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Abstract: Achieving high-efficiency and accurate detection of tea shoots in fields is essential for tea robotic plucking.  A 
real-time tea shoot detection method using the channel and layer pruned YOLOv3-SPP deep learning algorithm was proposed 
in this study.  First, tea shoot images were collected and data augmentation was performed to increase sample diversity, and 
then a spatial pyramid pooling module was added to the YOLOv3 model to detect tea shoots.  To simplify the tea shoot 
detection model and improve the detection speed, the channel pruning algorithm and the layer pruning algorithm were used to 
compress the model.  Finally, the model was fine-tuned to restore its accuracy, and achieve the fast and accurate detection of 
tea shoots.  The test results demonstrated that the number of parameters, model size, and inference time of the tea shoot 
detection model after compression reduced by 96.82%, 96.81%, and 59.62%, respectively, whereas the mean average precision 
of the model was only 0.40% lower than that of the original model.  In the field test, the compressed model was deployed on a 
Jetson Xavier NX to conduct the detection of tea shoots.  The experimental results demonstrated that the detection speed of the 
compressed model was 15.9 fps, which was 3.18 times that of the original model.  All the results indicate that the proposed 
method could be deployed on tea harvesting robots with low computing power to achieve high efficiency and accurate 
detection. 
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1  Introduction  

According to the Food and Agriculture Organization of the 
United Nations (FAO), world tea production (black, green, instant, 
and others) reached 5.73 million t and tea consumption reached 
5.5 million t in 2016[1].  The traditional manual tea plucking 
method is not only inefficient but also requires a great deal of labor, 
which leads to a high-cost problem.  The research and 
development of automated tea harvesting machines is an effective 
approach to solving such a problem[2,3].  However, to harvest tea, 
current machines usually use blades to cut the top leaves.  Thus, 
the quality of the harvested tea is low; hence, these machines 
cannot replace the traditional manual harvesting approach.  
Additionally, there is an urgent need to design a high-quality tea 
harvesting robot that selectively plucks tea leaves to completely 
replace manual harvesting methods[4,5].  The accurate and rapid 
detection of tea shoots in fields is a primary and difficult task. 

In fields, the detection of tea shoots is challenging, and a great  
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deal of research on the automatic detection of tea shoots has been 
conducted by scholars.  Tang et al.[6] performed image 
segmentation on tea shoot images against a complex background 
by combining super green features and an improved OSTU 
algorithm to guide the identification of the tea shoots by tea 
harvesting robots.  Zhang et al.[7] used an image process algorithm 
combined with Bayesian discrimination to achieve the 
identification of fresh tea leaves and harvest status, thereby 
providing a basis for the automated management of tea gardens.  
Karunasena et al.[8] presented a new method for tea shoot detection 
using a cascade classifier, which carried out the detection of tea 
buds by combining histogram of oriented gradient features and 
support vector machine classification.  Zhang et al.[9] proposed a 
method based on an improved watershed algorithm for the 
identification and segmentation of tea sprouts and used piecewise 
linear transformation to enhance the differentiation degree of old 
tea sprouts and the segmentation accuracy.  However, most of the 
tea images in these studies were obtained under the conditions of a 
simple background or constant light.  The tea garden environment 
has a complex background and large lighting changes.  Hence, the 
method for identifying tea shoots based only on color and shape 
features is inappropriate in fields[10].  With the rapid development 
of deep learning technology, increasing numbers of deep learning 
algorithms are being used for the target recognition and detection 
tasks of agricultural robots in unstructured environments[11].  
Yang et al.[12] used the improved you only look once (YOLO) 
network to train a tea shoot detection model, and the accuracy of 
the trained model was over 90% for the verification set.  Chen et 
al.[13] used a faster region-based convolutional neural network to 
detect tea shoots in a tea garden, and achieved a precision of 79% 
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and a recall of 90%. 
Because of the powerful feature extraction ability and 

