
t = VTStV.  Because of φTStφ=1, Equation 

(5) can be simplified as follows[20]: 
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In the uncorrelated space, and the first uncorrelated 

discriminant vector φ1 can be acquired by the following equation: 
1 arg max( ( ))FJϕ ϕ=                (7) 

The rth Fisher discriminant vectors φr can be computed by the 
following equation: 
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The discriminant vector set φ is based on Fisher discriminant 
criterion.  However, to make φ satisfy the uncorrelated constraint, 
φ is transformed by the uncorrelated transforming matrix V.  Let 
M=Vφ, and M is the uncorrelated discriminant vector set. 

UDV algorithm is described in the following steps: 
Step 1 Compute Sb, Sw, and St using Equations (2)-(4), 

respectively; 
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Step 2 Compute Λ and U of St, UTStU=Λ, and then V=UΛ–1/2; 
Step 3 Compute the rth (r = c −1) discriminant vector ϕ r using 

Equations (7) and (8); 
Step 4 Let M = Vφ. 
Although UDV can effectively classify the data points, UDV 

cannot get a satisfactory result when there are a few overlapped 
data points in the data set.  For a simple reason, each sample in the 
same class has the same weight when calculating the scatter 
matrixes and mean value.  In order to solve this problem, fuzzy set 
theory is introduced into UDV to produce FUDV. 
2.2  Fuzzy uncorrelated discriminant vector analysis 

In UDV, all data points are considered to have the same weight.  
When there are overlapped data points in the data set, these data 
will greatly affect classification accuracies.  Therefore, FUDV 
introduces the fuzzy membership values to determine the extent 
that which the data belong to one class, and then different data 
points have different contributions.  When calculating the scatter 
matrixes and mean value, the contribution of overlapped data 
points is much smaller than normal data points.  Such a 
mechanism can effectively reduce the influence of overlapped data 
points on classification accuracy.  A detailed description of FUDV 
is given in the following. 

Suppose the following data set of training samples is given as 
X={x1, x2, x3, …, xn}.  The sample ix  belongs to one of c  

classes (ω1, ω2, ω3, …, ωc).  The equation of fuzzy membership 
value μij can be written as 
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Fuzzy membership value μij changes between zero and one, 
and it indicates the extent that which the jth sample belongs to class 
ωi. 

After μij is calculated, the fuzzy between-class scatter matrix 
SfB, fuzzy within-class scatter matrix SfW and fuzzy total scatter 
matrix SfT are described as follows: 
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where, m is the weight index of fuzzy membership value μij. 
Like FLDA, FUDV tries to find the discriminant vector ψ by 

solving the following equation[29]: 
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Based on the theory of uncorrelated discriminant transform[19] 
and UDV[20], the projections of the training samples on the 
discriminant vectors should be statistically uncorrelated, and for 
any vector γ in uncorrelated space, it satisfies γTCfTγ =1 where CfT = 

PTSfTP = I and I is the identity matrix.  SfT is a real symmetric 
matrix, so there is a real orthogonal matrix U satisfying UTSfTU =Λ, 
where Λ is the diagonal matrix.  Because of UTSfTU =Λ and 
PTSfTP = I, there is P = UΛ–1/2.  Let ψ = Pγ, Equation (13) can be 
written as follows: 
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where, CfB=PTSfBP, and Equation (13) can be simplified as 
JF(γ)=γTCfBγ.  γ has r (r=c−1) uncorrelated discriminant vectors 
and γ=[γ1, γ2, γ3, …, γr]. The rth uncorrelated discriminant vector γr 
can be acquired by utilizing the following equation. 
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Let Q=Pγ and Q be the fuzzy uncorrelated discriminant matrix. 
FUDV algorithm can be described in the following steps: 
Step 1 Compute μij using Equation (9); 
Step 2 Compute SfB, SfW, and SfT using Equations (10), (11), 

and (12), respectively; 
Step 3 Compute the diagonal matrix Λ and eigenvector matrix 

U of SfT, UTSfTU=Λ, and then /P U −= Λ 1 2 ; 
Step 4 Compute the rth discriminant vector γr using Equation 

(15); 
Step 5 Let Q=Pγ. 

