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Abstract: In viticulture, there is an increasing demand for automatic winter grapevine pruning devices, for which detection of 
pruning location in vineyard images is a necessary task, susceptible to being automated through the use of computer vision 
methods.  In this study, a novel 2D grapevine winter pruning location detection method was proposed for automatic winter 
pruning with a Y-shaped cultivation system.  The method can be divided into the following four steps.  First, the vineyard 
image was segmented by the threshold two times Red minus Green minus Blue (2R−G−B) channel and S channel; Second, 
extract the grapevine skeleton by Improved Enhanced Parallel Thinning Algorithm (IEPTA); Third, find the structure of each 
grapevine by judging the angle and distance relationship between branches; Fourth, obtain the bounding boxes from these 
grapevines, then pre-trained MobileNetV3_small×0.75 was utilized to classify each bounding box and finally find the pruning 
location.  According to the detection experiment result, the method of this study achieved a precision of 98.8% and a recall of 
92.3% for bud detection, an accuracy of 83.4% for pruning location detection, and a total time of 0.423 s.  Therefore, the 
results indicated that the proposed 2D pruning location detection method had decent robustness as well as high precision that 
could guide automatic devices to winter prune efficiently. 
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1  Introduction  

Winter grapevine pruning is a significant step in viticulture that 
can preserve high-quality buds, improve light utilization, and 
ultimately increase the yield of grapes in the coming year.  In 
recent years, automation has been a major trend in agricultural 
development.  Many automated agricultural devices have been 
developed[1], while grape pruning is still mainly done manually.  
Therefore, it is of great importance to develop automation and 
intelligent grapevine pruning devices.  

To achieve automatic pruning, machine vision technology is an 
inevitable part.  There have been many machine vision methods 
already proposed for viticulture, including grape bunch detection[2], 
finding the structure of vine[3], grapevine yield, and leaf area 
estimation[4]. 

In the grapevine pruning field, Xu et al.[5] presented a bud 
detection method based on the Rosenfeld thinning algorithm[6] and 
Harris algorithm[7].  The color threshold method was used to 
convert the RGB images captured indoors into binary images and 
then Rosenfeld thinning algorithm was applied to extract the 
grapevine’s skeleton.  Because of the similarity between the buds 
and the corners, they applied the Harris algorithm to detect buds 
from the skeleton image.  The recognition rate of their method 
reached 70.2%.  The limitations of this work laid in that the 
images must be captured indoors and the accuracy of bud detection 
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by Harris algorithm was insufficient.  Pérez et al.[8] detected the 
grapevine buds using Scale-Invariant Feature Transform[9] for 
calculating low-level features, Bag of Features[10] for building an 
image descriptor, and Support Vector Machines[11] for training a 
classifier.  To be more specific, the images were captured in 
natural field conditions without artificial background.  They 
reported a recall higher than 0.9 and a precision of 0.86 when the 
sorting images containing at least 60% of a bud and scaled up to 
window patches containing a proportion of 20%-80% of bud versus 
background pixels.  Based on the method of Pérez et al.[8], Díaz et 
al.[12] outlined an approach for the localization of buds in 3D space. 

Deep learning is the state-of-art method for image tasks in 
viticulture, lots researchers have applied deep learning to improve 
the performance of algorithms.  Zabawa et al.[13] took advantage 
of a convolutional neural network to detect single berries in images 
by performing a semantic segmentation.  Palacios et al.[14] 
proposed a non-invasive method combining deep learning and 
machine vision technology to count grapevine flowers by on-the-go 
image acquisition.  Cruz et al.[15] used convolutional neural 
networks to detect grapevine yellow symptoms end-to-end.   

Deep learning was also applied in the latest literature on 
grapevine pruning.  Marset et al.[16] presented a method for 
grapevine bud detection based on Fully Convolutional Networks 
MobileNet architecture (FCN-MN).  This was a semantic 
segmentation network that had the capacity of segmenting the full 
shape of the buds from the grapevine images as the detection 
precision and recall of this approach were 95.6% and 93.6% for 
buds nearby and prominent, respectively. 