robustness of the convolutional neural network, deep 
learning-based methods have achieved good performance in the 
field of object detection[14,15].  However, in the process of 
extracting features using deep learning (GoogleNet[16] and 
EfficientDet[17]), the number of network layers continues to deepen, 
and the number of model parameters continues to increase, which 
makes deep learning-based approaches time-consuming and 
computationally expensive.  This series of reasons makes such 
approaches difficult to deploy on small mobile terminals, which 
seriously affects the deployment and application of a tea shoot 
detection model on small mobile terminals and restricts the 
development of tea harvesting robots, to some extent.  To 
facilitate the implementation of deep learning-based methods in 
agricultural and industrial fields, the model needs to be compressed 
before it is deployed on a low computing power platform[18,19].  
Reducing the number of model parameters, reducing the size of the 
model, and improving the real-time performance of detection while 
maintaining the accuracy of the model have become the research 
focus.  Han et al.[20] proposed a weight pruning method that 
deletes unimportant weights to learn only the important 
connections.  It greatly reduces the number of model parameters 
without reducing the accuracy of the model.  Zhang et al.[21] 
proposed a channel pruning method that enforces the channel-level 
sparsity of convolutional layers by imposing L1 regularization on 
channel scaling factors, and prunes less informative feature 
channels so that the model can achieve the effect of real-time target 
detection using an unmanned aerial vehicle.  Wu et al.[22] used the 
channel pruning method to prune the apple flower detection model, 
and achieved the fast and accurate detection of apple flowers in a 
natural environment.  Wang et al.[23] used the channel pruning 
method to compress the apple detection model, which provides a 

reference for the development of portable mobile fruit thinning 
terminals.  Xu et al.[24] proposed a layer pruning method that uses 
a fusible residual convolutional block (ResConv), which converts 
the convolutional layers of the network into a ResConv with a layer 
scaling factor.  It greatly reduces network parameters while 
ensuring accuracy. 

Although the aforementioned research can effectively reduce 
the size of the model, it is applied infrequently in industrial and 
agricultural fields.  Moreover, model compression still needs 
improvement in actual applications.  The aim of this study was to 
achieve the real-time and accurate detection of tea shoots in fields 
to facilitate the deployment of the detection model on tea 
harvesting robots.  The study includes the following parts: 1) a tea 
shoot dataset was established and expanded, and a deep learning 
algorithm was used for tea shoot detection; 2) the trained model 
was compressed on the basis of the channel pruning and layer 
pruning algorithms; 3) the compressed model was deployed on a 
Jetson Xavier NX edge box to detect tea shoots in fields to verify 
the effectiveness of the proposed algorithm. 

2  Materials and methods 

2.1  Overview of the method 
The overview of the technical route of this method is shown in 

Figure 1.  First, tea shoot images in a tea garden were acquired 
using a digital camera, and the labeled data were expanded to 
establish a tea detection dataset.  Second, the YOLOv3 network 
was used to detect tea shoots and the spatial pyramid pooling (SPP) 
module was added to achieve high-precision detection.  Third, 
sparse training, channel pruning, layer pruning, and model 
fine-tuning were performed on the trained model to achieve model 
compression while maintaining the accuracy of the model.  
Finally, the compressed model was deployed on a Jetson Xavier 
NX to conduct tea shoot detection experiments in fields. 

 

 
Figure 1  Overall technical route of the proposed tea shoot detection algorithm 
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2.2  Image acquisition and dataset construction 
All images were acquired at the Academy of Agricultural 

Sciences, Hangzhou City, Zhejiang Province, China, in April 2020.  
The variety of the acquired tea was Longjing 43 (LJ-43), which is a 
famous high-quality tea.  A scene of the tea garden is shown in 
Figure 2a, the tea tree row spacing was approximately 1.5 m and 
the tree height was approximately 1.2 m.  Figure 2b shows a 
self-built image acquisition mobile platform, which comprised an 
industrial camera and mobile platform.  The camera was installed 

under the mobile platform approximately 1.5 m from the ground, 
and the installation angle of the optical axis of the camera was 
45°-60° to the horizontal plane to reduce the mutual occlusion of 
the tea shoots.  Additionally, to increase the diversity of sample 
images in different illumination conditions, images were collected 
during different weather conditions (sunny, and cloudy) from 7:00 
am to 5:00 pm.  Finally, a total of 6248 images were collected in 
the tea garden with a resolution of 1280 pixels×720 pixels; the 
examples are shown in Figure 2c. 

