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Abstract: The application of autonomous agricultural vehicles is gaining popularity as a way to increase production efficiency 

and lower operational costs.  To achieve high performance, perception tasks (such as obstacle detection, road extraction, and 

drivable area extraction) are of great importance.  Compared with structured roads, field roads between farmlands, including 

unstructured roads and semi-structured roads, are unfavorable for autonomous agricultural vehicle driving due to their 

bumpiness and unstructured nature.  This study proposed an extraction method for the straight field roads between farmlands.  

The proposed method was based on the point cloud data acquired by LiDAR (Velodyne VLP-16) mounted on a John Deere 

1204 6B-1204 tractor.  The proposed method has three aspects: Euclidean Clustering-based extraction, boundary-based 

extraction, and road point cloud curve segment modification.  Firstly, Euclidean Clustering with K-Dimensional (KD)-Tree 

data structure was adopted to extract the road curve segments close to the LiDAR composed of road points.  Secondly, the 

boundary lines constraint was constructed to extract the distant road curve segments.  Thirdly, the local distance ratio was used 

to modify the extracted road curve segments.  The average extraction accuracy for both semi-structured and unstructured roads 

exceeded 98%, and the false positive rate (FPR) was less than 0.5%.  These experimental findings demonstrated that the 

proposed road extraction method was precise and effective.  The proposed method of this study can be applied to enhance the 

perception ability of autonomous agricultural vehicles thereby increasing the efficiency and safety of field road driving. 
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1  Introduction

 

Due to shortage and increasing labor expenses in agricultural 

operations, research on autonomous control of an agricultural 

vehicle is extremely important in China[1].  Several types of 

autonomous vehicles are used in agricultural operations.  As a 

result, crop detection and picking[2,3], plant growth monitoring, path 
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tracking for vehicles in the greenhouse[4], perception for 

autonomous driving, and obstacle detection[5] have been largely 

studied.  As a critical component of a driverless agricultural 

vehicle, the perception of field roads in real-time via data collected 

by online sensors using cameras and LiDAR is critical for vehicle 

localization, path planning, and environmental planning[6]. 

A LiDAR swipes the environment with high frequency, 

gathering 3D spatial information and unaffected by the sunlight.  

This is a sensor with the benefits of high measurement precision, 

resistance to active interference, and dynamic detection[7].  

Therefore, it is extensively applied in agricultural scenarios, 

especially road extraction tasks.  LiDAR extracts roads through 

five major approaches, i.e., image-based method, grid-based 

method, voxel-based method, point-based method, and curve 

segment-based method.  After the point cloud is projected as 

images, the road point cloud is extracted using well-developed 

image processing techniques.  However, part of the 

three-dimensional spatial information disappeared[8-11].  The 

grid-based methods reduce data dimensionality, and the accuracy 

of the road extraction could reach 95.61% in a city scenario[12-17].  

Due to the availability of regular data, the voxel-based road 

extraction methods require few calculations with limited 

adaptability, while their accuracy could exceed 93%[18,19].  The 

point-based road extraction method obtains favorable features to 

distinguish road points from non-road points by calculating the 

distance or height difference from neighboring points, achieving an 

accuracy of 89.3% on structured road scenarios in the city.  
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Nonetheless, it only considers the local feature of each point[20].  

In curve segment-based methods, segments comprise the point 

cloud, and the road curve segments are extracted by analyzing the 

relationship in space or morphological connection in the curve 

segments.  It had a high degree of flexibility and utilizes the 

overall differences between the road and the non-road segments; its 

accuracy can reach 90.94% in unstructured road areas[21,22]. 

The above approaches have corresponding benefits for road 

extraction tasks in different scenarios, including structured roads in 

the city or bumpy roads, but require height differences or regular 

features at the boundaries.  However, they are limited in field road 

extraction with slight height changes around the road boundary.  

When extracting roads, it is important to consider details and 

overall differences between the road and non-road point cloud, and 

the context of the road points.  Yan et al.[23] proposed a field road 

extraction approach based on sharp changes around the boundary.  

Nevertheless, the method is only applicable to the data gained by 

LiDAR with four or fewer scan channels and is limited by large 

road bumps.  

The road boundary is blurred and has discontinuous vegetation 

at various heights and even a bumpy surface.  These factors 

complicate road extraction from field roads.  In the structured 

road scenario, the elevations and angles formed by three adjacent 

points of the same scan laser are common regular features of 

boundary points[24].  However, they are not suitable for field roads.  

