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Abstract: Swarm intelligence algorithms own superior performance in solving high-dimensional and multi-objective 

optimization problems.  The application of the swarm intelligence algorithms to visible and near-infrared (VIS-NIR) spectral 

analysis of soil moisture can contribute to the optimization of the soil moisture prediction model and the development of the 

real-time soil moisture sensor.  In this study, a high-resolution spectrometer was used to obtain spectral data of different levels 

of soil moisture which were manually configured.  Isolation Forest algorithm (iForest) was used to eliminate outliers from the 

data.  Based on the root mean square error of prediction RMSEP of Back Propagation Neural Network (BPNN) model results, 

a series of new swarm intelligence algorithms, including Manta Ray Foraging Optimization (MRFO), Slime Mould Algorithm 

(SMA), etc., were used to select the characteristic wavelengths of soil moisture.  The analysis results showed that MRFO 

owned the best performance if only from the predictive capability perspective and SMA had a better performance when 

considering the proportion of the selecting wavelengths and the results of the model prediction.  By comparing and analyzing 

the modeling results of traditional intelligence algorithms Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), it 

was found that the new swarm intelligence had a better performance in selecting the characteristic wavelengths of soil moisture.  

Integrating the results of all intelligence algorithms used, soil moisture sensitive wavelengths were selected as 490 nm, 513 nm, 

543 nm, 900 nm and 926 nm, which provide the basis for the design of real-time soil moisture sensor based on VIS-NIR. 
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1  Introduction

 

On-the-go soil moisture content (SMC) measurement can 

realize the continuous collection of soil moisture information, 

which plays an important role in agricultural activities such as 

planting and transplanting[1].  Acquiring soil moisture information 

in real-time has become one of the most advanced development 

directions of precision agriculture.  Some relevant studies reported 

that the measurement of SMC based on visible and near-infrared 

(VIS-NIR) spectrum owns some preferable performance in 

real-time and continuity[2-4].  One of the most important parts of 

SMC measurement based on VIS-NIR is to acquire a prediction 
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model with easy interpretation and high operational efficiency.  

For this reason, it is expected to select characteristic wavelength 

variables and eliminate redundant wavelengths, and the original 

spectral information, meanwhile, should be retained to the 

maximum when analyzing SMC spectrum[5].  Furthermore, 

finding the sensitive wavelengths is also significant to the design of 

SMC measurement equipment[6,7].  When using spectrum to 

predict SMC, the difference between an SMC sensor and a 

spectrometer lies in that the SMC sensor just selects several 

sensitive wavelengths as the light source.  This is because the 

real-time measurement requires swift calculation, using only a few 

wavelengths can greatly reduce the time complexity of the 

prediction model.  Besides, the portable size and economical cost 

of the sensor should also be considered.  

Common methods of characteristic wavelength selection 

mainly include principal component analysis (PCA), successive 

projections algorithm (SPA), uninformative variable elimination 

(UVE), competition adaptive reweighted sampling (CARS), etc.[8] 

These methods are often used in conjunction with partial 

least-squares regression (PLSR).  Modeling SMC spectrum and 

the measured data by PLSR, analyzing the model coefficient 

through the above methods, the characteristic wavelength can be 

selected.  Some researchers have used these methods in SMC 

characteristic wavelength analysis.  Liu[9] has investigated the 

relationship between the soil reflectance and moisture in 400-  
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2450 nm wavelength range.  Linear stepwise regression was used 

to find the principal components of soil reflectance spectral data 

and seven wavelengths of 450, 574, 986, 1400, 1672, 1998, and 

2189 nm were extracted according to their residual error rank.  

The wavelength variables sensitive to SMC were selected from the 

full spectrum by CARS in Yu’s study[10].  The prediction accuracy 

of PLSR calibration model was an evaluation to locate optimal 

variables.  According to his study, four wavebands were selected 

in 350-2500 nm which are respectively 443-449 nm, 1408-1456 nm, 

1916-1943 nm, and 2209-2225 nm.  Various methods such as 

UVE, SPA, CARS, etc., were used in the determination model 

optimizing and characteristic wavelength extracting of SMC 

spectral reflectance in Wu’s research[11].  Comparison among the 

modeling results showed that wavelength variables extracted by β 

coefficient were optimal.  The characteristic wavelengths of the 

range of 400-1000 nm are 411 nm, 440 nm, 622 nm, 713 nm, and 

790 nm. 

Some traditional intelligence algorithms like Genetic 

Algorithm (GA) and Particle Swarm Optimization (PSO) have 

already been applied in characteristic wavelength selection.  

