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Abstract: Due to the illumination, complex background, and occlusion of the litchi fruits, the accurate detection of litchi in the 
field is extremely challenging.  In order to solve the problem of the low recognition rate of litchi-picking robots in field 
conditions, this study was inspired by the ideas of ResNet and dense convolution and proposed an improved feature-extraction 
network model named “YOLOv3_Litchi”, combining dense connections and residuals for the detection of litchis.  Firstly, 
based on the traditional YOLOv3 deep convolution neural network and regression detection, the idea of residuals was to be put 
into the feature-extraction network to effectively avoid the problem of decreasing detection accuracy due to the excessive 
depths of the network layers.  Secondly, under the premise of a good receptive field and high detection accuracy, the large 
convolution kernel was replaced by a small convolution kernel in the shallow layer of the network, thereby effectively reducing 
the model parameters.  Finally, the idea of feature pyramid was used to design the network to identify the small target litchi to 
ensure that the shallow features were not lost and simultaneously reduced the model parameters.  Experimental results show 
that the improved YOLOv3_Litchi model achieved better results than the classic YOLOv3_DarkNet-53 model and the 
YOLOv3_Tiny model.  The mean average precision (mAP) score was 97.07%, which was higher than the 95.18% mAP of the 
YOLOv3_DarkNet-53 model and the 94.48% mAP of the YOLOv3_Tiny model.  The frame frequency was 58 fps, which was 
higher than 29 fps of the YOLOv3_DarkNet-53 model.  Compared with the classic Faster R-CNN model with the 
feature-extraction network VGG16, the mAP was increased by 1%, and the FPS advantage was obvious.  Compared with the 
classic single shot multibox detector (SSD) model, both the accuracy and the running efficiency were improved.  The results 
show that the improved YOLOv3_Litchi model had stronger robustness, higher detection accuracy, and less computational 
complexity for the identification of litchi in the field conditions, which should be helpful for litchi orchard precision 
management. 
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1  Introduction  

The litchi is a characteristic fruit in South China.  However, 
the litchi has a short harvesting period and always ripens in May 
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and June.  Litchi fruits may become overripe or cracked if not 
picked in time, resulting in direct economic losses.  On the one 
hand, litchi picking is traditionally laborious.  However, manual 
picking brings many unavoidable problems, such as picking at 
night, on rainy days, or at high temperatures, which bring huge 
labor and economic costs to the owners of the litchi orchard.  On 
the other hand, litchi trees are usually planted in hilly areas with 
uneven terrain and the distribution of fruit trees is very scattered.  
Many unfavorable factors bring great challenges to the 
standardization and mechanization of litchi production, especially 
picking. 

Therefore, an automated litchi picking robot is needed to 
resolve the above issues.  However, if the robot can pick litchi 
efficiently and accurately, litchi fruit detection and recognition are 
the prerequisites. 

In recent years, there have been many studies on fruit 
identification using traditional machine vision algorithms across 
the world.  Wei et al.[1] proposed an improved OTSU threshold 
algorithm using new features in the OHTA color space, which 
improved the ability to pick robots to identify the fruit targets in 
complex agricultural backgrounds.  Zhuang et al.[2] used a 
block-based local homomorphic filtering algorithm to ensure that 
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only local blocks having a non-uniform illumination distribution 
were filtered, and threshold segmentation was better performed by 
adaptively enhanced RG chromaticity mapping.  In order to 
improve the recognition ability and perception ability of robots in 
three-dimensional space, Tao et al.[3] proposed a method for apple 
recognition, which used point cloud information to extract color 
features and three-dimensional geometric features, and then the 
genetic algorithm was used to optimize the parameters of the SVM 
classifier.  Also, there are some methods for determining the 
degree of maturity[4]. 

With the development of machine vision algorithms and the 
continuous improvement of parallel computing capabilities, deep 
learning as a popular technology has obvious advantages in the 
field of computer vision.  As a deep learning method, 
convolutional neural networks have advantages in processing 
graphics[5].  The application of deep learning in computer vision is 
mainly divided into classification, detection, and semantic 
segmentation.  This study was mainly engaged in research of 
detection.  Feature-extraction networks used in target detection 
came from the classification networks, and the feature maps with 
high abstraction were obtained through the convolutional neural 
networks, after which the abstract information could be obtained.  
Google Labs proposed a breadth-based feature-extraction network 
and achieved good results[6].  At the same time, various deep 
learning algorithms have also been applied to the fruit recognition 
process including litchi recognition.  Peng et al.[7] proposed a 
method that combines the DeepLabV3+ semantic segmentation 
model with the Xception depth separable convolution feature to 
detect litchi branches, and obtained good recognition results.  
Kang et al.[8] proposed a computational efficient light-weight 
one-stage instance segmentation network, Mobile-DasNet, to 
perform fruit detection and instance segmentation on sensory data.  
A deeper feature-extraction network has also emerged[9].  Sa et 
al.[10] proposed a novel multi-modal information fusion 
Faster-RCNN model using color (RGB) image and near-infrared 
(NIR) image information, which improved the F1 value of sweet 
pepper detection from 0.807 to 0.838.  Bargoti et al.[11] proposed 
an image processing framework for fruit detection and counting, 
such as feature-learning algorithms including multi-scale multilayer 
perceptron (MLP) and convolutional neural network (CNN) 
algorithms.  Their results show the F1 value reached 0.861.  
There have been some studies using convolutional neural networks 
for fruit classification[12] and mango detection[13].  