2.3  Experiment materials 
Fresh Chinese cabbages (Brassica rapa, Chinese group) were 

selected as the experimental samples.  A total of 160 pieces of 
Chinese cabbage leaf samples were collected that had similar 
growth conditions.  The Chinese cabbage leaves were washed 
adequately using water (45°C) to clean dust and stored in sealed 
bags. 

The selected pesticide was lambda-cyhalothrin (5% EC, 
Shandong Shenda Crop Science Co., Ltd., Shouguang, China) 
which is widely used to kill cabbage bugs during the growth of 
cabbage.  The concentration ratio of 1:500-1:600 is the 
recommended concentration of lambda-cyhalothrin pesticide by 
relevant pesticide manufacturers.   

In order to produce experimental samples of Chinese cabbage 
leaves with different pesticide residue concentrations, 160 cabbage 
leaves were randomly divided into 4 groups with 40 leaves in each 
group.  The leaves of Group A were sprayed with water as the 
control group.  The leaves of Group B were sprayed with a 
solution of pesticide to water ratio of 1:500, and Group B was 
called the mild residue group.  Similarly, the leaves of Group C 
and Group D were sprayed with a solution of 1:100 and 1:20, 
respectively, called the moderate residue group and the severe 
residue group, respectively.  All the prepared samples were placed 
in a cool and ventilated place for 24 h to reduce the influence of 
water.  Before MIR spectral collection, each sample of Chinese 
cabbage leaf was made into a 2 mm×2 mm small sample. 
2.4  MIR detection and data analysis software 

The MIR spectral data of Chinese cabbage were acquired using 
the Cary 630 FTIR spectrometer (Agilent, USA), ranging from 
590-4289 cm−1 with the resolution of 8 cm−1 and 64 scans for the 
background and samples, which resulted in the 971-dimensional 
spectra.  Two kinds of spectral analysis software, Micro lab PC 
and Resolutions pro, were used to record the MIR spectra.  All 
algorithms and spectral data were processed by Matlab 2016a 
(Mathworks Co., Natick, MA, USA) based on Windows 10 system 
in this study. 
2.5  MIR spectra collection 

The MIR spectra of all samples were collected in a constant 
temperature and humidity laboratory (temperature was about 25°C 
and humidity was about 50%).  The steps of collecting spectral 
data are described as follows: At first, the lens of the instrument 
was cleaned with anhydrous alcohol to reduce errors caused by the 
device before collecting the spectral data of samples.  Secondly, 
the spectrometer was used to detect the background spectrum for 
decreasing deviation caused by environmental factors.  Finally, 
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the samples were placed on the spectrometer to acquire the spectral 
data, and each sample was detected three times, and the average 
value of three experimental data was the final spectral datum for 
subsequent experiments. 
2.6  MIR spectral analysis 

The MIR spectral wavenumber range of Chinese cabbage leaf 
was 590-4289 cm−1.  The original MIR spectral curves of four 
different pesticide residue levels are shown in Figure 1a.  Since 
fresh Chinese cabbage leaf contains more than 90% moisture, the 
spectral data will be greatly affected by moisture.  The two main 
absorption peaks in the 3000-3800 cm−1 and 1500-1800 cm−1 regions 
are the specific absorption of moisture[30].  In the wavenumber 
range of 1200-1500 cm−1, moisture has little effect on the spectral 
data.  In this range, the spectral data are related to some chemical 
bonds and functional groups.  For example, chemical bonds such 

as C−O, P−O, and C−O stretching vibrations range from 1100 cm-1 
to 1200 cm−1.  The region of 1200-1500 cm−1 mainly contains the 
C−H, N−H distortion vibrations and the N−O, N=O stretching 
vibrations.  In addition, the lambda-cyhalothrin pesticide contains 
a unique group C−F bond, and the absorption range of the bond is 
between 1000-1400 cm−1.  Because Chinese cabbage leaves with 
four different levels of pesticide residues have different functional 
group information, MIR spectra are able to accurately express all 
samples.  In order to show these differences more clearly, the 
average MIR spectral curves between 1200-1500 cm−1 were 
enlarged as shown in Figure 1b.  It could be seen from Figure 1b 
that there were certain differences in the average MIR spectral 
curves of four different pesticide residue levels.  These differences 
indicated that MIR spectroscopy had the potential to identify 
different levels of pesticide residue. 