 

 
a. Experimental tea garden used in this study b. Self-built mobile platform for image acquisition c. Tea shoot images collected in different weather and time

 

Figure 2  Tea in the tea garden 
 

To achieve better detection results, tea shoots in images were 
labeled using two categories: LF (captured from the front view) and 
LS (captured from the side view), as in our previous study[10].  
What’s more, considering that the complex field environment could 
easily cause part of the tea shoot to be occluded, an object whose 
occlusion area was greater than 75% was not labeled.  Finally, a 
total of 90 753 tea shoots were labeled from a dataset containing 
6248 images.  Then all the annotated images were divided into 
three sets: a training set containing 3748 images, a validation set 
containing 1250 images, and a test set containing 1250 images.  
The training images were randomly obtained from the independent 
and uniform sampling of the entire dataset.  All images were 
unequal, thereby ensuring the generalization ability of the tea shoot 
dataset and reliability of the later evaluation standards.  Because 
of varying illumination conditions, different growth angles, and the 
complex crown structure of tea trees in the field, whether the neural 
network could process the images collected in different 
environments depends on the integrity of the training dataset.  
Hence, the trained images were expanded to enhance the richness 
of the experimental dataset, which included adding noise, changing 
the brightness, simulating occlusion, and performing the affine 
transformation.  Then these processes were randomly combined 
for data augmentation, as shown in Figure 3.  The complete tea 
shoot dataset of LJ-43 is listed in Table 1. 
 

 
a. Original image 

 
 

b. Expanded images randomly combined, for 
example, by changing the brightness,  
adding noise, and rotating the image 

 

Figure 3  Data augmentation example images 

Table 1  Complete tea shoot dataset 
Datasets Original training set Expanded training set Valid set Test set 

LJ-43 3748 images 14 992 images 1250 images 1250 images
 

2.3  Tea shoot detection based on YOLO  
Compared with the two-stage detector (e.g., faster 

region-based convolutional neural network and R-FCN), YOLO, as 
a one-stage detector, has a fast detection speed, so it has been 
widely used in agriculture and industry.  The YOLOv3 network 
evolved from the YOLOv1 and YOLOv2 networks[25], which is 
simpler than YOLOv4 and YOLOv5, and its detection accuracy 
meets the needs of tea shoot detection, so it is adopted in this study.  
It uses multi-scale prediction to detect bounding boxes on different 
scales, which makes YOLOv3 more effective for detecting small 
targets than previous networks.  Because of the dense growth of 
tea shoots in a tea garden, the size of tea shoots at different 
distances varies greatly.  To integrate the local features and global 
features of tea shoots, the SPP module was added by referring to 
the idea of a spatial pyramid[26].  

The training platform included a workstation with an Intel 
i7-9800x (3.80 GHz) eight-core CPU, four NVIDIA RTX2080Ti 
(1620 MHz) GPUs, and 64 GB of memory running on the Ubuntu 
16.04 system.  The hyperparameters for model training are listed 
in Table 2.  The image input size was 416×416 pixels and the 
initial learning rate of weights was 2.5×10−4.  To speed up the 
training process and prevent overfitting, the momentum parameter 
was chosen to be 0.90, and the weight attenuation coefficient was 
0.0005.  The total training iterations of the model was 100 000, 
and the learning rate decreased to 2.5×10−5 after 80 000 iterations 
and 2.5×10−6 after 90 000 iterations. 

 

Table 2  Hyperparameters for model training 
Parameters Value 

Input size/pixels 416×416 
Intimal learning rate 2.5×10−4 
Momentum 0.9 
Weight attenuation coefficient 0.0005 
Iterations 100 000 

 

2.4  Model compression 
Because of the deep level of the YOLOv3-SPP network and  
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a large number of model parameters, the real-time performance of 
tea shoot detection is still insufficient on mobile terminals.  To 
reduce the size of the model and facilitate deployment on a low 
computing power platform, such as Raspberry Pi, the ARM 
platform, or Jetson Xavier NX, it is essential to compress the 
model[27].  Generally, there are three steps for model compression: 
sparse training, model pruning, and model fine-tuning. 
2.4.1  Sparse training 

The first task of model compression is to make the trained tea 
shoot detection model sparse.  There are many sparse training 
approaches, and the most widely used approach, L1 regularization 
based on the L1 norm was adopted in this study.  As a result of 
adding the L1 regularization term using the γ coefficient of the 
batch normalization (BN) layer to the loss function of the model, 
the γ coefficient of the BN layer becomes sparse, hence, the model 
is adjusted in the direction of the sparse structure.  The optimizing 
objective of sparse training is given by 

( , ) 0
Loss ( ( , ), )

L

i
x y i

l h x w y mλ
=

= +∑ ∑            (1) 

where, x and y denote the training input and target, respectively; w 
denotes the trainable weights; l denotes the training loss of the 
network output and target; |mi| denotes the absolute value of the i-th 
layer scaling factor; L denotes the total number of layers in the 

network; λ denotes the sparsity rate, which is used to balance the 
two sum terms. 