Currently, target detection based on deep learning is mainly 
divided into two categories.  One is the detection based on a 
region proposal network (RPN), such as RCNN, Fast-RCNN, and 
Faster R-CNN[14].  The other one is detection based on regression 
over the entire image to achieve synchronous prediction of the 
target classification and positioning, such as in YOLO[15] and 
SSD[16].  In recent years, the efficiency and accuracy of YOLO in 
the application of target detection have been continuously 
improved.  It is gradually applied to the detection of fruit.  Tian 
et al.[17] proposed an improved YOLOv3 model for detecting apples 
during different growth stages using the same model, which used 
the Densenet method to process the low-resolution feature layer in 
the YOLOv3 network.  Zhao et al.[18] analyzed the application of 
the YOLOv2 model to the detection of healthy and diseased 
tomatoes and found that YOLOv2 can be effectively applied to the 
detection of healthy and diseased tomatoes.  Liu et al.[19] replaced 
the traditional R-Bbox with a proposed C-Bbox, for matching the 
tomato shape and providing more precise IoU for the NMS process, 

and reducing prediction coordinates to better recognize the 
tomatoes. 

However, although there have been some successful cases of 
applying the YOLO model to fruit detection, it has not been widely 
used.  In this study, a feature extraction network model named 
YOLOv3_Litchi was proposed based on the idea of residual 
structure, dense convolution, and feature pyramid.  Specifically, 
this study was conducted to the identification of litchis in the field.  
Based on YOLOv3 network in deep learning, a new feature 
extraction network YOLOv3_Litchi was proposed that combined 
residual and dense connection ideas with YOLOv3 improvements.  
For evaluating the robustness and detection accuracy of 
YOLOv3_Litchi, the performance of such model was compared 
with the traditional YOLOv3 model and other improved YOLOv3 
models using the Litchi images collected in field.  

2  YOLO deep learning model based on regression 

The regression-based YOLO detection model changes the 
detection structure of the regional proposed network.  YOLO uses 
the global regression idea to divide an entire image into squares of 
S×S for prediction (In the experiment of this study, the size of the 
input image was set to 416×416, the same as the original 
YOLOv3.).  Each square is analyzed to predict whether the target 
is in its center.  The method of predicting the candidate box, 
confidence, and category probability of all the cells will solve the 
detection problem at one time, as shown in Figure 1. 

 
Figure 1  Schematic of YOLO square detection process 

 

The regression-based detection idea is adopted because the 
Faster R-CNN series using the region proposal network (RPN) is 
slow in detection and difficult to train.  Its purpose is to perform 
the high-level abstraction of images through convolutional neural 
networks and use regression prediction to complete the detection of 
targets.  The structure is simple and easy to implement.  It can be 
trained end-to-end and has a faster detection speed than that of the 
Faster R-CNN series, thus, it has strong universal applicability in 
the industry. 

Although a larger input image can save more information, it 
can also greatly increase the amount of calculation for training the 
network and affect the overall performance of the network.  
Therefore, the input image normally needs to be resized.  In this 
study, the scaled image was sent to the convolutional neural 
network for high-level feature extraction.  After feature extraction, 
the non-maximum suppression (NMS)[20] algorithm was used to 
reduce the excess bounding boxes.  Finally, detection of the target 
was conducted.  Figure 2 and Figure 3 show the example of 
detection network and detection results, respectively. 
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Note: a. Resize image; b. Convolutional neural network; c. Non-maximum 
suppression. 

Figure 2  YOLO detection network of litchi 

 
Figure 3  Detection results with non-maximum suppression of litchi 

 

After the development of several versions of the YOLO 
network, the latest version of YOLOv3 has incorporated the 
advantages of many target detection networks.  The input image 
of YOLOv3 is 416×416, the feature map obtained after convolution 
is 13×13, and a prediction is made with the 13×13 image.  
Up-sampling is performed to obtain a larger feature map and a 
shallow feature map for fusion, and then the prediction is 
performed.  The classic YOLOv3 combines three scales, 13×13, 
26×26, and 52×52, thus making a big breakthrough in small target 
detection.  