 
a. Original spectra of each group of Chinese cabbage leaves           b. Partially enlarged area of the average spectra 

Figure 1  Original spectra of each group of Chinese cabbage leaves and partially enlarged area of the average spectra 
 

 

3  Results and discussion  

3.1  Data preprocessing 
When the spectrometer was used to collect MIR spectra, it 

would inevitably be interfered with by noise.  The original spectra 
of each group of Chinese cabbage leaves were plotted in Figure 1a.  
As shown in Figure 1a, the original spectra of different pesticide 
residue concentrations had obvious overlapped parts.  There are 
two reasons for this phenomenon.  First, it was caused by the 
samples themselves.  Second, the collected spectral data contained 
a certain deviation due to the influence of noise interference and 
instrument detection.  In order to eliminate the influence of these 
factors on original spectral data, it was necessary to preprocess the 
data. 

Six different algorithms, multiplicative scattering correction  

(MSC), SNV, SG, mean centering (MC), first derivative (FD), and 
second derivative (SD), were used to preprocess the spectral data in 
this experiment.  These preprocessing algorithms were divided 
into four categories.  MC can amplify weak signals.  FD and SD 
can reduce the influence of instrument errors in the spectral data.  
SG can eliminate noise in the spectral data.  MSC and SNV can 
eliminate the scattering influence in the spectral data.  Table 1 
lists the impact of different preprocessing algorithms and the 
combined application of preprocessing algorithms on classification 
accuracy.  It could be seen in Table 1 that the classification 
accuracy of FUDV reached 100% when the spectral data were 
processed by SG.  And the accuracies of UDV and FLDA were 
significantly improved when SNV and SG were used in 
combination.  Finally, SNV and SG were selected as 
preprocessing algorithms in this identification system. 

 

Table 1  Classification accuracies under different preprocessing algorithms 

Classification accuracy Feature  
extraction MSC SNV SG MC FD SD SNV-SG FD-SG SNV-FD MSC-SG 

UDV 92.5% 87.5% 92.5% 90.0% 92.5% 90.0% 97.5% 92.5% 90.0% 95.0% 
FLDA 87.5% 75.0% 87.5% 90.0% 92.5% 82.5% 95.0% 92.5% 92.5% 85.0% 
FUDV 97.5% 92.5% 100% 92.5% 92.5% 92.5% 100% 95.0% 95.0% 100% 

Note: UDV: Uncorrelated discriminant vector; FLDA: Fuzzy linear discriminant analysis; FUDV: Fuzzy uncorrelated discriminant vector; MSC: Multiplicative 
scattering correction; SNV: Standard normal variable; SG: Savitzky-Golay smoothing; MC: Mean centering; FD: First derivative; SD: Second derivative.  The same as 
below. 
 

3.2  Dimension reduction 
The dimensionality of the spectral data was 971 dimensions 

and the wavenumbers ranged from 590 cm−1 to 4289 cm−1.  If 
feature extraction algorithms, such as LDA, were directly used to 
deal with the original data, they would encounter computational 
difficulty.  On the one hand, it is computationally challenging by 
using huge data matrices to calculate eigenvalues.  On the other 
hand, those huge matrices will always encounter a small sample 

size problem[30] when the dimensionality of samples vastly exceeds 
the number of samples.  The scatter matrix is close to the singular 
matrix if the spectra with 971 dimensions are directly used for 
feature extraction because of the small sample size problem.  To 
solve this problem and improve system efficiency and accuracy, 
PCA was utilized for spectral dimensionality reduction.  PCA 
method can map multiple features into some comprehensive 
features by finding a set of orthogonal features that can express all 
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the original features as much as possible, thereby achieving the 
purpose of dimensionality reduction.   