The above studies represented a great advance in relation to the 
problem of detecting grapevine buds, nevertheless, limitations did 
exist to meet the needs of automatic grapevine pruning in winter.  
First, they had not got the order of the buds on the grapevine while 
it was essential to determine the pruning location.  Second, the 
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specific shape of the buds was not necessary for the automatic 
grape pruning since the pruning location was always on the branch 
between the buds.  Third, none of them combined their algorithms 
with the grapevine cultivation system while a considerable 
cultivation system can effectively reduce the background 
complexity and improve the accuracy of the vision algorithm.  
Combining cultivation systems with mechanical automation is an 
inevitable trend for the development of agricultural automation. 

In this study, a novel 2D grapevine pruning location detection 
method was proposed for automatic grapevine pruning in winter 
with a Y-shaped cultivation system, which prepared for directly 
establishing the 3D model of the pruning location in the future 
work.  And there were four key steps in this study including 
image acquisition and segmentation, extracting the grapevine 
skeleton, finding the structure of each grapevine, and finding the 
pruning location by classification with Lightweight Convolutional 
Neural Network. 

2  Materials and methods 

2.1  Image acquisition 
The images were captured in the Mingcheng Vineyard in 

Hangzhou, Zhejiang Province, China.  The Mingcheng Vineyard 
adopted a Y-shaped cultivation system, in which the fruiting 
branches of the grapevine extended to both sides in a Y shape, and 
the ipsilateral fruiting branches were roughly on the same plane, as 
shown in Figure 1.  This Y-shaped cultivation system can 
effectively avoid most of the interference when taking photos at the 
elevation angle. 

A mobile phone with a Sony IMX586 webcam was utilized to 
take these grapevine images, which also showed that the method 
we proposed did not have high requirements for the camera.  The 
images were captured between 1:00 p.m. and 4:00 p.m. between 
December 16, 2020, and January 6, 2021, when the leaves were 
completely withered and had fallen, but before the plants began to 
sprout again. 

When shooting images for finding the location of pruning, it 
was required that the main grape branches in the images contained 
at least the number of buds that need to be retained during pruning.  
In order to obtain a better shooting effect, the shooting plane of the 
camera parallel was often set to the plane where the branches were 
located. 

 

 
Figure 1  Mingcheng vineyard 

 

2.2  Image segmentation 
Color information is the most significant feature of images.  

Since the vineyard where the images were captured applied the 
Y-shaped cultivation system, the colors of the foreground and the 
background in captured images were clearly distinguished, which 
was very suitable for the color-based threshold segmentation.  

There were mainly three objects in captured images, including 
grapevine branches, greenhouse brackets, and background, as 

shown in Figure 2.  RGB and HSV color spaces were utilized to 
segment the grapevine branches, while (2R−G−B) was also added 
to the analysis since the segmented foreground was biased towards 
reddish-brown in color. 

 
Figure 2  Objects of vineyard image 

 

100 areas in captured images were sampled for each type of 
object to analyze the color distinction in R, G, B, H, S, V, 
(2R−G−B) color channels and it was finally found that there was a 
significant difference between the foreground and the background 
in S and (2R−G−B) channels, as showed in Figure 3.  Based on 
the above results, S and (2R−G−B) channels were finally chosen as 
the basis for threshold segmentation. 

 
a. Mean value of S 

 
b. Mean value of (2R-G-B) 

Figure 3  Mean value of S and (2R-G-B) of image samples 
 

2.3  Extracting of the grapevine skeleton 
To process the grapevine information and find the buds more 

efficiently, the thinning algorithm was applied to extract the 
skeleton of the grapevine.  The thinning algorithms widely used 
include ZHANG-SUEN thinning algorithm (ZS)[17], Hilditch 
thinning algorithm[18], Lu-Wang thinning algorithm (LW)[19,20], and 
Rosenfeld thinning algorithm[6].  In addition to these classic 
thinning algorithms, the Improved Enhanced Parallel Thinning 
Algorithm (IEPTA) proposed by Zhao et al.[21] was also tested in 
the grapevine images.   

To evaluate these thinning algorithms, 110 grapevine images 
with a pixel size of 125×188 were utilized to calculate the average 
single-pixel ratio and average thinning time of each thinning 
algorithm, as listed in Table 1.  The single-pixel ratio refers to the 
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proportion of lines with a single-pixel width in the thinned images, 
as stated as follows: 

pixel 1 100%rnS
n

⎛ ⎞= − ×⎜ ⎟
⎝ ⎠

               (1) 

where, Spixel is the single-pixel ratio, %; nr is the number of 
redundant pixels that are non-endpoint pixels and do not affect the 
original connectivity of the thinned image after removal; n is the 
total number of pixels. 