3  Model selection, improvement, and characterization 

The classic YOLOv3 detection network uses DarkNet-53 as a 
feature-extraction network.  It contains 53 convolution layers, 
which are powerful but have too many layers and a large 
computational cost.  This section would conduct optimization 
based on these limitations.  
3.1  Residual network 

Based on experience, the deep network can extract more 
abstract and high-dimensional features to obtain better detection 
results, but the deep feature network can reduce the accuracy of the 
training results.  The deep residual network (ResNet) was 
designed to solve such problems[21].  In theory, without the 
influence of multiple layers, the network with residual structure is 
always in the optimal state. 

The residual network played a very important role in the 
feature-extraction network due to its simple structure of units and 
low computational cost.  The residual network based on Shortcut 
Connection, as shown in Figure 4, was composed of several 
residual blocks in series, effectively solving the problem of 
gradient disappearance and gradient explosion of deep network 
training, making deep network training possible. 

 
Figure 4  Shortcut connection of residual blocks 

 

3.2  Dense convolution block 
In order to ensure the maximum information to be transferred 

between the layers, the problems of deep network gradient 
disappearance and the transmission of features need to be solved.  
This study used dense blocks[22].  As shown in Figure 5, Dense 
Block was a module with many layers, each of them has the same 
size feature map, and the layers were closely connected to each other. 

 
Note: The circles represent the dense blocks in groups of five, the hollow 
circles represent the first dense block, and the solid circles represent the 
four subsequent dense blocks. 
Figure 5  Dense block composite structure used in this study 

 

In traditional neural networks, deep convolutions receive more 
abstract information, and shallow information is filtered during the 
convolution and pooling operations.  Through the splicing with 
the results of the front layer, the dense convolution block could 
effectively alleviate the problem of shallow information loss and 
gradient disappearance during the transfer process.  

Dense convolution connection used Equation (1) to merge the 
convolution results of each layer.  Compared with the ResNet, the 
dense convolution connection spliced the convolution results of the 
upper layer and retained the feature mapping to a greater extent.   

xl = Hl([x0, x1, …, xl–1])               (1) 
where, Hl represents the nonlinear transformation function of each 
layer and is defined as the combination function of three operations 
(namely BN, ReLU, and convolution), where l represents the layer.  
The output of layer L is represented by xl. 

As shown in Figure 6, the entire classification network was 
composed of multiple densely connected convolutional blocks.  
Since each dense convolutional block contained the lowest-level 
feature information, therefore, deeper network pooling layers 
would not cause all the shallow information to be lost, and it would 
have a better performance in the deep abstraction of details.  
Especially for litchi image data sets, the litchi that needed to be 
detected usually occupied a small part of the entire image (whole 
litchi), moreover, there were a lot of noise factors such as branches 
and leaves around litchi.  

 
Figure 6  DenseNet classification network for litchi classification 

 

By reasonably using the DenseNet structure in the network of 
this study, the loss of the characteristics of small targets was able to 
avoid such as litchi in the deep network structure. 

3.3  Feature pyramid for litchi 
After the training samples were input into the network, they 

needed to pass through the convolutional layer and the pooling 
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layer of the feature extraction network, which would make the 
network discard the shallow features and reduce the number of the 
network parameters.  This would make the final features extracted 
by the network only contain high-level abstract features of large 
targets, while the features of small targets were discarded because 
they consist of fewer pixels and the features are not obvious 
enough.  Therefore, this study combined the idea of feature 
pyramid[23] with the YOLOv3 network model to solve the above 
problems. 

As shown in Figure 7, the Feature Pyramid Network (FPN) 
could be divided into three main structures: bottom-up pathway, 
lateral connection, and top-down pathway.  The bottom-up 
pathway was the feedforward calculation of the trunk ConvNet, 
which calculated the feature hierarchy consisting of several 
proportional feature maps with a proportional step size of 2.  The 
top-down pathway produced higher resolution features by 
upsampling spatially coarser but semantically stronger feature 
graphs from a higher pyramid level.  These features were then 
enhanced by the features of the bottom-up pathway through lateral 
connections.  Each lateral connection merged feature maps of the 
same spatial size from the bottom-up path and the top-down path.  
Finally, the feature images obtained from different branches were 
merged by an addition operation in order to obtain the feature 
images with more information. 

 
Note: “+” indicates that horizontal connections and top-down channels 
are merged by addition. 