To find the most important features which can beat represent 
the original spectral data, the concept of accumulative contribution 
rate was used to decide the number of principal components.  The 
accumulative contribution rate illustrates the proportion of the first 
L principal components in total data (accumulative contribution 
rate is equal to the sum of eigenvalues of the first L principal 
components divided by the sum of the total eigenvalues).  The 
accumulative contribution rate achieved 99.16% when the number 
of principal components is 14.  But in actual application, it was 
found that the accuracy of classification was not ideal.  In order to 
reduce the data redundancy while keeping the maximum amount of 
information as much as possible, the number of principal 
components was set to 24, and accordingly, the accumulative 
contribution rate was 99.61%. 

To visualize the spectral data information processed by PCA, 
the three-dimensional scatter points processed by PCA are shown 
in Figure 2.  In Figure 2, there are a lot of overlapped data points 
in the data set, and such distribution would cause great difficulty in 
classification.  Therefore, feature extraction algorithms were used 
to solve this problem. 

 
Note: PC: Principal component; A: water; B: 1:500 pesticide 
solution; C: 1:100 pesticide solution; D: 1:20 pesticide solution. 
Figure 2  Three-dimensional distribution of data by PCA 

 

3.3  Feature extraction 
In this section, the spectral data would be divided into training 

sets and test sets according to the ratio of 3:1.  The training set 
had 120 samples and the test set had 40 samples.  FUDV, UDV, 
FLDA, uncorrelated discriminant transform (UDT)[19], 
foley-sammon transform (FST)[31], and FFST[22] were used to 
extract features from the spectral data of Chinese cabbage, 
respectively.  Finally, KNN classifier was used to compute the 
classification accuracies. 
3.3.1  Classification with UDV 

The objective of feature extraction is to find a discriminant 
vector set.  Here, UDV was used as a feature extraction algorithm 
to obtain the discriminant vector set that included three 
uncorrelated discriminant vectors.  These three uncorrelated 
discriminant vectors formed a hyperplane.  After the spectral data 
of Chinese cabbage were projected onto the hyperplane, it was 
more convenient to classify these spectral data.  Figure 3 shows 
the three-dimensional spectral data points processed by UDV.  It 
could be seen that there was not only a significant reduction in the 
extent of data confusion but also an obvious boundary between 
Group A and Group D.  However, there were some groups, such 
as Group A and Group C, whose spectral data were somewhat 
similar.  Therefore, even after feature extraction by UDV, there 
was still some overlapped data between these groups.  The impact 
of these overlapped data points from the classification results is 

listed in Table 2, and the average classification accuracy of UDV 
was 93.9%. 

 
Figure 3  Three-dimensional distribution of data points by UDV 

 

3.3.2  Classification with FUDV 
To improve the classification accuracy, FUDV was proposed 

by introducing the fuzzy set theory into UDV.  Spectral data can 
be classified effectively with FUDV, even if there were overlapped 
data points in the data set.  Before FUDV was utilized to extract 
the features from spectral data, the fuzzy membership values uik 
were calculated.  Fuzzy membership values are shown in Figure 4, 
where the ordinate represented the fuzzy membership values that 
changed between 0 and 1, and the abscissa represented the number 
of samples (each group of Chinese cabbage had 30 samples). 

 
Figure 4  Fuzzy membership values of FUDV 

 

As shown in Figure 4, the fuzzy membership values indicated 
the extent that a spectral data belonged to one class.  For the kth 
sample xk, xk belongs to the ith class if the fuzzy membership value 
uik is the biggest than those values belonging to other classes.  On 
the contrary, if the fuzzy membership value of xk is not the biggest 
value, then the sample xk does not belong to the ith class.  In the 
four subgraphs of Figure 4, for cabbage samples belonging to one 
kind of Chinese cabbage group, their fuzzy membership values 
were greater than those of other kinds.  Based on fuzzy set theory, 
fuzzy membership values in FUDV were beneficial for dealing 
with overlapped samples.  But in Figure 4, the fuzzy membership 
values of a few samples that did not belong to one class were 
greater than those of other classes.  This problem would have a 
certain influence on the classification accuracies. 