 

Table 1  Evaluation of thinning algorithms 

Item Rosenfeld ZS Hilditch LW IEPTA

Average single-pixel ratio/% 100.00 91.69 90.45 91.28 100.00
Average time/s 0.521 0.266 0.530 0.237 0.328
Note: ZS: ZHANG-SUEN thinning algorithm; LW: Lu-Wang thinning algorithm; 
IEPTA: Improved Enhanced Parallel Thinning Algorithm. 

 

To make the subsequent steps more convenient and efficient, 
the thinning algorithm we used must have a high single-pixel ratio.  
Both the Rosenfeld algorithm and the IEPTA achieve a single-pixel 
ratio of 100%, while IEPTA was finally adopted since its less 
average processing time. 

In addition, it was found that the wider the object to be thinned, 
the more time it took.  In the Y-shape cultivation system, the 
grapevine growing horizontally at the bottom of the images was not 
the part needed to extract the skeleton, but its thinning wasted a 
long time because it was often the widest in the images.  
Therefore, these horizontal branches were removed before thinning 
to improve the thinning speed.  The average thinning time of 
IEPTA was shortened from 0.328 s to 0.165 s after optimization, a 
reduction of 49.695%. 
2.4  Finding the structure of each grapevine 

According to the principle of grapevine pruning in winter, a 
certain number of buds on a grapevine should be kept, which 
requires counting the buds on each grapevine from the bottom up to 
determine the pruning location.  So it was necessary to find the 
structure of each grapevine that needed to be pruned from the 
skeleton images. 

Eliminate the intersections to convert lines in the image into 
branch vectors and then filter out too short or extending 
horizontally branches.  The length thresh was based on the 
average width of branches. 

These branches were reconnected into complete grapevines by 
judging their relative location relationship and angle relationship. 

In the process of reconnecting the complete grapevines, some 
branches would also be filtered out because they did not meet the 
requirements.  

After the above steps, the structure of each grapevine was 
found successfully from the skeleton images.  The whole process 
is shown in Figure 4. 
2.5  Finding the pruning location by classification 
2.5.1  Obtaining bounding boxes 

The bounding boxes were obtained based on the grapevine 
structures found in Section 2.4.  The size of bounding boxes was 
determined based on the average width of the branches in the 
image, but it needs to be multiples of 32 to facilitate mapping to the 
feature map.  To find the buds effectively, two bounding boxes 
with different side lengths of 128 pixels and 192 pixels were used.  

In order to reduce the repeated calculation of the bounding 
boxes, the entire images were input into the convolutional layers.  
The bounding boxes’ corresponding areas were obtained in the 
output feature maps, and then they were classified after Adaptive 
Average Pooling. 

 

  
a. Original image b. Image after segmentation 

  
c. Image after thinning 

 
d. Image after eliminating 

the intersections 

  
e. Image after filtering out short or 

extending horizontally branches 
f. Image after reconnecting 

branches 

  
g. Image after filtering out short or 

high repetition grapevines h. Image after classification 
 

Figure 4  Whole process of the classification method used in this 
study 

 

2.5.2  Classification with Lightweight Convolutional Neural 
Network 

The classification was the most significant step in this study to 
find the bounding boxes which contained buds.  The proposed 
method was for automatic pruning devices so the lightweight 
convolutional neural network which had a small number of 
parameters was more suitable for these devices, and was adopted in 
this study. 

Lightweight convolutional neural networks commonly include 
MobileNetV2[22], MobileNetV3[23], ShuffleNetV2[24], 
EfficientNet[25], SqueezeNet[26], etc.  In Section 3, the image 
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dataset collected in the vineyard was utilized to test the effect of the 
above-mentioned neural networks.   