The γ coefficient is updated accordingly in the reverse transfer 
process of sparse training, and the value of a large number of γ 
coefficients tends to 0.  This process can be regarded as feature 
selection occurring in the intermediate layers of deep networks, 
where only channels with non-negligible scaling factors are chosen.  
After sparse training, the accuracy of the model is likely to 
decrease and the loss value is likely to increase.  Fortunately, the 
accuracy of the model can be restored by fine-tuning the model 
later. 
2.4.2  Model pruning  

The model pruning operation on the sparse model is mainly 
divided into two parts: channel pruning and layer pruning.  The 
principle of the channel pruning algorithm is shown in Figure 4.  
The contribution score of the channel to the network is evaluated 
using the γ coefficient of the BN layer.  Then the channels with a 
high contribution score are retained according to the pruning ratio 
and the distribution of the γ coefficient, and channels with a low 
contribution score are deleted.  When connecting the channels 
between the layers, the neurons of the channels with lower 
contributions do not participate in the connection, and a simplified 
model that takes up less storage space is generated. 

  

 
Note: Conv means Convolution; blue solid line means channel with a high contribution score; red dotted line means channel with a low contribution score. 

Figure 4  Principles of channel pruning 
 

To further compress the model, layer pruning is performed on 
the basis of channel pruning.  The layer pruning algorithm is 
derived from the channel pruning algorithm and pruning is mainly 
performed on the shortcut layer.  The principles of layer pruning 
are shown in Figure 5.  CBL is a module comprising a convolution 

 

 
Note: blue solid line means high contribution layer and red dotted line means 
low contribution layer. 

Figure 5   Principles of layer pruning 

 

(Conv) layer, BN layer, and leaky rectified linear unit (leaky-ReLU) 
activation function.  The γ coefficient of the CBL module 
connected by each shortcut is evaluated according to the 
contribution score of the layer to the network.  Then high 
contribution layers are retained and low contribution layers are 
deleted according to the pruning rate and the order of the γ mean.  
To ensure the integrity of the structure of the pruned model, the 
previous two CBL modules are also pruned accordingly when layer 
pruning is performed on the shortcut layer; hence, there are three 
layers (two CBLs and one shortcut) for pruning for each shortcut 
layer. 
2.4.3  Model fine-tuning 

After the model is made sparse and pruned, although the 
number of parameters is greatly reduced and the model size is 
effectively reduced, the accuracy of the model also drops 
significantly.  To overcome the problem of the excessive accuracy 
loss of the model after pruning, it is necessary to train the data 
again on the pruned model to fine-tune the model. 

Model fine-tuning needs to use the pruned network to readjust 
the pruned weights of the model, and it needs to set the compressed 
model as a pre-training model and perform a new round of training.  
Because the model has undergone channel pruning and layer 
pruning, the parameters, and size of the model have been greatly 
reduced.  Hence, the time consumption of fine-tuning the pruned 
model is greatly reduced.  After fine-tuning, the γ coefficient of 
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the model is redistributed and the accuracy of the detection model 
can be effectively restored. 

3  Results and analysis 

In this study, two evaluation indices were used to evaluate the 
performance of the tea shoot detection network: mean AP (mAP) 
and recall.  Intersection over Union (IoU)≥0.5 indicates a true 
case; IoU<0.5 indicates a false positive case; IoU=0 indicates a 
false negative case.  IoU is calculated as, 

1 2

1 2

IoU
S S
S S

=
∩
∪

                   (2) 

where, S1 is the area of the detected bounding box; S2 is the area of 
the real bounding box.  The value range of the mAP and Recall is 
[0, 1], and calculated as the follows: 

TPPrecision
TP + FP

=                  (3) 

1
AP

mAP 100%
c

c

c
= ×∑                 (4) 

TPRecall 100%
TP + FN

= ×                (5) 

where, TP, FP, and FN are the number of true positive cases, false 
positive cases, and false negative cases, respectively; c is the 
number of detection categories and AP is the average precision. 
3.1  Evaluation of data augmentation  