Combining with PLSR model, algorithms including PSO and GA 

were used on analyzing the characteristic spectral variables of total 

nitrogen and nicotine of tobacco leaves in Bin’s study[12].  Xue et 

al.[13] used PSO to determine the characteristic wavelength of 

dichlorvos residue on the surface of navel orange with VIS-NIR 

spectroscopy.  The application of combining GA and SPA has 

been studied on the selection of characteristic wavelength to 

evaluate exudative characteristics in frozen-thawed fish muscle by 

Cheng et al.[14].  Swarm intelligence (SI) refers to an optimization 

algorithm that imitates the intelligent behavior of non-intelligent 

population in nature through group interaction[15].  With the 

deeper exploration of nature, many new SI algorithms have been 

proposed.  Fewer parameters, better global search ability, and 

better ability to solve high and multi-objective optimization 

problems, the merits of these algorithms make them extensively 

applied in recent years, particularly in path planning, mechanical 

optimization, or areas like that[16]. 

Attempting to apply various kinds of latest SI algorithms like 

Butterfly Optimization Algorithm (BOA), Crow Search Algorithm 

(CSA), Grey Wolf Optimization (GWO), etc. on SMC 

characteristic wavelength selection in the 400-980 nm reflectance 

spectral band, the purpose of this study mainly lies on the 

following two perspectives: 

1) Discuss the feasibility of the SI algorithms on SMC 

characteristic wavelength selection and SMC spectral prediction 

model optimization.  Finding the preferable algorithm among 

them by comparing the modeling results.  Making comparisons 

between the new SI algorithms and traditional intelligence 

algorithms.  Thus, to provide a new thought in soil spectrum 

analysis.  

2) Finding the sensitive wavelengths of SMC by 

comprehensively analyzing the characteristic wavelength selection 

results of intelligence algorithms.  Trying to use several 

wavelengths to reach a competitive prediction accuracy.  

Providing a theoretical basis for the light source selection of the 

soil moisture measurement sensor using the optical principle. 

2  Material and methods 

2.1  Acquisition of spectral data  

Soil samples were taken from Liuquan Town, Gu'an County, 

Hebei Province, China (116°24'35"E, 39°22'48"N), belonging to 

arable soil.  And the soil type was mainly sandy loam.  In order 

to obtain different levels of SMC, soil samples were manually 

configured.  Soil taken from field was first put into the oven 

(DHG-9123A, Shanghai) being dried till the weight of soil no 

longer changes.  Then a 2 mm soil sieve was used to screen.  The 

screened soil was evenly mixed up with a gradient weight of water.  

Subsequently, soil samples with gradient moisture were filled into 

aluminum boxes and scrapped and compacted the surface to flat.  

Spectral data could be collected by putting the samples under 

optical fiber.  The spectrometer that the experiment used was a 

high-performance QE Pro spectrometer (Ocean Optics, Inc., USA) 

whose measurable wavelength range was around 185-1100 nm and 

full width at half maximum (FWHM) is 1.1 nm along with 

laboratory optical fiber (Ocean Optics, Inc., USA) and HL-2000 

halogen light source (Ocean Optics, Inc., USA).  In this study, 

ultraviolet exploration was not included.  Thus, the actual 

wavelength range was 400-980 nm after excluding the noise at the 

edges of each spectrum.  When finishing spectrum data collection, 

samples were put on an electronic balance to weigh the total weight 

of aluminum boxes and wet soil which was marked as m1.  

Subsequently, put them into the oven to dry at 105°C for 12 h.  

When the samples cooled, the total weight of aluminum boxes and 

dry soil was weighed and marked as m2.  The SMC can be 

calculated as Equation (1). 

1 2

2 0

m mw
m m






                    
(1) 

where, w is the gravimetric water content of soil, kg/kg; m0 is the 

weight of the aluminum box, kg; m1 is the total weight of the 

aluminum box and wet soil, kg; m2 is the total weight of the 

aluminum box and dry soil, kg. 

Three samples were set for each moisture level, and 10 groups 

of data were collected for each sample.  A total of nine levels 

were set and 270 groups of spectral data were eventually collected.  

Figure 1 displays the full spectral curve acquired.  

 
Note: SMC is the soil moisture content, kg/kg. 

Figure 1  Spectral curve of all SMC levels 
 

2.2  Pretreatment of spectrum 

Due to the stability of factors like experiment environment and 

operation cannot be absolutely guaranteed, there could be some 

outliers that should be removed from the acquired data.  Isolated 

forests algorithm (iForest)[17] is one of the latest methods in mining 

anomalies.  Its principle is to use a hyperplane to divide the data 

space into two subspaces, then, divide the subspaces over again, 

through times of iteration, there will be only one data or the same 

data in each subspace.  Apparently, the anomalies need less time 

in being divided into a single subspace.  So, according to the 

times that one point needs to be divided into a single subspace in a 

data space, the outlier can be evaluated.  The advantage of this 

method is that it does not need to calculate the distance between 
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points or the density of point groups which makes it has low 

complexity and high accuracy.  Using iForest to screen outliers of 

the collected spectrum, the abnormal data can be found by 

calculating the anomaly score of each point.  Figure 2 shows the 

data points distribution of spectral data of 0 kg/kg level SMC with 

the mean and standard deviation as the attributes of iForest model 

(all dimensions are directly used as attributes in the actual program).  