When FUDV was used for extracting features, it reduced the 
dimensions of spectral data from 24 to 3.  Figure 5 shows the 
distribution of spectral data reduced by FUDV when m = 2 on the 
three-dimensional view.  Compared with the spectral data 
processed by UDV in Figure 3, Figure 5 shows that the spectral 
data clusters in the same group were more compactly aggregated, 
and there were obvious boundaries between different groups.  
This distribution of the spectral data points processed by FUDV 
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could be explained that FUDV could effectively reduce the 
influence of overlapped points in feature extraction.  It could be 
found from Table 2 that after the KNN classier was utilized to 
compute the accuracy, the average classification accuracy of 
FUDV was 97.5% and the maximum classification accuracy was 
100%. 

 
Figure 5  Three-dimensional distribution of data by FUDV 

 

3.3.3  Classification with FLDA 
FLDA was developed by introducing fuzzy set theory into 

LDA.  The difference between FUDV and FLDA is that the data 
points projected by FUDV are statistically uncorrelated, but the 
data points projected by FLDA are statistically correlated.  To 
illustrate the advantages of uncorrelated discriminant vectors, 
FLDA was performed for feature extraction as a comparison in this 
experiment.  The process of running FLDA was similar to FUDV.  
Firstly, FLDA computed the fuzzy membership values of each 
sample.  Then FLDA was run to obtain the discriminant vector set 
and projected the spectral data onto the feature space which 
consisted of discriminant vectors.  Finally, the KNN algorithm 
was used to classify these spectral data and get the accuracy of 
FLDA.  The spectral data points after feature extraction by FLDA 
are shown in Figure 6.  In Figure 6, FLDA could also complete 
the task of feature extraction.  But compared with FUDV, the 
spectral data clusters processed by FLDA had some confusing data 
points between group B and group D.  By contrast, there were less 
confusing data points in the spectral data clusters obtained by 
FUDV.  It could be found from Figure 5 and Figure 6 that the 
spectral data clusters processed by FUDV had obvious boundaries 
between different groups, and the same group of spectral data 
clusters became more compact than the spectral data clusters 
processed by FLDA.  This result showed that the data processed 
by FUDV could be classified more accurately than the data by 
FLDA.  The reason for this result was that FLDA just satisfied the 
biggest ratio of fuzzy between-class distance to fuzzy total-class 
distance and FUDV satisfied not only the condition of FLDA but 
also the uncorrelated constraints. 

 
Figure 6  Three-dimensional distribution of data by FLDA 

 

As could be seen from the accuracies of FUDV and FLDA in 
Table 2, the average classification accuracy computed by the KNN 
algorithm after feature extraction with FLDA was 88.9%, and the 

average classification accuracy of FUDV was 97.5%.  This 
experiment proved the advantage of uncorrelated discriminant 
vectors when FUDV was used to process overlapped data points. 
3.4  Different values of K with KNN 

Due to the value of K having a significant impact on the 
performance of KNN, several values of K were selected (K=1, 3, 5, 
7, 9, 11, 13, 15, 17) when KNN was utilized to classify the spectral 
data.  In order to illustrate the advantages of FUDV, in addition to 
UDV, FUDV, and FLDA, some other feature extraction algorithms, 
including UDT[19], FST[31], and FFST[22], were also applied in this 
system.  The classification results of all feature extraction 
algorithms are listed in Table 2.  It could be seen from Table 2 
that when the values of K were 3, 5, and 11, the highest 
classification accuracy of FUDV was 100%.  With the change of 
K, the accuracy of FUDV was very stable, and the average 
classification accuracy of FUDV was significantly better than other 
feature extraction algorithms.  The results showed that, compared 
with other feature extraction algorithms, FUDV was a more 
efficient feature extraction algorithm with stronger anti-interference 
ability. 