To assess the data augmentation effect on the tea shoot 
detection model, data before and after augmentation were trained.  
The final results are shown in Table 3.  The results showed that 
the recall and mAP increased after augmentation, which 
demonstrates that data augmentation effectively expanded the 
richness of the samples, thereby improving the generalization 
ability and robustness of the tea shoot detection model.  Image 
processing operations such as a random combination of affine 
transformation (translation and rotation), changing the brightness, 
adding noise, and adding cutouts were chosen to augment the data 
because these operations restore actual changes in the field 
environment as much as possible.  For example, the affine 
transformation was used to simulate the change of the camera 
position and angle; the brightness was changed to simulate the 
change of sunlight; the noise was added because noise is 
unavoidable when a camera collects images in fields; cutout was 
used because the pastoral phenomenon is inevitably blocked by 
some tea shoots in fields.  A random combination of these 
operations can increase the amount of data, but the amount of data 
was only tripled in this study, which was because the amount of 
data already met the demand for the detection accuracy of tea 
shoots, and it is easy to cause the overfitting phenomenon if too 
much data is expanded.  

 

Table 3  Performance of data augmentation 

Parameters Before augmentation After augmentation 

mAP/% 76.66 90.01 
Recall/% 80.55 83.99 

 

3.2  Evaluation of model pruning 
3.2.1  Results of sparse training  

To determine the appropriate sparsity rate of the tea shoot 
detection model, different sparsity rate coefficients were selected 
for the experiments.  The experimental results are listed in Table 4.  
The results showed that the mAP of the model decreased severely 
after λ=0.003, so the sparse rate was selected as 0.003 in this study.  

The γ coefficient distribution of the original tea shoot detection 
model is shown in Figure 6a, which was approximately a normal 
distribution as a whole.  Then the sparse rate of 0.003 was 
selected for the sparse training of the tea shoot detection model.  
The sparse training results are shown in Figure 6b.  The results 
showed that the γ coefficient distribution centers of all the BN 
layers gradually moved closer to 0 from the original 0.9, and the 
distribution became concentrated, which indicates that the model 
gradually became sparse, which verifies the effectiveness of sparse 
training.  After 226 iterations of sparse training, the γ coefficient 
gradually stabilized, which indicates that sparse training was 
saturated. 

 

Table 4  Performance of the different sparse rates 

Sparse rate (λ) mAP/% 

0 90.01 
0.001 88.79 
0.002 73.53 
0.003 86.59 
0.004 70.91 
0.005 66.58 

 

 
a. Distribution of the γ coefficient before sparse training   

 
b. Distribution of the γ coefficient after sparse training 

Figure 6  Sparse training of the tea shoot detection model 
 

3.2.2  Results of model pruning 
After sparse training, channel pruning and layer pruning 

algorithms were used to prune the model network.  First, channel 
pruning was performed on the sparse tea shoot detection model.  
To determine the appropriate channel pruning coefficient, different 
pruning coefficients were selected for the experiments, with a step 
size of 0.05.  The experimental results are shown in Figure 7.  
The results showed that the mAP of the model dropped sharply and 
the parameter change rate became small after r=0.85, so the 
channel pruning coefficient was selected as 0.85 in this study.  
Finally, the model channel changes after the channel pruning 
algorithm are shown in Figure 8.  A total of 22 033 channels in 70 
layers were pruned, the minimum pruning channel for each layer 
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was 13, and the maximum number of pruning channels was 911.  
Moreover, Figure 8 shows that the channels in most convolutional 
layers were greatly reduced, which demonstrates the effectiveness 
of the channel pruning algorithm. 

 
Figure 7  Influence of different channels’ pruning coefficients on 

the tea shoot detection model 

 
Figure 8  Changes in the number of channels of the layer 

processed by channel pruning 
 

Channel pruning greatly reduced the parameters and size of the 
model.  To better compress the model, layer pruning was 
performed on the model after channel pruning.  The original 
model had a total of 23 shortcut layers for pruning.  Different 
numbers of layers were selected for the layer pruning experiments 
to determine the appropriate number of layers for pruning.  The 
experimental results are shown in Figure 9.  The results showed 
that after 13 shortcut layers were pruned, the parameter quantity of 
the model steadily became smaller, and the mAP dropped sharply 
when 15 shortcut layers were pruned.  To ensure that the accuracy 
did not drop too severely (<20%), the number of pruning layers 
was selected as 16 in the study, and the index number of the pruned 
shortcut layer at this time was [68, 74, 65, 71, 61, 55, 52, 49, 40, 43, 
58, 46, 18, 15, 30, 27], where the shortcut layer with the first index 
number was pruned first because of its low contribution to the 
model.  The remaining shortcut layers ([21, 24, 33, 36, 8, 11, 4]) 
and the corresponding CBL layers were retained. 
3.2.3  Results of fine-tuning 