It is easy to find that the outliers are separated far away from the 

group.  Eliminating outliers from the spectral data of each 

gradient SMC by the above method, 243 sets of valid data 

remained.  After the outliers were removed, Savitzky-Golay 

filtering (SG filtering) was used to smooth the spectrum curve with 

polynomial order of 3 and frame length of 11. 

2.3  Modeling method and fitness function 

SI algorithm usually requires a fitness function as the 

optimization evaluation standard.  Fitness function is a standard to 

evaluate the quality of individuals in a group determined by the 

objective requirement.  In order to find the appropriate fitness 

function, spectral data needs to be modeled to choose an 

appropriate modeling evaluation standard as the fitness function.  

PLSR has commonly been used in spectral modeling analysis, and 

using a neural network to train spectral data has also been applied 

to spectral model building in recent years[18].  To choose the 

method with better modeling results, PLSR and Back Propagation 

Neural Network (BPNN) were used to model and analyze the full 

spectrum before and after pretreating.  Sample set partitioning 

based on joint X-Y distance (SPXY) was used to divide the training 

set and test set, and the dividing results were shown in Table 1.  

The cross-validation method was 10-fold cross-validation. 

 
Figure 2  Distribution of outliers of 0 kg/kg level spectrum 

 

Table 1  Data set partitioning of the acquired spectral data before and after pretreatment 

Pretreatment Sample set Number of samples Minimum/kg·kg
−1

 Maximum/kg·kg
−1

 Mean/kg·kg
−1

 Standard deviation/kg·kg
−1

 

Before 
Training set 189 0.0001 0.2458 0.1249 0.0793 

Test set 81 0.0001 0.2458 0.1145 0.0673 

After 
Training set 170 0.0001 0.2458 0.1047 0.0725 

Test set 73 0.0001 0.2102 0.1170 0.0554 
 

When using PLSR build model, the parameter called Latent 

Variable (LV) should be determined.  For the reason that the 

cross-validation root mean square error (RMSECV) is often viewed 

as a standard to determine LV, this study used RMSECV to seek the 

proper number of LV.  As shown in Figure 3, RMSECV is small 

enough and tends to be steady when the number of LV is over 6.  

Hence the parameter was set as 6 during the modeling process.  

As for BPNN model, a classical three-layer network was adopted, 

namely, an input layer, a hidden layer and an output layer.  The 

number of hidden nodes affects the modeling accuracy.  The 

different numbers of hidden nodes were tried in BPNN modeling 

analysis.  As the line graph in Figure 3, a fine modeling accuracy 

can be achieved by using 3 nodes. 

In Table 2, the training correlation coefficient RT
2, the training 

prediction root mean square error RMSET, the cross-validation 

correlation coefficient R2
CV, the cross-validation root mean square 

error RMSECV, the prediction correlation coefficient RP
2, and the 

prediction root mean square error RMSEP, were respectively 

obtained by the above two modeling methods.  As can be seen 

from Table 2, after iForest outlier eliminating and SG filtering, 

RMSECV of PLSR full-spectrum model decreased by 55.56% and 

of BPNN full-spectrum model decreased by 55.66%, which 

indicates that the stability of the full-spectrum model is greatly 

improved.  The correlation coefficients of PLSR and BPNN 

prediction models are both sharply improved, and RMSEP is 

reduced by 48.82% and 73.68%, respectively.  The results show 

that iForest outlier removing and SG filtering has an excellent 

performance in spectrum pretreatment.  Comparing the two 

modeling methods, BPNN is generally superior to PLSR in training, 

cross-validation, and prediction results.  This study adopted 

BPNN as the modeling method. 

 
Figure 3  Parameter determination of PLSR and BPNN 

 

Table 2  PLSR and BPNN modeling results before and after pretreatment 

Pretreatment Modeling method 

Training set 10-fold cross validation Test set 

RT
2
 RMSET/kg·kg

−1
 RCV

2
 RMSECV/kg·kg

−1
 RP

2
 RMSEP/kg·kg

−1
 

Before 
PLSR 0.9363 0.0200 0.8987 0.0252 0.9008 0.0211 

BPNN 0.9335 0.0204 0.9193 0.0212 0.9346 0.0171 

After 
PLSR 0.9842 0.0100 0.9804 0.0112 0.9708 0.0108 

BPNN 0.9950 0.0057 0.9839 0.0094 0.9950 0.0045 
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The purpose of analyzing spectra with different levels of SMC 

was to predict SMC, so this study adopted RMSEP as the fitness 

function f of SI algorithm.  And it can be expressed by the 

following equation: 

2

pred
1

( )
n

i
i

y y
f

n






 

      (2) 

where, yi is the measured value of the test set; ypred is the predicted 

value obtained by inputting the test set into the BPNN training 

model; n is the number of labels of the test set. 