Figure 7  Feature pyramid network structure diagram 
 

Due to the small size of litchi, it took up fewer pixels in 
high-resolution images.  If a single-scale feature map was fed for 
training, the feature information of small targets such as litchi in 
the convolved feature map was easily lost.  Therefore, in the 
YOLOv3_Litchi network structure, using the idea of FPN, a 
bottom-up downsampling process was performed on 
high-resolution litchi images and used top-down channels to 
upsample the top-level feature map.  Finally, to avoid the 
influence of noising data such as branches and leaves of 
high-resolution images, the lateral connections were used to output 
multi-scale feature maps for the identification and classification of 
litchi in the last three layers.  From the experimental data in the 
experiment and results, after adding the improved FPN structure, 
YOLOv3_Litchi had produced excellent performances for the 
recognition of litchi with small volume. 
3.4  Small convolution replaces large convolution 

The convolution operation has regularization effects by 
reducing the training parameters and improving the training 
efficiency.  As the network grows larger, the detection accuracy 
also increases, and the parameters in the network continue to 
increase.  Reducing the size of the convolution kernel can 

effectively reduce the number of parameters while ensuring the 
same accuracy.  It is also one of the future trends.  Ye et al.[24] 
used small convolution kernels to reduce the network parameters of 
the capsule network and optimized the number and quality of 
capsules in the capsule network on the premise of ensuring the 
accuracy of the network, improving the computational efficiency.  
Tek et al.[25] proposed a method for learning the size of the 
convolution kernel to provide a variable size kernel in a single 
layer, and optimized the overall network model from the 
perspective of adjusting the size of the convolution kernel. 

In this study, 1×1 small convolution kernel was used in the 
shallow layer of the network to replace the large convolution, 
which reduced the network model parameters and improved the 
model detection speed on the premise of ensuring the overall 
network identification accuracy. 
3.5  YOLOv3_Litchi architecture 

This study used the ideas mentioned above to improve the 
feature extraction network, and an improved YOLOv3 network 
structure named “YOLOv3_Litchi” was proposed.  

The YOLOv3_Litchi network structure is shown in Figure 8.  
In this structure: 

CBL was a single convolutional block that was locally 
normalized.  It was the smallest part of the YOLOv3 network 
structure, and it consisted of three parts: convolution, Batch 
Normalization, and Leaky_Relu activation functions. 

Res unit was a single residual unit, and each residual unit was 
subjected to Leaky_Relu function excitation after convolution.  
Then, the convolved result was accumulated with the original 
identity map, and the linear excitation was used to obtain the 
unified result. 

Des was a densely concatenated convolution block with three 
convolutions.  The convolved results were spliced with the 
pre-convolution feature maps so that the shallow features could be 
acquired at a deep level. 

Figure 9 shows the specific network parameters of 
YOLOv3_litchi.  Firstly, the number of convolution layers in 
ResNet50 was reduced, and the input image was enlarged to 
416×416.  Secondly, the idea of using multiple small convolutions 
to replace large convolutions was implemented.  On the premise 
of the same receptive field and precision, three 3×3 small 
convolution kernels were used instead of the large 7×7 convolution 
kernel in the ResNet network, reducing the model parameters.  
Thirdly, the shallow network used dense convolutional blocks to 
quickly convey shallow information to deep convolution, which 
facilitated the combination of upsampling information with shallow 
features for regression prediction.  Fourthly, in the process of 
network construction, the convolutional cores of different sizes 
were used to build the network and test the performance, and 
decided to adopt the 1×1 convolutional kernel.  Since the length 
and width of the 1×1 convolution kernel are only 1 pixel, it is not 
needed to consider the relationship between pixels and surrounding 
pixels.  It was mainly used to adjust the number of channels and 
multiple places in the network to facilitate cross-channel interaction 
and information integration.  To ensure the constant size of the 
feature map, the nonlinear features were increased to obtain higher 
layer features.  Finally, in the second half of the feature extraction 
network, the residual network was used to deeply extract the 
shallow information features which were extracted from the dense 
convolution block to obtain high-dimensional features and improve 
the prediction accuracy.  Meanwhile, the feature extraction 
network performed a regression prediction after obtaining the 
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feature map.  Using the idea of feature pyramid network, the 
entire network performed two up-samplings and three regression 
predictions.  Combining the upsampling results with the shallow 
feature maps overcame the shortcomings of the YOLO network in 
predicting shallow small targets, and the recombined 
YOLOv3_Litchi network model produced good recognition 
performance for litchis in small sizes. 

When extracting deep features, a densely connected 

convolution block and a third residual block were used to extract 
deep features, which used small convolution kernel and identity 
mapping ideas, and batch normalization was performed after each 
convolution of the residual block.  This ensured that the training 
data were all at the same magnitude, and made training more stable 
and faster to converge.  The non-saturated activation function 
Leaky ReLU function was used to accelerate the convergence and 
solve the problem of vanishing gradient. 