This work proposed a road extraction method for semi-structured 

and unstructured field roads in agricultural areas. 

2  Material and method 

2.1  Data acquisition 

Figure 1 presents three road types and their corresponding 

point cloud.  They include structured road (SR) in Figure 1a, 

semi-structured road (SSR) in Figure 1b, and unstructured road 

(UR) in Figure 1c. 
 

Road  

type  

example 

   

Point 

cloud 

   
            a. Structured       b. Semi-structured     c. Unstructured 

Note: The points in red are of the same scan line.  The road surface in gray is 

flat, while yellow is bumpy. 

Figure 1  Three types of road and their corresponding point cloud 
 

The roads in the city are SR with continuous and regular road 

boundaries on flat surface, including curbstones higher than the 

ground.  However, the SSR and the UR lack regularized 

boundaries of structured roads, but with weeds of different heights 

along the road.  The shape of the road boundary appears irregular.  

For the UR, the changes in height of the boundary, similar to that 

of the road surface, make it more complex than SSR.  Generally, 

the latter two cases are common in agricultural scenarios. 

The data collection was conducted in Miyun District, Beijing.  

The types of roads collected included the SSR and the UR.  The 

data were collected by the sensors mounted on the JD1204 tractor 

(6B-1204, John Deere, USA).  The sensors were installed in a 

favorable mounting position (Figure 2).  Considering the stability 

and safety of the installation location as well as the vehicle outline, 

the directional and positioning antennas are mounted on the vehicle 

roof; GNSS/INS (CGI-610, CHCNAV, China) and camera 

(BFS-PGE-23S3C-C, FLIR, America) are positioned in front of the 

top of the vehicle counterweight, and the Velodyne VLP-16 

(VLP-16, Velodyne, USA) is mounted in front of the bottom of the 

counterweight.  The calibrations between each pair of sensors are 

conducted. 
 

y
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FLIR  BFS-PGE-23S3

Velodyne VLP-16

LiDAR

 
Figure 2  Data acquisition equipment 

 

The relationships between the detection area, blind area, and the 

height of the LiDAR are 

tan( )

h
L

α
                    (1) 

where, L represents the blind coverage area near the ground in front 

of the LiDAR, 4.48 m; h represents the vertical height from the 

optical center of the LiDAR to the ground, 1.24 m;.  The LiDAR 

sensor by Velodyne features up to 16 lasers vertically aligned from 

+α to –α (α is 15°), and its rotating head delivers a horizontal field 

of view foreground of 180° in Figure 2, with horizontal resolution 

at θhor (0.2°).  Therefore, half of the scan lasers scan the ground to 

obtain the furthest detecting distance over 25 m, sufficient for road 

extraction in agricultural scenarios, where the vehicle’s speed is no 

more than 25 km/h.  The other half of the lasers perceive the 

obstacles or something else over the ground.  The positive 

direction of the x-axis of the LiDAR is parallel to the vehicle, to the 

front; the y-axis is perpendicular horizontally to the x-axis, to the 

left; and the z-axis is vertical to the ground, to the upward. 

2.2  Road extraction method 

The extraction of the field roads is shown in Figure 3.  It is a 

sequential execution. 

First, the original point cloud is filtered by the Region of 

Interest (ROI) and ordered.  Afterward, the curve segments 

comprising the road point cloud near the LiDAR are extracted by 

Euclidean Clustering.  Additional steps are required for distant 

segments.  Then, the road boundary candidate points are extracted 

and smoothed to obtain the boundary points.  Ordinary Least 

Square (OLS)[25] methods are applied to fit the straight lines of the 

road boundary.  Road curve segments farther away from the 

LiDAR are extracted based on the boundary lines.  Moreover, 

Euclidean Clustering and boundary limitation are accompanied by 

curve segment modification, yielding a more accurate result. 
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Figure 3  Pipeline of road extraction method of this study 

 

2.2.1  Data preprocessing 

More attention should be paid to the area covering the road but 

not the one farther away from the road area.  The point cloud in 

the region of interest (ROI) is defined as, 

PCROI = {p| xp≤xmax, xp≥xmin, yp≤ymax, yp≥ymin, zp≤zmax, zp≥zmin} (2) 

where, p represents one single point, xmin and xmax limit the scope in 

the front along the x-axis (length of the ROI).  ymin and ymax limit 

the scope from the right to left sides along the y-axis (width of the 

ROI).  zmin and zmax limit the scope from the bottom to the top 

along the z-axis (height of the ROI).  Then the division of PCROI is 

conducted as, 

( arctan )
22( )

channel
2

z p

yx p p
p



 
 