Although the parameters and size of the tea shoot detection 
model after channel pruning and layer pruning were reduced, the 
accuracy of the model was also greatly reduced.  To restore the 
accuracy of tea shoot detection, the model needed to be fine-tuned.  
Table 5 lists the changes in the main parameters of the model 
during the fine-tuning process.  It can be found that the total 
parameters, model size, and inference time have substantially not 
changed after fine-tuning, whereas the mAP of the tea shoot 
detection model was essentially restored to that of the original 

model, which effectively and quickly detected tea shoots. 

 
Figure 9  Changes in the mAP and parameters of the model 

processed by layer pruning 
 
 

Table 5  Performance of model fine-tuning 

Parameters Before fine-turning After fine-turning 

Total parameters 1 989 221 1 989 221 
mAP/% 58.41 89.61 
Model Size/MB 8 8 
Inference/s 0.0041 0.0042 

 

3.2.4  Evaluation of the final model compression 
The changes in model parameters, mAP, model size, and 

inference time after sparse training, channel pruning, layer pruning, 
and model fine-tuning are listed in Table 6.  The results showed 
that the number of model parameters, model size, and inference 
time after compression was reduced by 96.82%, 96.81%, and 
59.62%, respectively, while the mAP of the model was only 
reduced by 0.40%.  All the results indicate that it is feasible to use 
this method to achieve the rapid and accurate detection of tea 
shoots. 

 

Table 6  Performance of the model compression  
(λ=0.003, r=0.85, n=16) 

Parameters Initial 
model 

After 
sparse 

After  
pruning 
channels 

After 
pruning 
layers 

Final 
model 

Total parameters 62 578 719 62 578 719 2 743 669 1 989 221 1 989 221
mAP/% 90.01 86.59 86.09 71.95 89.61 
Model size/MB 250.5 250.5 11 8 8 
Inference/s 0.0105 0.0095 0.0068 0.0041 0.0042
 

3.3  Comparison of tea shoot detection models 
To evaluate the effectiveness of the proposed method for the 

detection of tender tea shoots, three object detection algorithms of 
the YOLO network were compared in this study: YOLOv3-tiny, 
YOLOv3, and YOLOv3-SPP.  They all belong to the one-stage 
network, and all have a fast detection speed, which ensures the high 
detection efficiency of tea harvesting robots.  The augmented 
training set of tea shoots was adopted to train the detection models 
on the basis of the four algorithms, and then the test set was used to 
evaluate the performance of the different detection algorithms on 
the server.  The test results are listed in Table 7. 

 

Table 7  Tea shoot detection results for different YOLO models 

Model Recall/% mAP/% Model size/MB Detection speed/fps

YOLOv3-tiny 73.58 65.08 34.7 98.7 
YOLOv3 83.75 85.97 246.3 45.2 
YOLOv3-spp 83.99 90.01 250.5 47.8 
Proposed method 
in this study 83.59 89.61 8.0 62.5 
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The test results showed that the recall of the four object 
detection algorithms were 73.58%, 83.75%, 83.99%, and 84.59%, 
respectively; the mAPs were 65.08%, 85.97%, 90.01%, and 
89.61%, respectively; the model sizes were 34.7 MB, 246.3 MB, 
250.5 MB, and 8.0 MB, respectively; and the detection speeds were 
98.7 fps, 45.2 fps, 47.8 fps, and 62.5 fps., respectively.  An 
analysis of the test results shows that the proposed method had a 
smaller model size for tea shoots than the other three comparison 
algorithms.  In terms of the detection speed, although 
YOLOv3-tiny was faster than the proposed method, the mAP of the 
proposed method was 24.53% higher than that of YOLOv3-tiny, 
and the detection speed of the proposed method still met the 
real-time requirements.  Moreover, the model size of the proposed 
method was small and could be deployed easily on small mobile 
terminals.  The recall of YOLOV3-SPP was 0.40% higher than 
that of the proposed method, but the model size of the proposed 
method was 96.82% smaller than that of YOLOV3-SPP.  
Moreover, the mAPs of the two algorithms were not substantially 
different, which indicates that the proposed method was more 
cost-effective than YOLOv3-SPP. 