 
Note: CBL is a single convolutional block that was locally normalized; Res unit is a single residual unit, and each residual unit was subjected to Leaky_Relu function 
excitation after convolution.  Des was a densely concatenated convolution block with three convolutions; BN: Batch normalization; ReLU: Rectified linear units. 

Figure 8  Network structure of YOLOv3_Litchi 

 
Figure 9  YOLOv3_Litchi network parameters 

 

4  Experiment 

4.1  Image data acquisition 
The work of data collection was conducted in Litchi orchards 

in Guangzhou Green Water Fruit Farm and Guangzhou East Forest 
Fruit Park.  The distribution of litchi trees in the two orchards was 
uneven.  The litchi varieties included Guiwei, Zizixiao, Huaizhi, 
and Nuomici.  The data set has been collected a total of four times.  
The collection dates of the litchi images in this experiment were 
June 29, 2017 (sunny), July 8, 2017 (cloudy to rainy), July 10, 
2017 (sunny), and May 30, 2018 (sunny).  In order to efficiently 
collect the image data under different resolutions, three kinds of 
camera were used for image capture.  The Canon EOS 60D 
camera (Manufactured by Canon) was used to capture 5184 

pixels×3450 pixels images, the FinePix F500EXR camera 
(Manufactured by FUJIFILM) was used to capture 4608 
pixels×3456 pixels images, and HUAWEI smart mobile phones 
(Manufactured by HUAWEI TECHNOLOGIES CO., LTD) were 
used to capture 3968 pixels×2976 pixels images.  The weather 
conditions included rainy, cloudy, and sunny days, and the times 
for image acquisition were from 8:00 to 17:00.  The image data 
contained large differences for the convenience of strengthening 
the robustness and test difficulty of the detection network. 
4.2  Image data pre-processing 

Since a large amount of image data would result in 
unnecessary space and time costs for data storage and computation, 
based on the original data, the image was compressed into a 
different size.  Total number of images was 4748, and the storage 
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space was 14 GB.  After preprocessing, the image data took only 
714 MB, which reduced the storage space by 20 times.  The 
summary of image data was shown in Table 1.  The processed 
data set was organized using the PASCAL VOC data set format, 
with the division principle of training: validation: test with a ratio 
of 5:2:3 to ensure the randomness and test reliability of images 
with mutually exclusive data sets. 

 

Table 1  Image resolution and dataset information of litchi 

Number of data sets Original 
image resolution 
(pixels×pixels) Training Validation Test Total 

Resolution 
after compression

(pixels×pixels) 

1000×1500 7 3 4 14 1000×1500 
2976×3968 82 32 50 164 800×1066 
3968×2976 242 96 146 484 800×600 
3456×2304 215 86 130 431 800×533 
5184×3450 1852 733 1070 3655 1000×666 

Total 2398 950 1400 4748 -- 
 

4.3  Supervised learning annotation 
This experiment used LabelImg annotation tool for supervised 

learning.  The data was annotated in the format of the PASCAL 
VOC dataset.  The XML file was used to store the coordinates of 
the upper left and lower right corners of the label target, i.e., (Xmin, 
Ymin, Xmax, Ymax), to denote the specific location of the target.  In 
this experiment, 4748 images were used to obtain 19 907 labeled 
litchi targets, which met the requirements of deep learning data. 

After the data annotation work was completed, the marked file  

was processed by converting the absolute position to the relative 
position adopted by YOLO, and normalization was performed to 
preprocess data. 
4.4  Image data augmentation 

As a method of image data preprocessing, image augmentation 
plays an important role in deep learning.  In general, effective 
image augmentation can better improve the robustness of a model 
and obtain a stronger generalization ability.  A large amount of 
image data is a prerequisite for using deep learning.  Normally, 
before training the model, relevant algorithms are used to increase 
the size of the dataset.  The labor cost of marking supervision 
training is huge, therefore image augmentation was used in this 
experiment to reduce labor cost but increase data size. 

The samples were upside-down and symmetric-mirror 
processed, yielding data resources for deep learning 
implementation.  Since the litchi dataset included litchis of 
different maturity levels, their color characteristics had slight 
differences.  In the process of image augmentation, changing the 
image color attributes of the dataset would affect the training 
performance of the network.  Therefore, in order to enhance the 
robustness of the network model without affecting the training 
performance of the data set, in addition to the operation of 
changing the image color attributes, random translation, Gaussian 
noise, flipping, and sharpening operations were used to perform the 
image augmentation process on the image data set.  The image 
enhancement examples are shown in Figure 10. 