 
 

           (3) 

ROIPC { | channel , PC }k pp k p             (4) 

ROI 0 1 2 15PC {PC , PC , PC ,..., PC }            (5) 

where, channelp represents the channel of the point p; PCk 

represents point cloud where each point’s channelp equals k, whose 

value range is indicated in Table 1, varying from 0 to 15 according 

to point’s vertical angle (Table 1); PCROI are divided into 16 groups 

of point clouds according to points’ channelp.  All the points in 

every division PCk are arranged in order by the value of the y-axis.  

The points of each division are then distributed from the left to the 

vehicle’s right.  This is because an orderly arrangement is critical 

to the modification part discussed later. 
 

Table 1  Point’s vertical angle and the corresponding channelp 

channelp Vertical angle of p/(°) channelp Vertical angle of p/(°) 

0 −15 8 1 

1 −13 9 3 

2 −11 10 5 

3 −9 11 7 

4 −7 12 9 

5 −5 13 11 

6 −3 14 13 

7 −1 15 15 
 

2.2.2  Extraction by Euclidean Clustering 

The distance between points in the curve segments on the road 

surface differs from the distance between other objects outside the 

road.  As the UR is more complex than the SSR mentioned before, 

take the UR as the example indicated in Figure 4.  
 

 
Figure 4  Illustration of the distribution of point clouds on the 

road and road boundary 
 

The curve segments of the field road are not as smooth as the 

curve segments on the frictionless surface but more regularized and 

denser than that of the non-road outside the boundary.  Therefore, 

part of the curve segments connected by the road points can be 

extracted based on the spatial distance between points.  Unlike the 

road extraction method based on the angle between three adjacent 

points[26], the clustering-based method considers the continuity and 

bumpiness of the road surface by the proper distance threshold dthre 

calculated by Equation (6). 

hor
thre

sin 180

h
d





                 (6) 

where, θhor, h, and δ determine the distance threshold used in the 

clustering; δ is set as the redundancy, which accounts for the 

bumpiness of the road surface.  The commonly employed cluster 

methods include Euclidean Clustering and Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) Clustering.  In 

contrast with DBSCAN Clustering with iterations and the initial 

seed point[27], only the distance threshold is necessary for Euclidean 

Clustering, with stronger adaptability[28].  Euclidean Clustering is 

utilized to obtain the curve segments, and the K-Dimensional 

(KD)-Tree algorithm is employed to speed up the search of 

neighborhood points.  

Nevertheless, the fixed threshold may result in the missing 

extraction of the distant road curve segments.  So to obtain the 

whole information on the field road, the missed distant road curve 

segments should be extracted by the following step.  

2.2.3  Boundary points screening and boundary lines fitting 

The missed farther segments will be obtained by the boundary 

line restriction.  The left and right endpoints of the extracted curve 

segments in Section 2.2.2 are considered candidate boundary points 

for the two sides of the road.  To ensure the fitting of the 

boundary line is away from the impact of the outlier, the candidate 

boundary points are screened before fitting boundary lines.  

Unlike the methods based on searching-based[29] and road 

width-based boundary point generation[30], this study generated 

boundary points from segments in a simpler and more flexible way. 

The left and right boundary candidate points of the road are 

traversed, respectively, and the sum of the distance parallel to the 

y-axis of each point is calculated such that 
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where, fi represents the sum of distance in the y-axis direction of 

point pi with all other candidate points; m represents the number of 

endpoints on the same side of extracted segments from the 

Euclidean Clustering, varying with the results of Euclidean 

Clustering; ypi
 and ypj

 are the y-axes coordinate values referring to 

two different candidate points pi and pj out of m points, on the same 

side of the boundary, arbitrarily.  The max and the min in the set 

are excluded, and the threshold fthre is set to the average of the 

remained ones, making sure of two points at least on each side.  

When fi exceeds the threshold fthre, point pi is considered the outlier 

and deleted.  This is because the distance difference along the 

y-axis between three boundary points on the same side should be 

small in the road of low curvature.  The final road boundary 

points are obtained after that the distance ratio between every three 

boundary candidate points satisfies the threshold fthre.  Then the 

boundary lines are fitted by OLS, and the remained road curve 

segments comprising road points between both boundaries can be 

extracted. 