MobileNetV3 is a state-of-art neural network algorithm for 
mobile tasks proposed by Howard et al.[23] Compared with 
MobileNetV2, MobileNetV3 can use fewer computing resources to 
obtain higher accuracy.  MobileNetV3 has two versions, 
MobileNetV3_small and MobileNetV3_large, which are targeted 
for high and low resource use cases.  According to the 
experimental results listed in Table 2, MobileNetV3_small with a 
width coefficient of 0.75 is the most appropriate decision in the 
application scenario of this study. 
2.5.3  Non-Maximum Suppression 

Due to the multi-scale dense sampling in the step of obtaining 
bounding boxes, a bud may be contained by multiple bounding 
boxes.  So Non-Maximum Suppression (NMS)[27] was applied to 
search for the bounding box with the highest score from the 
surroundings of the same grapevine as the final result.  
2.5.4  Find the pruning location 

According to the staff of the Mingcheng Vineyard, 4-5 buds 
were retained on each grape branch when pruning in winter.   

Since it was known that the highest probability of missed 
detection in the proposed method was the lowest bud, apply the 
principle of keeping 4 buds when detecting the pruning location so 
that even if there was one missed detection below, the result was 
still within the allowable error range. 

The optimal pruning location was 2-4 cm upwards from the 
last bud along the branch.  However, this study’s method can only 
obtain the location of the last bud and its upwardly extending 
branch in the 2D image.  The real coordinates of the pruning 
location still need to be obtained through the subsequent binocular 
vision method combined with the pruning location detection results 
of multiple images.  The method proposed in this study helps to 
directly establish the 3D model of the branch at the pruning 
location, rather than finding the pruning location after establishing 
the 3D model of the entire grapevine. 

3  Results and discussion 

3.1  Experimental condition 
Python 3.6, Open Source Computer Vision Library 

(OpenCV3.1.0, Intel Corporation) were used to realize the 
proposed detection algorithm on an Intel(R) Core(TM) i9-7900 
CPU @ 3.30 GHz, 3.31 GHz, 32 GB RAM desktop with NVIDIA 
GeForce RTX 2080 Ti GPU.  To speed up processing, the original 
images with a pixel size of 2000×3000 were compressed to 
250×375 in segmentation and 125×188 when thinning.  However, 
the inputs of classification were still the original images. 
3.2  Lightweight neural networks test experiment 

To find the model most suitable for the application of this 
study, a comparative test was presented on several lightweight 
convolutional neural networks, including MobileNetV2[22], 
MobileNetV3[23], ShuffleNetV2[24], EfficientNet[25], and 
SqueezeNet[26] with different widths. 

In the vineyard, thanks to the Y-shaped cultivation system, 
there were only five types of objects that mainly contained: yellow 
leaves, branches, greenhouse brackets, end branches, and buds.  
Due to the obvious difference in the characteristics, the buds were 
divided into two types, the front buds, and the side buds.  For 
these six types of objects, more than 5000 images captured in the 
vineyard were taken to train and evaluate the above-mentioned 
lightweight convolutional neural networks.  To make the training 
results more robust, the taken images were a mixture of clear 

images and blurry images, as shown in Figure 5.  These images 
and their labels were used during the training and evaluation of the 
classification models.  For this purpose, the image set was 
separated into two disjoint subsets: the train set with 70% and the 
evaluation set with the remaining 30%. 

 

 
a. Greenhouse brackets 

 

 
b. End branches 

 

 
c. Yellow leaves 

 

 
d. Front bud 

 

 
e. Branches 

 

 
f. Side bud 

Figure 5  Image sets of six different classes 
 

Because of the small number of images in the train set, two 
techniques widely used in practice were employed to achieve 
robust training: transfer learning[28] and data augmentation[29].  
Pre-trained models on ImageNet were applied to each model.  

During training, the optimization was Adam and the initial 
learning rate was set to 0.001, which is adjusted to 0.0001 after 40 
epochs.  Using these parameters, the above-mentioned lightweight 
convolutional neural networks were trained over 100 epochs with a 
batch size of 12. 

The six-class classification was applied first, and then the 
six-class result was converted into two-class results for the final 
comparison because we found that the accuracy in this way was a 
little higher than the direct two-class classification.  The results 
are listed in Table 2.  Params refer to the total number of network 
parameters, which represent the complexity of the networks. 

According to the results, except for SqueezeNet_1.1, 
ShuffleNetV2×1.0, ShuffleNetV2×0.5, and MobileNetV2, the 
accuracies of the remaining models were all above 99.5%.  
Among them, the highest accuracy was EfficentNet_b2, whose 
accuracy was as high as 99.810%.  Among these networks with an 
accuracy higher than 99.5%, the params of MobileNetV3_small× 
0.75 was the lowest, even lower than a quarter of the params of 
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EfficentNet_b2.  So MobileNetV3_small×0.75 with the best 
comprehensive performance was applied to the method of this 
study. 