 

  
a. Original image b. Shift up by 80 pixels c. Shift down by 80 pixels d. Shift right by 80 pixels e. Shift left by 80 pixels 

  
f. Horizontal flip g. Vertical flip h. Noise i. Gaussian blur j. Sharpen 

Figure10  Image enhancement examples of litchi 
 

The experiment was evaluated according to the test set, so the 
validation set was merged with the training set for training.  The 
experiment used partial enhancement rules to randomly extract data 
from the data set for the corresponding image enhancement.  The 
various enhancement methods and the number of all images after 
image enhancement are listed in Table 2. 

Table 2  The number of training and validation samples 
treated by different image augmentation methods 

Dataset Original  
data 

Random  
translational 

Gaussian  
noise Flip Sharpen Total

Training set 2398 500 500 300 100 3798
Validation set 950 500 500 300 100 2350
Total 3348 1000 1000 600 200 6148

 

4.5  Experimental deployment 
This experiment used the DarkNet deep learning framework.  

The hardware configuration used in this experiment was Intel Core 
I7-6700 @3.40 GHz X 8 CPU and GeForce GTX TITAN X GPU.  
The software environment was NVIDIA driver version 390.87, 

CUDA version 9.0.176, CUDNN version 7.0.5, g++/ GCC version 
7.3.0. 

This study used batch-wise asynchronous stochastic gradient 
descent[26] to optimize the processing.  Each time 64 images in 8 
batches were fed into the network.  Each input image is 416 pixels× 
416 pixels in RGB color space.  The momentum factor was set to 
0.9, the attenuation coefficient to 0.0005, and the saturation and 
exposure to 1.5 times, which easily highlighted the characteristic 
contrast between the target object and the background.  The 
learning rate was initially set to 0.001, and the maximum number 
of training iterations was 25 000.  The training strategy was to 
achieve a smaller loss when the learning rate dropped by 0.1 in 
19 000 batches and 23 000 batches, respectively.  The default 
anchors were used for prediction, and the jitter coefficient was set 
to 0.3 to increase the robustness of the model. 
4.6  Evaluation 

Precision, Recall, F1, and mean Average Precision (mAP) are 
used to evaluate the recognition performance of the network 
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designed for litchi.  Their calculation method was defined as 
follows: 

TPPrecision 100%
TP FP

= ×
+

            (2) 

TPRecall 100%
TP FN

= ×
+

              (3) 

2 Precision RecallF1
Precision Recall
× ×

=
+

             (4) 

C
C

Pr ecision
AP

CN
= ∑              (5) 

Class

AP
mAP

N
= ∑                    (6) 

where, APC represents the average accuracy of category C.  
PrecisionC represents the precision of category C on each image; NC 
represents the number of pictures containing category C.  The 
numerator portion of Equation (6) represents the sum of AP for all 
classes, and NClass represents the total number of classes.  True 
Positive (TP), False Negative (FN), False Positive (FP), and True 
Negative (TN) are used in the above calculation.  The differences 
between them are listed in Table 3.  In this experiment, litchi 
needed to be identified, so litchi fruits were in the positive class, 
and the others were in the negative class.   The F1 score is the 
harmonic mean of accuracy and recall.  The higher F1 is, the 
better the model performance is. 

 

Table 3  Confusion matrix description 
Label Predicted Confusion matrix 

Positive Positive TP 
Positive Negative FN 
Negative Positive FP 
Negative Negative TN 

 

Intersection-over-union (IoU) is the ratio of the intersection 
and union of “predicted frame (A)” and “real frame (B)”, shown in 
Equation (7).  The larger the intersection area is, the larger the 
value of IoU is, and the more accurate the detection result is. 

| A B |IoU(A, B)
| A B |

∩
=

∪
       (7) 

In the subsequent experiments, it is usually necessary to 
comprehensively weigh indicators such as mAP to illustrate the 
experimental result.  The specific experimental data and 
experimental methods are summarized in the following sections. 

5  Results and discussion 
5.1  Experimental result 

The experiment set the non-maximum suppression threshold to 
0.4 and the IoU threshold to 0.5 to obtain a PR curve, as shown in 
Figure 11.  

 
Note: Set the non-maximum suppression threshold to 0.4 and the 
IoU threshold to 0.5.  

Figure 11  PR curve of YOLOv3_Litchi 

As shown in Figure 11, the PR curve tended extremely towards 
the upper right corner, which demonstrated that the model was  
ideal for training and that the classifier was better. 