 

Table 2  Identification accuracies with the different values  
of K 

Identification accuracy 
Feature 

extraction 1/% 3/% 5/% 7/% 9/% 11/% 13/% 15/% 17/% Average
/% 

UDV 95.0 92.5 97.5 95.0 95.0 95.0 92.5 87.5 95.0 93.9 
FLDA 90.0 87.5 95.0 87.5 87.5 95.0 95.0 85.0 77.5 88.9 
FUDV 97.5 100 100 97.5 95.0 100 95.0 97.5 95.0 97.5 
UDT 92.5 87.5 77.5 82.5 87.5 80.0 70.0 62.5 77.5 79.7 
FST 85.0 82.5 77.5 80.0 87.5 80.0 70.0 62.5 77.5 78.1 

FFST 92.5 87.5 82.5 82.5 87.5 87.5 77.5 77.5 87.5 84.7 
Note: UDT: Uncorrelated discriminant transform; FST: Foley-sammon transform; 
FFST: Fuzzy Foley-Sammom transformation.  
 

3.5  Selection of optimal weight index 
Weight index m is a significant parameter in a fuzzy 

discriminant algorithm, which has a profound influence on the 
extraction of fuzzy information.  Bezdek[32] considered that this 
parameter controlled the degree of fuzzy membership sharing 
between classes.  The value of weight index m is specified in the 
interval (1, +∞).  As m approaches infinity, FUDV will lose the 
characteristics of feature extraction, and the data from different 
groups will also become vaguer[33].  To improve the accuracy of 
the pesticide residue identification system, it is necessary to select 
an appropriate weight index.  However, there is not a general 
method to acquire the optimal weight index, and it depends greatly 
on the distribution characteristics of the data.  The trend of 
classification accuracy using FUDV, FLDA, and FFST in different 
values of weight index is presented in Figure 7.  With the increase 
in weight value, the classification accuracy of FUDV, FLDA, and 
FFST all showed a general downward trend.  And it was 
noteworthy that the classification accuracy of FFST suffered a 
cliff-like drop when weight index m was greater than 4.5.  In 
contrast, the classification accuracies of FUDV and FLDA were 
less affected.  The results showed that FUDV and FLDA have 
strong stability.  From the figure, it was found that the 
classification accuracies of FUDV were all above 95% when the 
range of weight value m∈[1.1, 3].  Finally, the optimal weight 
value m was selected as 2 and the optimal classification accuracy of 
FUDV was 100%.  The results could provide a technical reference 
for the selection of the weight index of FUDV. 
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Note: FUDV: Fuzzy uncorrelated discriminant vector; FLDA: Fuzzy linear  
discriminant analysis; FFST: Fuzzy Foley-Sammom transformation. 

Figure 7  Classification results of FUDV and FLDA in different 
weight index 

4  Conclusions 

In this study, a lambda-cyhalothrin residue identification 
system was designed to distinguish four different 
lambda-cyhalothrin levels of Chinese cabbage.  Due to overlapped 
data points, the accuracy of the identification system was often not 
satisfactory.  To improve the accuracy of this system in detecting 
lambda-cyhalothrin concentration, FUDV was developed by 
introducing fuzzy set theory into UDV for feature extraction from 
the MIR spectral data. 

In the above experiments, the UDV, FLDA, FUDV, UDT, FST, 
and FFST were run for feature extraction, respectively.  Through 
comparing the classification accuracies, it could be found that the 
classification accuracies of FUDV were better than other feature 
extraction algorithms in extracting the features from the spectra.  
From the experimental results, the average classification accuracies 
of FUDV, UDV, FLDA, UDT, FST, and FFST were 97.5%, 93.9%, 
88.9%, 79.7%, 78.1%, and 84.7%, respectively.  The maximum 
classification accuracy of FUDV reached 100%.  So this result 
proved that FUDV had an advantage in feature extraction when 
there were some overlapped spectral data points in the data clusters.  
The experimental results indicated that this identification model 
combined with PCA, FUDV, and KNN algorithm was a very 
effective method of classifying lambda-cyhalothrin concentration 
of Chinese cabbage. 
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