Steps to program the fitness function are as follows: First, 

using SPXY to divide the data labels into trainning_label and 

test_label, respectively.  Second, trainning_label and test_label 

were used to divide the subset selected by SI algorithmin each 

iteration which can ensure the consistent division of training set 

and test set of each time.  Third, BP neural training using the 

trainlm training function was carried out on the training set and the 

training model net was obtained.  Finally, substituting the test set 

into net to calculate ypred, and fitness f could be calculated by 

Equation (2). 

2.4  Swarm intelligence algorithms 

The general process of SI algorithm is described in Figure 4.  

For those algorithms that imitate different natural populations, the 

main distinction lies in the diverse ways of updating the population 

position.  This study mainly introduces Butterfly Optimization 

Algorithm[19], Crow Search Algorithm[20], Grey Wolf 

Optimization[21,22], Harris Hawks Optimization[23] (HHO), Manta 

Ray Foraging Optimization[24] (MRFO), Slime Mould Algorithm[25] 

(SMA), Salp Swarm Algorithm[26,27] (SSA), Whale Optimization 

Algorithm[28,29] (WOA).  The brief introduction and key principles 

of these eight SI algorithms are listed in Table 3.  In Table 3, t is 

the current number of iterations and T is the maximum number of 

iterations.  xi
t is the current individual position, xi

t+1 is the updated 

individual position, and xb
t is the optimal individual position 

(usually described as the prey or food position).  ub and lb 

represent the upper and lower limits of the search range.  In this 

study, ub is 0 and lb is 1.  r is a random number in the interval 

(0, 1).  The algorithms were programed and run in MATLAB 

R2018b software. 

 
Figure 4  General flow of SI algorithm 

 

Table 3  Introduction of eight SI algorithms 

SI Biological principle Equations of position updating Parameter interpretation 

BOA 

The butterfly that finds food first calls others by 

producing fragrance, they can update their position 

through fragrance to find food. 

2

1

2

( )

( )

t t t
i b i it

i t t t
i j k i

x r x x f
x

x r x x f


    

 
   

 
Where, fi represents the fragrance, xj

t
 and xk

t
 

represent the jth and kth random butterflies of 

solution space. 

CSA 
A crow follows another crow to update its position 

to steal its food. 

1
( ),  AP

( ) rand,  AP

t t t t t
i i b i j it

i t
j i

x r f l x x r
x

lb ub lb r


      

 
   

 Where, f·li
t
 refers to the flying distance of crow 

i, AP is the awareness probability of crow j. 

GWO 

When hunting, the grey wolves will hunt according 

to the comprehensive information given by wolves 

in high hierarchy. 

1 (( ) | ( ) |)t t t t
i b u u u b u ix x A C x x       A and C are two coefficient vectors, u=α, β, δ 

represents the index of leader wolves. 

HHO*
a
 

In a group predation, Harris eagles will adjust the 

hunting strategy constantly to confuse the prey and 

make it exhausted, and then carry out besiege on it. 

1

1

( ) | |,  (0.5 | | 1,  0.5)

| |,  (| | 0.5,  0.5)

t t t t t
i b i b i

t t t t
i b b i

x x x E J x x E r

x x E x x E r





       

    
 

Where, J represents the random jump strength 

of the escaping prey, E is the energy of a prey. 

MRFO 

There are three foraging strategies of manta rays: 

chain foraging, cyclone foraging and somersault 

foraging. 

1

1

1

1

1
2 3

( ) ( ),  1

( ) ( ),  2

( ) ( ),  1

( ) ( ),  2

( )

t t t t t
i b i b it

i t t t t t
i i i b i

t t t t t
s s i s it

i t t t t t
s i i s i

t t t t
i i b i

x r x x x x i
x

x r x x x x i

x r x x x x i
x

x r x x x x i

x x K r x r x



















     
 

    

     
 

    

    

 

θ and τ are weight coefficients, xs
t
 has xr

t
 and 

xb
t
 two states, K is the somersault factor. 

SMA 

Slime mold generates veins to approach the food 

source.  Larger food can increase the cytoplasmic 

flow through the vein, make it thicker.  Then the 

best food position can be located. 

1

rand ( ) ,  rand

( ,  

,  

t t t t
i b A B

t
i

ub lb lb z

x x vb W x x r p

vc x r p



   


     
  

 

Where, vb and vc are parameters imitating 

biological mechanism.  xA
t
 and xB

t
 are two 

random individuals.  p is a probability related 

to fitness, z is a controlling parameter, W 

represents the weight of slime mould. 

SSA 

Based on the position of the leader, salps form a 

chain to search food with each individual updating 

the position according to the previous one’s 

position. 

1 2 31

1 2 3

1
1

(( ) ),  0.5

(( ) ),  0.5

1
( ),  2

2

t
bt

i t
b

t t t
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x x x i






    
 

   

  

 

Where x1
t
 is the position of the leader, H1 is a 

coefficient related to iterations、H2 and H3 are 

random numbers uniformly generated in [0,1]. 