Since the loss of the first 1000 iterations was large, this study 
obtained the loss-batches graph with iterations greater than 1000 
for convenience of observation.  Figure 12a shows that after 
20 000 batches, the loss curve tended to be flat and no longer drops, 
indicating that the model training was saturated.  The graph of the 
relationship between the IOU and iterations is shown in Figure 12b.  
The graph shows that the IOU tended towards 1 after training and 
the accuracy of the model for the training set tended to become 
saturated. 

 
a. Loss curve 

 
b. IoU curve 

Note: OurNet represents YOLOv3_Litchi. 
Figure 12  YOLOv3_Litchi’s iterations curve 

 

5.2  Comparison of different models 
This study compared the performance of the ResNet-50, 

DarkNet-19 (The backbone network of YOLOV3-Tiny is similar to 
DarkNet-19), DarkNet-53 (The classic YOLOv3 is based on 
DarkNet-53, but for the convenience of description, it was called 
YOLOv3-DarkNet53 in this study) and DesNet-201 networks with 
the proposed one.  

The results of Table 4 show that YOLOv3_Litchi had the 
highest mAP and the highest detection accuracy.  Compared with 
YOLO_Tiny, the mAP of YOLOv3_Litchi increased by 2.59%.  
The experimental data shows that the mAP of YOLOv3_Litchi was 
1.89% and 1.11% higher than the YOLOv3 model based on 
DarkNet-53 and DesNet-201 respectively.  Moreover, the frame 
frequency of 58 fps for performance of TITAN X graphics was 
higher than the results of the classic DarkNet-53 model and 
DesNet-201 model of the classic YOLOv3.  Compared to the 
classic YOLOv3_DarkNet-53 network, the proposed model in this 
study had significant improvements in accuracy, model size, and 
computational cost.  Finally, compared with the result of 
ResNet-50, the mAP increased by 0.86%, and the FPS was higher 
than YOLOv3_ResNet-50.  At the same time, due to the use of 
lightweight network structure for model training, YOLOv3_Tiny’s 
detection speed could reach 173 fps during detection, but its 
accuracy was the lowest, unable to meet the needs of litchi 
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detection in complex scenes.  Overall, the comparison of the 
above experimental data shows that the improvement of this study 
was meaningful. 

 

Table 4  Performance of different models comparison 

Model mAP/% Frame frequency/fps Size/MB 

YOLOv3_ResNet-50 96.21 49 100.7 

YOLOv3_Tiny 94.48 173 34.7 

YOLOv3_DarkNet-53 95.18 29 246.3 

YOLOv3_DesNet-201 95.96 26 86.9 

YOLOv3_Litchi 97.07 58 134.7 
Note: mAP: mean Average Precision. 

 

By loss comparison among YOLOv3_Litchi, ResNet-50, Tiny, 

DarkNet-53, and DesNet-201, it can be concluded that 
YOLOv3_Litchi’s losses were significantly smaller than those of 
other networks, as shown in Figure 13a, and the convergence of the 
YOLOv3_Litchi was faster.  From the enlarged view before the 
end of training, shown in Figure 13b, the amplitude of 
YOLOv3_Litchi was smaller than other networks, indicating that 
the convergence of YOLOv3_Litchi was better than other networks. 

YOLOv3_Litchi was compared with two classic models, 
Faster-RCNN and SSD, as shown in Table 5.  Compared with the 
classic Faster R-CNN using the VGG16 feature-extraction network, 
the mAP of YOLOv3_Litchi was improved by 1.09%, and the FPS 
was obviously better.  Compared with the classic SSD, the 
accuracy and FPS were also improved. 

 

Five different models 

YOLOv3_Tiny, 
YOLOv3_DesNet-201, 

and YOLOv3_Litchi 

YOLOv3_ResNet-50, 
YOLOv3_DarkNet-53, 
and YOLOv3_Litchi 

 a. Loss comparison of 1000-25000 steps b. Loss comparison of 21000-25000 steps 
 

Figure 13  Loss comparisons among different models 
 

Table 5  Performance comparison among different models 

Model mAP/% Frame frequency/fps Size/MB 

YOLOv3_Litchi 97.07 58 134.7 

SSD_VGG16 96.74 50 95 

Faster R-CNN_VGG16 95.98 10 483.5 
 

5.3  Different scene comparison experiments 
Detection of the occluded target is one of the important factors 

in verifying the robustness of a detection network.  By calculating 
the proportion of the number of occluded litchis to the total number 
of litchis in each image, the experiment of this study used 100 
images of litchi with sparse distribution and intact individuals 

without shade, 100 images with less than 50% occlusion, and 100 
images with more than 50% occlusion as samples.  The 
comparison results of YOLOv3_DarkNet-53 and the proposed 
model were shown in Table 6. 