 

Table 2  Accuracy and params of Lightweight Neural 
Networks 

Name 
Six-class to 
Two-class 

accuracy/% 

Params 
/million 

Two-class 
accuracy/%

Params
/M 

MobileNetV2 99.241 2.232 99.115 2.228 
MobileNetV3_small×1.0 99.621 1.665 99.305 1.512 
MobileNetV3_small×0.75 99.621 1.023 99.431 1.019 
SqueezeNet_1.1 98.293 0.726 98.102 0.724 
EfficentNet_b0 99.684 4.015 99.241 4.010 
EfficentNet_b1 99.726 6.521 99.431 6.516 
EfficentNet_b2 99.810 7.709 99.558 7.704 
MobileNetV3_large×1.0 99.684 4.210 99.362 4.205 
MobileNetV3_large×0.75 99.621 2.720 99.241 2.715 
ShuffleNetV2×1.0 99.121 1.575 98.989 1.571 
ShuffleNetV2×0.5 98.609 0.402 98.293 0.398 

 

3.3  Pruning location detection experiment 
In this experiment, the quality of the proposed method was 

systematically evaluated in 110 test images.   

In order to show its superiority, this algorithm was compared 
with three other existing algorithms on the same test images.  To 
make the comparison more intuitive, all comparison algorithms 
complemented the step from the bud detection result to the pruning 
location. 

1) Algorithm 1: the algorithm in this study. 
2) Algorithm 2: in which the classification used SVM as a 

classifier and Bag of Features to compute visual descriptors, 
otherwise, the rest was consistent with algorithm 1. 

3) Algorithm 3: the algorithm using Rosenfeld algorithm for 
thinning and Harris algorithm to detect buds. 

4) Algorithm 4: faster-RCNN-mobileNetV3_small×0.75 was 
used for bud detection.  The steps to obtain branch information 
were the same as Algorithm 1, and finally, get the pruning location 
results according to the bud detection results and the branch 
information.  (The batch size of Algorithm 1 and Algorithm 4 
when testing was both 1) 

Faster-RCNN[30] can only get the locations of the bud, while to 
find the pruning location, the help of the branch structure 
information was still essential.  

The output images of the four algorithms are shown in Figure 
6, and the measures of the four algorithms are listed in Table 3. 

 

Comparison result 1 

 

Comparison result 2 

 

Comparison result 3 

 
 a. The result of Algorithm 1 b. The result of Algorithm 2 c. The result of Algorithm 3 d. The result of Algorithm 4 

 

Note: The number next to the bounding box is the bottom-up order of the bud on the grapevine 
Figure 6  Comparison of the effects of different algorithms 
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Table 3  Precision, recall, and accuracy for four algorithms 
Algorithm  

name 
Precision of bud 

detection/% 
Recall of bud 
detection/% 

Accuracy of  
pruning location/%

Total 
time/s

Algorithm 1 98.8 92.3 83.4 0.423
Algorithm 2 90.2 73.5 42.1 8.316
Algorithm 3 69.9 64.3 4.8 0.256
Algorithm 4 95.8 95.4 82.6 0.444

 

According to Table 3, Algorithm 1 achieved the best 
performance, while Algorithm 3 was the worst performer. 

The worst performance of Algorithm 3 showed that only using 
corner features to represent the buds was imperfect.  First, the 
intersections between the branches and the ends of the branches 
also showed obvious corner features.  Second, some buds were the 
front buds, which did not show obvious corner features and cannot 
be detected by the Harris Algorithm.  Third, Algorithm 3 had 
extremely high requirements for segmentation.  Any inaccuracies 
in the edge of segmentation might be falsely detected as buds. 

Compared with the results given in Pérez’s research[8], the 
precision and recall of Algorithm 2 in this study’s application were 
lower, because the buds in their images were near and prominent, 
while most buds in our images were far and small.  In addition, 
some detection errors came from other steps rather than 
classification.  In addition, due to repeated calculations from two 
different sizes of bounding boxes and usage of CPU, Algorithm 2 
cost an extremely long time for the classification step. 