WOA 

Humpback whales’ foraging behavior is called 

bubble-net feeding method which consists of 

shrinking encircling mechanism and spiral updating 

position 

1 | |,  0.5

| | cos(2 ) ,  0.5

t t t
b b it

i t t bl t
b i b

x A C x x p
x

x x e l x p


     

 
     

 

Where, A and C are coefficient vectors, b is a 

constant for defining the shape of the 

logarithmic spiral, l is a random number in 

[−1, 1], p is a random number in [0, 1]. 

Note: More equations of position updating of HHO can be found in Reference [23].  BOA: Butterfly Optimization Algorithm; CSA: Crow Search Algorithm; GWO: 

Grey Wolf Optimization; HHO: Harris Hawks Optimization; MRFO: Manta Ray Foraging Algorithm; SMA: Slime Mould Algorithm; SSA: Salp Swarm Algorithm; 

WOA: Whale Optimization Algorithm. 
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3  Results and analysis 

3.1  Characteristic wavelength selection results of SI 

algorithms 

The above eight SI algorithms were used to analyze the 

pretreated spectral data.  RMSEP was taken as the fitness standard, 

the initial population was set as 30, the maximum number of 

iterations was set as 200, and the position threshold was set as 0.95 

(it means the variable closer to the best value would be selected).  

The iterations results of different algorithms are shown in Figure 5.  

 
Note: BOA: Butterfly Optimization Algorithm; CSA: Crow Search Algorithm; 

GWO: Grey Wolf Optimization; HHO: Harris Hawks Optimization; MRFO: 

Manta Ray Foraging Algorithm; SMA: Slime Mould Algorithm; SSA: Salp 

Swarm Algorithm; WOA: Whale Optimization Algorithm. 

Figure 5  Optimal individual fitness curve of different algorithms 
 

Figure 5 shows the optimal individual fitness curves of those 

algorithms.  The convergence accuracy and convergence speed of 

different algorithms are significantly distinguishing.  BOA 

converges the earliest and has reached the optimal fitness of  

0.0049 kg/kg in the third iteration, but its convergence accuracy is 

poor which is a bit better than CSA.  The convergence accuracy of 

CSA is the worst, which is 0.0054 kg/kg.  The convergence of 

SSA is the most prominent which changes greatly in the 114th time 

and slightly improves around the 160th time, reaching 0.0040 kg/kg.  

MRFO owns the highest convergence accuracy, and its optimal 

fitness is 0.0039 kg/kg.  HHO and WOA also appear good 

convergence accuracy. 

For the purpose of exploring whether the new SI algorithms 

have a better performance than the traditional intelligence methods 

in characteristic wavelength selection, GA and PSO were also 

programmed in this study to analyze the preprocessed spectral data.  

Figure 6 depicts the distribution of wavelengths selected by the 10 

algorithms in studied spectral range.  It can be seen that the results 

of wavelengths selected by different algorithms can be roughly 

classified into four situations by the number of selected 

wavelengths and the extent of dispersion.  MRFO, WOA and PSO 

have large number of selected wavelengths and their distribution is 

relatively uniform, so it is difficult to find out obvious concentrated 

bands.  The number of wavelengths selected by HHO is relatively 

large, with obvious piecewise concentrated distribution.  The 

number of wavelengths selected by SMA, SSA and GA is relatively 

small and dispersed, and some wavelengths are clustered but not 

quite obvious.  The number of selected wavelengths of BOA, 

CSA and GWO is small and sparsely distributed and there is no 

significant aggregation band, but it can be clearly seen that the 

wavelength selection of BOA and CSA is around 590-650 nm (the 

orange region), CSA in about 910-970 nm (the NIR region), and 

GWO in 405-460 nm (the purple and blue region), appear a distinct 

blank. 

 
Figure 6  Distribution of wavelengths selected by each algorithm 

 

3.2  Modeling results of the selected wavelengths 

In order to compare the performance of different algorithms in 

predicting SMC, BPNN model using the characteristic wavelengths 

selected by each algorithm was built and cross-validation was 

carried out in this study.  Other evaluation parameters except 

RMSEP could be obtained.  Since the initial weights and biases of 

BPNN are generated randomly, the modeling results varied after 

each run.  The selected results of each algorithm were modeled 20 

times and the minimum value among the 20 results was taken as 

the final modeling result (which is slightly different from the result 

in Figure 5), as listed in Table 4. 