Usually, the recall rate and accuracy rate are negatively 
correlated.  The experimental setting of the IoU threshold was 0.5, 
and the non-maximum suppression value was 0.4, with the 
experimental results shown in Table 6.  It can be seen from Table 
6 that the recall rate of the model in this study was better, but its 
accuracy was relatively low due to the limitation of the 
non-maximum suppression threshold.  The F1 score of the model 
in this study was higher in the case of less occlusion, and the F1 
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value decreased as the occlusion increased.  However, the 
improved network showed better performance in terms of accuracy 
and F1 than that of the YOLOv3_DarkNet-53 network under 
various occlusion conditions, as shown in Figure 14. 

It can be also concluded from Table 6 and Figure 14 that both 
networks showed a strong performance in sparse and complete fruit 

image detection, but the improved YOLOv3_Litchi network was 
more robust and accurate than the YOLOv3_DarkNet-53 network 
in the case of denser fruit occlusion.   

In addition, as shown in Figure 15, the optimized 
YOLOv3_Litchi network model was robust to litchi detection in 
complex scenes and had excellent detection performance. 

 

Table 6  Comparison of YOLOv3_ DarkNet-53 and YOLOv3_Litchi under different occlusion conditions 

Precision Recall F1 
Litchi scenario 

YOLOv3_DarkNet-53 YOLOv3_Litchi YOLOv3_DarkNet-53 YOLOv3_Litchi YOLOv3_ DarkNet-53 YOLOv3_Litchi

Sparse and complete 61.97% 67.48% 98.78% 98.92% 0.762 0.802 
Occlusion (~, 50) 53.66% 65.66% 98.63% 99.32% 0.695 0.791 
Occlusion (50, ~) 43.44% 50.12% 94.54% 97.88% 0.595 0.663 
Overall test set 49.57% 59.71% 96.77% 98.23% 0.655 0.743 

 

   

   
a. YOLOv3_DarkNet-53 b. YOLOv3_Litchi 

 

Figure 14  Comparison of litchi detection results of this study 
 

  
a. Dark environment b. Dense occlusion c. Close-up multi-target d. Strong light conditions 

  
e. Rainy scene f. Blacklight g. Green Litchi h. Side-light exposure 

 

Figure 15  Litchi detection results by YOLOv3_Litchi: Litchi with different conditions 
 

6  Conclusions 

This study was aimed to detect litchi fruits in field conditions 
using the combined digital images and deep neural network for 
precise orchard management.  The feature-extraction network was 
improved by combining dense convolution with the residual 
network, reducing the number of residual layers.  The shallow 
layer replaced the large convolution with multiple small 
convolutions.  Based on the YOLO regression model, the 
feature-extraction network of YOLOv3_Litchi was proposed, with 
an mAP of 97.07% and a detection speed of 58 fps.  The 
experiment results show that the improved network was more 
robust for occluded targets and achieved better recognition results. 

1) The idea of a residual network combined with YOLO 
regressive detection was proposed.  Putting the residual network 
into the feature-extraction network avoided the problem of 
precision decrease caused by the excessive depth of the network 
layer.  The mAP of the classic YOLOv3_Darknet-53 was 95.18%, 
while after the residual structure improvement, the network 
obtained 97.07% MAP, an increase of 1.89%.  Also, the model 
size was one-half, and the running speed was increased by 29 fps. 

2) The combination of dense connection blocks and a residual 
network was implemented to minimize the loss of shallow-layer 
features and minimize the model parameters.  For the test set with 
1400 samples, the F1 value of YOLOv3_Litchi was 0.743, which 
was higher than the 0.655 of YOLOv3_DarkNet-53. 
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3) Small convolutions instead of large convolutions for 
shallow layers of the network ensured the accuracy and receptive 
field while reducing the model parameters.  The nonlinearity was 
improved by the 1×1 convolution kernel while ensuring the 
constant size of the feature map.  Partial improvements to the 
ResNet network had reduced the size of the model.  Compared 
with the YOLOv3 model based on ResNet50, the proposed model 
had an improved detection speed by 9 fps and an improved mAP. 

4) Based on the characteristics of the litchi data set, the 
improved FPN structure was used to combine the high-resolution 
feature map with the low-resolution high-semantic feature, which 
had a better recognition and positioning effect for small targets. 

In YOLOv3_Litchi, the fusion of up-sampling and shallow 
features was carried out, and the shortcoming of poor detection 
performance for small targets was solved, resulting in improvement 
of the performance of the detection network.  With agricultural 
development, litchi automatic picking is an inevitable trend in the 
future for the litchi production industry.  An accurate, stable, 
real-time efficient fruit localization algorithm is key in the fruit 
positioning technology of picking robots.  In this study, the 
feature-extraction network was improved by the proposed method, 
obtaining a higher and faster target detection.  The findings 
provided powerful technical support for the target detection and 
location by the picking robots. 
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