2.2.4  Curve segments modification 

The points of the grass along the boundary would likely be 

mistakenly clustered into the road curve segments, which are 

extracted following the preceding procedures. 

In Figure 5, pi-1,k, pi,k, pi+1,k are three points from the same laser 

channel k in adjacency; the first two belong to the road, while the 

last belongs to the grass outside the road.  Due to the irregularity 

of the boundary points in the SSR and UR, the distance between 

pi-1,k and pi,k and that of pi+1,k, and pi,k were significantly different.  

Therefore, the modification was adopted to correct the curve 

segments of the road.  The local feature of the detail is calculated 

as follows: 

, 1, , 1, , 1,

2 2 2( ) ( ) ( )
i k i k i k i k i k i kL p p p p p pd = x x y y z z

  
    

   
(9) 

, 1, , 1, , 1,
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L

R

d
d

d
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where, dratio of a point represents the distance ratio; dL represents 

the Euclidean distance between the point and its left adjacent point, 

and dR represents the distance between the point and its right 

adjacent point.  As illustrated in Figure 5, the distances between 

the three points vary significantly.  Thus, abrupt changes in dratio 

occur around the road boundary.  As a result, endpoints of curve 

segments of the road around the boundary could be modified when 

the dratio exceeds dratio_thre.  Therefore, the grass points mistakenly 

extracted as part of curve segments can be corrected. 
 

pi-1,k

pi,k

pi+1,k

 
Note: UR: Unstructured road, the same as below. 

Figure 5  Points around the boundary in UR 
 

2.2.5  Parameter settings 

In Table 2, there is a significant change of adjacent points of 

more than 0.03 m, from PC5 to PC6.  Furthermore, δ can be set 

according to changes in the distance between points due to the 

bumpiness.  dthre is set based on the above analysis.  Because the 

distance between boundary points along the y-axis is not large, fthre 

is set to allow the tune change between candidate boundary points; 

dratio is calculated by the feature of the boundary points in Figure 5. 

Table 3 lists the parameters introduced in the method and their 

types and values.  xmax and xmin were set to 25 m and 0, 

respectively.   Since the braking distance of the vehicle at the 

maximum speed of 25 km/h is less than 8 m.  ymax and ymin were 

set to 5 m and −5 m, respectively, because the typical road width is 

3-5 m; zmax and zmin are determined by the height of the LiDAR and 

the height difference of the road surface, no more than 1 m.  dthre 

can be set based on multiple parameters.  Assuming that the 

LiDAR is placed on the horizontal plane at the vertical height h, the 

distance between two adjacent points from the same laser channel 

varies due to the vertical angle of the channel (Table 1), varying 

from 0.016 m to 0.248 m (Table 2).  
 

Table 2  Distance between adjacent points from the same laser 

swiping the ground 

channelp Vertical angle/(°) Distance between points/m 

0 −15 0.016 

1 −13 0.018 

2 −11 0.022 

3 −9 0.027 

4 −7 0.035 

5 −5 0.050 

6 −3 0.083 

7 −1 0.248 
 

Table 3  Parameter list of the straight field road extraction 

Parameter name Function Data type Value 

xmax, xmin, ymax, 

ymin, zmax, zmin 
Coverage of the ROI (m). Double 

25, 0, 5, 

−5, 1, −1 

δ 
The redundancy of the threshold of 

Euclidean Clustering (m). 
Double 0.03-0.05 

dthre 
The threshold of Euclidean Clustering 

(m). 
Double 0.08-0.1 

fthre 
The threshold of the Boundary 

screening (m). 
Double 

Adaptive 

threshold. 

dratio_thre 

The threshold of the local distance 

ratio of the boundary points in the 

modification part. 

Double 2.0-3.0 

3  Results and discussion 

3.1  Performance evaluation 

Extracting field roads between farmlands is considered a 

binary classification task of points into the road and the non-road.  

Similar to their application in the SR extraction tasks, the 

quantitative evaluations are used by true positive rate (TPR), false 

positive rate (FPR), accuracy (ACC)[31,32], and Run time (RT).  

Points belonging to the road are considered positive, while points 

not belonging to the road are considered negative.  Subsequently, 

each data frame of the point cloud and the averages of the 

evaluation indices were evaluated. 

3.2  Results 

The experiment was run on a laptop with an i7-9750H 

2.60GHz CPU and 16 GB of RAM under the Robot Operation 

System in Ubuntu 18.04. 