Table 4  Modeling results of wavelengths selected by each 

algorithm 

Algorithms 

Training set 10-fold cross validation Test set 

RT
2
 

RMSET 

/kg·kg
-1

 
RCV

2
 

RMSECV 

/kg·kg
-1

 
RP

2
 

RMSEP 

/kg·kg
-1

 

BOA 0.9950 0.0056 0.9799 0.0105 0.9914 0.0059 

CSA 0.9940 0.0062 0.9812 0.0102 0.9914 0.0059 

GWO 0.9951 0.0056 0.9889 0.0081 0.9921 0.0056 

HHO 0.9952 0.0055 0.9893 0.0080 0.9937 0.0050 

MRFO 0.9963 0.0049 0.9883 0.0079 0.9938 0.0050 

SMA 0.9947 0.0058 0.9834 0.0100 0.9935 0.0051 

SSA 0.9925 0.0069 0.9865 0.0088 0.9929 0.0053 

WOA 0.9956 0.0053 0.9873 0.0087 0.9937 0.0050 

GA 0.9943 0.0060 0.9865 0.0089 0.9898 0.0064 

PSO 0.9971 0.0043 0.9840 0.0094 0.9893 0.0065 
 

It can be seen from Table 4 that among eight new SI 

algorithms, MRFO is better than other algorithms in terms of 

training effect and prediction effect.  It has the highest RT
2 and RP

2, 

and the lowest RMSET and RMSEP (0.0049 kg/kg and      

0.0050 kg/kg, respectively), which reveals its significant advantage 

in model prediction ability.  And the cross-validation result of 

MRFO is also at a preeminent level whose RMSECV is the lowest 

and RCV
2 is second only to HHO.  The RP

2 and RMSEP of WOA 

and HHO are both 0.9937 and 0.0050 kg/kg which is slightly worse 

than that of MRFO.  The RP
2 of BOA and CSA are evidently 

lower than that of other algorithms while their RMSEP are higher 

than that of other algorithms, which are both 0.9914 and    

0.0059 kg/kg, respectively.  The cross-validation result of BOA is 

the worst among all algorithms (R2
CV is 0.9799 and RMSECV is 

0.0105 kg/kg), followed by CSA.  The RT
2 and RMSET of CSA 

are gently better than that of the worst one SSA.  In general, BOA 

and CSA have poor performance in all three types of evaluation 

standards of the model.  

From the perspective of model training results, HHO and 

GWO are slightly inferior to MRFO and WOA, but their RT
2 and 
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RMSET are at an excellent level which is followed by BOA and 

SMA.  In terms of the cross-validation effect of the model, GWO 

is next only to MFRO and HHO while RMSECV of BOA, CSA and 

SMA are all at a poor level.  RCV
2 and RMSECV of SSA are 

relatively good.  Evaluating by prediction ability, SMA and SSA 

are relatively better while GWO is worse in comparison.  

According to the model training effect, cross-validation effect, and 

prediction effect, the model results of wavelengths selected by new 

SI algorithms roughly appear a breakdown as follows.  MRFO has 

the best modeling effect.  HHO and WOA have relatively better 

modeling effects.  The modeling effects of GWO, SMA and SSA 

are relatively poor.  BOA and CSA modeling are the worst.  In 

conclusion, judging by the modeling effect, MRFO has a better 

performance in SMC VIS-NIR wavelength selection than other SI 

algorithms. 

With regard to the traditional intelligent algorithm, the model 

training effect of GA is only better than that of SSA and CSA (RT
2 

and RMSET are 0.9943 and 0.0060 kg/kg, respectively).  There is 

a certain gap with other new algorithms.  The RT
2 and RMSET of 

PSO are 0.9971 and 0.0043 kg/kg, which are the best among all 

algorithms.  However, the RCV
2 and RMSECV of GA and PSO are 

merely slightly preferable to BOA, CSA, and SSA, which means 

they own relatively poor cross-validation ability.  The RMSEP of 

GA and PSO are 0.0064 kg/kg and 0.0065 kg/kg, respectively, 

which are remarkably inferior to the results of the new SI 

algorithms.  This demonstrates that, compared with the traditional 

intelligent algorithms GA and PSO, the new SI algorithms have 

more advantages in model stability and prediction ability when 

selecting characteristic wavelength of SMC of VIS-NIR. 

4  Discussion 

4.1  Modeling effect and selected wavelength proportion 

The selected wavelength proportion refers to the percentage of 

the number of wavelengths extracted in the number of 

full-spectrum wavelengths.  As it is known that the process of 

selecting characteristic wavelength is also a process of minimizing 

spectral redundancy information.  The higher the proportion of 

wavelength is, the more variable information it covers, which 

means the redundant information is not be effectively reduced.  

For the more eligible characteristic wavelength selection method, 

redundant information should be minimized but the original 

spectral information should be retained to the maximum extent 

simultaneously.  Generally speaking, better modeling accuracy is 

expected to be achieved with less wavelength, that is, redundant 

variables should be removed to the maximum extent.  Hence it is 

necessary to comprehensively consider both the number of selected 

wavelengths and the modeling effect to choose the more 

appropriate characteristic wavelength selection method.  Figure 7 

shows the relationship between the prediction results of the model 

and the proportion of selected wavelength of the total of 10 

algorithms.  