4  Experiments and discussion 

4.1  Model deployment experiments 
To verify the effectiveness of the proposed method, the 

compressed tea shoot detection model was deployed on a small 
mobile terminal, that is, a Jetson Xavier NX (NVIDIA Inc, City, 
CA, USA), with 384 NVIDIA Volta CUDA cores and 48 tensor 
cores, which only provides 21TOPS of AI computing power.  A 
RealSense L515 camera (Intel Inc, City, CA, USA) was used to 
capture RGB images up to 1280×720 pixels at 30 fps, which 
communicated with the Jetson Xavier NX via USB.  The 
experimental system and detection results are shown in Figure 10.  
The uncompressed model and compressed model were deployed 
on the Jetson Xavier NX for the tea shoot detection experiments.  

The results showed that the size of the model after compression 
reduced from 250.5 MB to 8.0 MB, which resulted in an increase 
in the detection speed from 5.0 fps to 15.9 fps, which was 3.18 
times that of the original model.  Hence, the proposed model 
compression algorithm was effective, and the compressed  
model met the detection requirements of the field mobile 
terminal. 

 
Figure 10  Field tea shoot detection experimental system and 

detection results 
 

4.2  Discussion of the tea shoot detection experiments 
The proposed tea shoot detection algorithm quickly and 

effectively detected the targets in the tea images with different 
growth densities and shooting distances (Figures 11a-11d), but 
there was still a small number of tea shoots that were not detected 
in actual field experiments.  The main reasons for inaccurate 
detection are as follows: 

1) Because of the different distances between the tea shoots 
and the camera in different positions, the image was inevitably 
blurred when the image was collected, which led to the difficulty of 
artificial labeling.  To unify the labeling standards, the fuzzy tea 
shoots were not labeled.  This may have resulted in the failure of 
the detection of partially blurred tea shoots, as shown by the blue 
dashed box in Figures 11e-11f.  

 
a-d represent the detection results with different growth densities and shooting distances, e-f represent the missed detection results caused by blur, g-h represent the 
missed detection results caused by large occlusion 
Note: LF means captured from the front view; LS means captured from the side view. 

Figure 11  Detection results of the experiment in fields 
 

2) Because of the dense growth of tea leaves and the complex 
crown structure in the actual field environment, it is inevitable that 

a large number of tea shoots would be blocked.  This caused great 
difficulties in the task of detecting tea shoots and easily led to 
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detection failures.  Image augmentation through cutout processing 
could have increased the detection success rate of partially 
occluded shoots.  However, there were still a small number of 
shots blocked by a large area, which resulted in the tea shoot 
features learned by the deep network being lost or not detected 
correctly, as shown by the red dotted line in Figures 11g-11h. 

3) The images of the tea shoot detection model dataset were 
collected in mid-March, so the established model had a high 
detection accuracy for tea images at that time.  In early April, the 
image characteristics of the tea shoots changed slightly over time, 
so the accuracy of model detection declined.  To solve this 
problem, transfer learning can be introduced to transfer the model 
and establish a tea shoot detection model for the current period, 
which would improve the detection results. 

5  Conclusions  

In this study, a high-efficiency tea shoot detection method that 
can be deployed on a low computing power platform was proposed 
on the basis of the YOLOv3-SPP network and a model 
compression algorithm.  Experiments were conducted using the 
compressed model on the Jetson Xavier NX to verify the 
effectiveness of the proposed method.  Three conclusions can be 
drawn, as follows. 

1) The trained tea shoot detection model was compressed using 
sparse training, channel pruning, layer pruning, and model 
fine-tuning, where a total of 22 033 channels and 16 shortcut layers 
were pruned during the channel pruning and layer pruning process.  
After compression, the number of model parameters, model size, 
and inference time were reduced by 96.82%, 96.81%, and 59.62%, 
respectively, whereas the mAP of the model was only reduced by 
0.40%.  All the results indicate that it is feasible to use this 
method to achieve the rapid and accurate detection of tea shoots. 

2) The compressed tea shoot detection model was deployed on 
a Jetson Xavier NX with a detection speed of 15.9 fps, which was 
3.18 times that of the original model, thereby demonstrating that 
the proposed method could be used for the detection task of a tea 
harvesting robot with low computing power in fields. 
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