All frames of the point cloud for the experiment were 

annotated by the tools on the platform BasicFinder[33], at point-wise 

annotation.  Each frame was processed, and the results are 

compared with those of annotated labels.  The evaluations are 

shown in Figure 6. 
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SSR 

 

UR 

 a. TPR and FPR of simple extraction b. Accuracy of simple extraction 
 

SSR 

 

UR 

 c. TPR and FPR of extraction with modification and screening d. Accuracy of extraction with modification and screening 
 

Note: SSR: Semi-structured road; UR: Unstructured road; TPR: True positive rate; FPR: False positive rate; ACC: Accuracy.  The same as below. 

Figure 6  Experiment results (TPR, FPR, and ACC) on all frames of simple extraction and extraction with modification and screening 
 

As illustrated in Figure 6, the fluctuations of the evaluation 

indicator of the road extraction after the modification part and 

candidate points screening (abbreviated to Extraction with 

modification and screening) are smaller and smoother.  Figures 

6a and 6c show that the modification may cause a certain amount 

of road points to be mistakenly rejected, decreasing the TPR of 

Extraction with modification and screening in SSR conditions.  

On the other hand, the FPR of the Extraction with modification 

and screening remained in a lower state under the SSR and the 

UR conditions.  By comparing the same evaluation indicator in 

two scenarios, the method performed more stability in the SSR 

than UR.  This is because the road surface was much bumpier in 

the UR than in SSR, and the technique might be better under the 

SSR.  In both scenarios, the robustness and the stability of the 

Extraction with modification and screening improved.  The 

average level of the method was determined after evaluating each 

frame. 

In Table 4, a small amount of the experimental data was taken  

from a curved road with low curvature, and the majority of data 

was taken from a straight road.  The TPR in the extraction with 

modification and screening condition decreased by 3.28% and 

6.77%.  This is because the obstacle inside the road affects the 

processing of the modification part, resulting in false screening of 

the road points.  Although the TPR decreased, there was a drastic 

improvement in FPR with Extraction with modification and 

screening method, dropping from 5.18% to 0.45%.  Accuracy in 

SSR and UR were both more than 98%, while FPR were both less 

than 0.5%.  Therefore, there was a remarkable improvement in the 

modification part correcting the wrong extraction of the non-road 

points and the boundary point screening.  Compared with the 

Simple extraction, the added modification and screening part only 

increased slight time cost. 

The overall accuracy of extraction with modification and 

screening method was higher than that of the Simple extraction 

method.  The extraction accuracy of the Simple extraction was 

higher in SSR than in UR due to the higher complexity in UR.  
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However, the average evaluation indicator of the Extraction with 

modification and screening in both scenarios was similar because 

the modification part was designed specifically for the common 

feature of the boundary in field roads between farmlands.  In 

Figures 7c-7e, the green points represent points of the road, 

whereas the red points represent the non-road points. 
 

Table 4  Evaluation indicators of experimental results 

Type 
Number of 

frames 

Simple extraction Extraction with modification and screening 

TPRavg/% FPRavg/% ACCavg/% RTavg/ms TPRavg/% FPRavg/% ACCavg/% RTavg/ms 

SSR 170 96.97 2.76 97.21 19 90.20 0.41 98.07 23 

UR 184 93.52 5.18 94.62 20 90.24 0.45 98.09 25 

Note: SSR: Semi-structured road; UR: Unstructured road; TPRavg is the average value of true positive rate (TPR); FPRavg is the average value of false positive rate (FPR); 

ACCavg is the average value of accuracy; RTavg is the average value of run time (RT). 
 

SSR  

     

UR  

     

 
a. Original point cloud 

 

b. Filtered point cloud 

 

c. Ground truth 

 

d. Euclidean Clustering  

with modification 

e. Boundary restriction  

with modification 
 

Figure 7  Results of the road extraction in two scenarios 
 

3.2.1  Data preprocessing  

Figure 7a shows that the points are distributed with coverage 

of more than one hundred meters long with all the laser scans.  

After preprocessing, the points decreased by 60%-66%, eliminating 

numerous noise points and significantly reducing the time 

consumption of subsequent processing.  At the same time, ROI 

filtering reduces the disturbance from the points unrelated to the 

road surface and retains the key features of the road surface and 

boundaries.  Although a few obstacles inside the road still exist, as 

shown by the red circle in Figure 7b, most were eliminated after 

z-axis filtering.  Afterward, all the points from the same laser 

channel were in order, facilitating the calculation of the dratio. 