It is clear from Figure 7 that both the RP
2 and the RMSEP of 

MRFO model are at the optimal level while its selected wavelength 

also accounts for the largest proportion which reaches nearly 

44.54%.  In other words, half of the wavelengths of the whole is 

adopted to achieve the optimal model.  And in combination with 

Figure 6, it can be seen that these wavelengths are evenly 

distributed in the whole spectrum range without obvious 

aggregation.  On the one hand, excessive selected characteristic 

wavelengths may indicate that the data dimensionality reduction is 

not well realized, which may be not conducive to improving the 

portability of calculation.  On the other hand, the selection of 

multiple and scattered wavelengths makes no difference to the 

determination of sensitive wavelengths or wavebands, which is not 

quite useful in practical application.  It can be said that the 

excellent modeling effect of MRFO is actual the sacrifice of the 

limitation on the number of characteristic wavelengths, indicating 

that it doesn’t achieve considerable redundant data reduction.  The 

wavelength proportion of BOA and CSA are 5.01% and 6.29%, 

respectively.  According to the foregoing analysis, both their 

prediction correlation coefficient and root mean square error are at 

the worst level.  In fact, it can be seen from Figure 7 that, for the 

new SI algorithms, except for SMA, with the decrease of 

wavelength proportion, the model RP
2 generally appears a 

downward trend, and the model RMSEP generally shows an 

upward trend.  However, it is obvious that the variation of RP
2 and 

RMSEP is much smaller than that of the wavelength proportion.  

For instance, RMSEP of BOA is 18.05% higher compared with 

MRFO, but its percentage of selected wavelength is 88.75% lower 

than the optimal one MRFO.  In addition, what stands out in 

Figure 7 is that SMA seems like an anomaly along with the 

tendency.  Its wavelength proportion is 9.11%, which is only 

approximately 1/5 of the optimal MRFO, but its RP
2 is only 0.03% 

lower than MRFO and RMSEP is only 2.18% higher than MRFO.  

 
a. Comparison between the wavelength proportion and model RMSEP of each 

algorithm 

 
b. Comparison between the wavelength proportion and model RP

2
 of each 

algorithm 

Note: The dotted line represents the results of traditional intelligence algorithms 

GA and PSO. 

Figure 7  Comparative analysis of modeling results of selected 

wavelength and their proportion of all wavelength by using 

different algorithms 
 

In order to better discuss the relationship between model 

prediction effect and wavelength proportion, this study defines 

Equation (3) as follows to illustrate. 

PB PA PA

1 wp

( ) /RMSE RMSE RMSE
Q





        (3) 

where, RMSEPA is the predicted root mean square error of the 

full-spectrum modeling after pretreatment in Table 2, kg/kg; 

RMSEPB is the predicted root mean square error of the optimized 
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wavelength modeling by each algorithm, kg/kg; wp is the 

percentage of selected wavelengths. 

The numerator of Q represents the loss of number between the 

full spectrum and the selected characteristic wavelengths.  The 

denominator of Q infers the reduction of prediction effect of 

selected wavelengths model and of full wavelengths model.  The 

larger Q is, the better the ability to bear the wavelength proportion 

and the model optimization effect is.  The smaller Q is, the worse 

the ability to consider selected wavelengths number and model 

prediction effect is.  Figure 8 is the bar chart of the Q values of the 

total 10 algorithms.  It is noticeable that the Q value of SMA is 

the highest, which is 6.75, followed by HHO.  Apparently, when 

considering the proportion of wavelength, the Q value of MRFO, 

the one with the best modeling effect, is worse than the first two.  

So, it can be concluded that by comprehensively considering the 

percentage of selected wavelength and ability to improve model 

prediction effect, SMA shows a preferable performance in SMC 

VIS-NIR characteristic wavelength selection among all the new SI 

algorithms.  Although MRFO may have a better modeling effect, 

it does not remove the redundant information very well. 

 
Note: The larger the Q is, the better the ability to bear the wavelength proportion 

and the model optimization effect is.  The smaller Q is, the worse the ability to 

consider selected wavelengths number and model prediction effect is. 

Figure 8  Q values of all algorithms 
 

To compare the new SI algorithms with the traditional 

intelligence algorithm GA and PSO which are plotted by the dotted 

line in Figure 7.  It is easy to see that RP
2 and RMSEP of GA and 

PSO far deviate from the overall trend of new types of SI 

algorithms.  And their Q values are 2.09 and 1.28, respectively, 

which are remarkably lower than all the new SI algorithms.  Not 

only with relatively poor model prediction ability, but they also 

failed to well minimize redundant information.  It further 

illustrates the relatively poor feasibility of GA and PSO in SMC 

VIS-NIR characteristics wavelength extraction. 

4.2  Determination of SMC sensitive wavelengths 

The design of soil moisture sensor based on optics needs to 

select the light source according to the wavelength sensitive to soil 

moisture in VIS-NIR.  However, the above optimal SI algorithm 

SMA selected 71 characteristic wavelengths, and even the least 

number of characteristic wavelengths selected by BOA reaches 39.  