The precision of Algorithm 4 was lower than Algorithm 1 
because it erroneously detected the end branches on the 
horizontally growing branches and some unwanted buds on the 
short non-target branches, which were removed during Section 2.3 
and Section 2.4 in Algorithm 1.  However, the reason for the 
higher recall of Algorithm 4 was also the same.  It can detect the 
buds that Algorithm 1 missed due to Section 2.3 and Section 2.4.  

Algorithm 4 took a longer time than Algorithm 1 because 
Algorithm 1 has no RPN and bounding box regression compared to 
Algorithm 4, and the number of bounding boxes generated directly 
based on branch information was also less than that of 
faster-RCNN automatically generated by RPN.  In addition, 
Algorithm 4 had one more step than Algorithm 1, which was to add 
the bud to the branch. 

The accuracy of the pruning location was completely 
dependent on the bud detection precision and recall, and a small 
amount of missed or wrongly detected buds might have a great 
impact on the accuracy of the pruning location.  Therefore, the 
accuracy of the pruning location of Algorithm 1 and Algorithm 4 
was much greater than that of Algorithm 2 and Algorithm 3. 

Algorithm 1 showed the best performance among the four 
algorithms.  

The bud detection precision of Algorithm 1 was 98.8%, which 
meant that very few non-buds were classified as buds.  Algorithm 
1 achieved a recall of 92.3%, which was much lower than its 
precision.  To Figure out the reasons for the low recall, we further 
analyzed the reason for each missed bud.  The main reasons 
leading to errors were as follows: 

Reason 1: Some grapevines were so thin to be completely 
segmented during segmentation resulting in the missing of these 
branches. 

Reason 2: Some of the buds were too unobvious which 
generally occurs at the front buds. 

Reason 3: Part of the branches at the bottom was not connected 
with the rest of the branches due to the obstruction of horizontal 
branches. 

As shown in Figure 7, among the above three reasons, Reason 
1 pointed to the errors in the segmentation step, Reason 2 meant the 
errors of classification, Reason 3 came from the step of finding the 
structure of each grapevine. 

Count the number of these error reasons, the number of Reason 
1 was 27, the number of Reason 2 was 21, and the number of 
Reason 3 was 53. 

As above, Reason 3 provided the largest number of false 
negatives (FN), which accounted for 52.475% of the total number, 
and the second was Reason 1 with 26.733%.  Reason 2 had the 
least, accounting for only 20.792%, which was relatively in line 
with the high accuracy achieved by the classifier in the networks 
test experiment.  So the future work we first need to do is to 
improve the accuracy of Section 2.4. 

 

 
a. Reason 1         b. Reason 2       c. Reason 3 

Note: The red boxes indicate correct detections, and the blue 
boxes indicate missed detections 

Figure 7  Missed detection of different reasons 

4  Conclusions 
In this study, a novel 2D grapevine winter pruning location 

detection method was proposed for automatic grapevine pruning in 
winter with a Y-shaped cultivation system.  In this method, the 
images were segmented by the threshold in (2R−G−B) and S 
channel first, and then IEPTA was applied to extract the skeletons 
of branches.  The skeletons were utilized to find the structure of 
each grapevine by judging the angle and distance relationship.  
After that, the bounding boxes were obtained on these grapevines.  
MobileNetV3_small×0.75 was used as the classifier to find the 
buds and finally get the winter pruning location in each grapevine. 

Aiming at finding a lightweight neural network that was more 
suitable for our application, several lightweight neural networks 
were compared in Section 3.2.  Among these networks, 
MobileNetV3_small×0.75 with an accuracy of 99.621% and 
params of 1.023 M showed the best comprehensive performance.  
The bud detection experiment was applied to test the overall 
performance of the method we proposed.  This experiment 
showed that the method of this study achieved a precision of 98.8% 
and a recall of 92.3% for bud detection, an accuracy of 83.4% for 
pruning location detection and a total time of 0.423 s.  And then 
we further analyzed the sources of errors in our method and found 
that these errors mainly come from the step of Section 2.4. 

At present, there still have some steps in the method of this 
study that need further improvement.  First, it is believed that the 
lightweight neural network could be further simplified.  Second, 
the accuracy of Section 2.4 needs to be further improved.  In the 
future work, the networks should be managed to simplify by Neural 
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Architecture Search to further reduce the amount of calculation.  
And SVM will also be tried to train for determining the connection 
between branches so that the errors in Section 2.4 can be reduced. 
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