If these characteristic wavelengths are used to design the soil 

moisture sensor, it is certainly not conducive to the determination 

of the light source.  To select the SMC sensitive wavelengths and 

make full use of the results of tall algorithms mentioned before, this 

paper counted the times of each wavelength selected by different 

algorithms, as shown in Figure 9.  One was selected as the 

characteristic wavelength by various algorithms, indicating that its 

sensitivity to SMC is quite subtle.  Therefore, it can be considered 

that the more times it is selected, the more sensitive the wavelength 

is to SMC. 

 
Figure 9  The counted number of selected wavelengths 

 

As depicted in Figure 9, 13 wavelengths (wavelengths closely 

distributed are counted as one wavelength) have been selected 

more than or equal 5 times, respectively around 422 nm, 453 nm, 

490 nm, 513 nm, 543 nm, 611 nm, 669 nm, 711 nm, 778 nm, 826 

nm, 880 nm, 900 nm and 926 nm.  These wavelengths roughly 

include the sensitive wavelengths selected within 400-980 nm in 

Reference [9] (450 nm, 574 nm), Reference [10] (443-449 nm), and 

Reference [11] (411 nm, 440 nm, 622 nm, 713 nm, 790 nm), which 

demonstrates the feasibility of comprehensively using a variety of 

SI algorithms to conduct SMC sensitive wavelength selection.  

The slight distinction among them may be caused by the 

differences in soil type of different regions. 

Among the above 13 selected wavelengths, 513 nm was 

selected the most and was selected for 7 times.  490 nm, 543 nm, 

900 nm, and 926 nm were selected 6 times.  In this study, the 

wavelengths with more selected times by the algorithms are used as 

the sensitive wavelengths for modeling analysis.  The modeling 

results are shown in Figure 10.  RP
2 can reach 0.9865 and RMSEP

 

0.0074 kg/kg when 13 sensitive wavelengths are used to build 

models.  The RP
2 and RMSEP of the 5 wavelengths (selected 6 

times or more) models are 0.9817 and 0.0086 kg/kg, respectively.  

The RP
2 and RMSEP of model of 1 wavelength that was selected 7 

times are only 0.6132 and 0.0394 kg/kg, respectively.  Obviously, 

even though 513 nm was selected the most times, the prediction 

result of SMC is not good when just using a single wavelength to 

model.  In Figure 10, it also can be seen that compared with the 

model result of full spectra, the modeling results of using 13 

wavelengths and 5 wavelengths are not bad.  Although their 

RMSEP may loss to some extent, there is still a considerable linear 

correlation between the measured and the predicted.  For the 

development of soil moisture sensor, certainly, the wavelengths 

should be selected according to the requirement of accuracy.  In 

fact, the model built with 5 wavelengths can be able to achieve a 

satisfying prediction effect, which can adequately meet the need of 

the SMC measurement.  Therefore, it can be considered that the 

sensitive wavelengths suited for SMC determination are 490 nm, 

513 nm, 543 nm, 900 nm and 926 nm within the range of 400-980 nm. 

5  Conclusions 

Based on the laboratory spectral experiment of SMC and SI 

algorithms was carried out on the characteristics wavelength 

selection to explore the feasibility of some latest SI algorithms for 

SMC spectral analysis.  At the same time, through the integration 

of a variety of algorithms to select the sensitive wavelengths of 

SMC, this study provides a theoretical basis for SMC measurement 

based on optical principle.  The specific conclusions are as follows: 
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a. Model result of full spectra  b. Model result of 13 sensitive wavelengths 

 
c. Model result of 5 sensitive wavelengths  d. Model result of 1 sensitive wavelength 

 

Figure 10  Modeling results of different numbers of sensitive wavelengths 
 

1) Using the latest anomalies mining method iForest to remove 

the outliers of the spectrum and SG filter to smooth the spectrum, 

the pretreatment has greatly improved the results of both PLSR and 

BPNN prediction model of SMC. 

2) Modeling and analysis of the characteristic wavelengths 

selected by eight new SI algorithms, BOA, CSA, GWO, HHO, 

MRFO, SMA, SSA, and WOA, the results indicate that if only 

judging from model effect, MRFO is the best SI algorithm to select 

characteristic wavelength of SMC; if considering both the model 

effect and the ability of decrease redundant variables, SMA shows 

superior performance in SMC VIS-NIR characteristic wavelength 

selecting.  It is also found that compared with the traditional 

intelligence algorithms GA and PSO, the new SI algorithms have 

more advantages in the selection of characteristic wavelengths of 

SMC. 

3) Integrating the selected results of the total 10 algorithms, it 

is found that modeling with 5 sensitive wavelengths can achieve 

considerable prediction accuracy.  The sensitive wavelengths are 

490 nm, 513 nm, 543 nm, 900 nm, and 926 nm, respectively, which 

provides theoretical support to the development of a real-time SMC 

sensor based on VIS-NIR. 
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