3.2.2  Extraction by Euclidean Clustering 

As shown in Figure 7c, the road points from the same scan line 

were more continuous compared with the scattered grass points.  

By comparing the ground truth.  Figure 7d, the Euclidean 

Clustering was efficiently performed in extracting the road curve 

segments with a proper threshold of distance for clustering 

(Equation (6)).  The curve segments belonging to the road surface 

near the LiDAR were extracted.  A few points of grass were 

extracted as a part of the road segments due to a slight difference in 

the distance between the non-road points and road boundary points.  

Therefore, it was difficult to distinguish the non-road points.  This 

problem was solved in the modification part.  

Meanwhile, the difference in the distribution of road points in 

the two scenarios greatly impacted the clustering, dthre at 0.085 m 

under the SSR scenario while dthre at 0.1 m under the UR scenario.  

With the bumpiness changes in road surface in the UR while 

driving, the extracted segments after this part varied.  It means the 

farther the point cloud from the LiDAR, the greater the distance 

between the adjacent points in the curve segment, and the distance 

between points increases non-linearly.  Consequently, Euclidean 

Clustering with the fixed threshold did not work on the road 

segments away from the LiDAR, suggesting that relying solely on 

the clustering method is insufficient and that another process is 

necessary to solve the problem. 

3.2.2  Boundary points screening and boundary lines fitting  

As shown in Figure 7e, outliers were eliminated after screening.  

This contributed to the field of boundary line fitting.  The fitting 

lines neatly conformed to the road shape (Figure 8) (the same 

frame in Figure 7). 

In Figure 8, the lines in red represent the result of the 
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Extraction with modification and screening method, and the lines in 

green represent the result of the Simple extraction.  The space 

limitations between the two boundary lines varied depending on 

whether there were points screening and modification parts.  After 

modifying the segments and screening the points, the boundary 

lines restrained more points inside the road in both scenarios.  

Although more grass points were extracted, the modification part 

helped address that. 

 
a. SSR 

 
b. UR 

Figure 8  Boundary lines fitting of the extraction with modification 

and screening and the simple extraction in two scenarios 
 

3.2.3  Extraction of curve segments based on boundaries 

As illustrated in Figure 7d, curve segments of the road farther 

away from LiDAR were missing, and the number of missed 

segments was different in SSR and UR.  After extraction 

restricted by boundary, the segments from the LiDAR in the ROI 

were contained within.  As illustrated in Table 4, in the SSR and 

the UR scenarios, the road extraction accuracy performed well, and 

both were above 98% with good results. 

3.2.4  Modification of curve segments 

The results for both scenarios are shown in Figure 7.  There 

are nearly no grass points in the road segments green around the 

boundaries.  Nevertheless, when it met obstacle points inside the 

road curve segments, the modification part wrongly culled part of 

the road points near that, as demonstrated by the reduction of the 

TPR comparing the Simple extraction with the Extraction with 

modification and screening in Table 4.  Moreover, the following 

are the characteristics of the points in the two scenarios. 

In Figure 9, the green points represent dratio of the road points, 

and the red points represent that of the non-road ones.  The 

distance between neighboring points differed despite the points 

coming from a similar laser channel.  However, dratio of points was 

stable inside the road, and the local feature of the point around the 

road boundary had sharp changes.  As shown in Figure 7, only a 

few grass points outside the road were extracted as the road points.  

Comparison experiments were performed to demonstrate the 

performance of the modification part. 

By comparing the results in Figure 10a and 10b, most parts of 

the non-road point cloud mistakenly extracted as the road points (in 

green), and circled in yellow, were modified into the red correctly.  

A few non-road points around the two sides of the boundaries were 

wrongly extracted; however, with modification, they were filtered.  

Modification effectively worked on reducing the wrong extraction 

of the non-road points.  As a result, the false extraction of 

non-road points of the frame was reduced, slightly affecting the 

fitting of boundary lines.  At the same time, this caused the 

removal of road points close to the road boundary when modifying 

the endpoints of several road curve segments. 

 
a. SSR 

 
b. UR 

Figure 9  dratio of each point in two scenarios 
 

 

SSR 

  

UR 

  
 a. No modification b. After modification 

Figure 10  Experiments of the modification in two scenarios 
 

Extraction with modification and screening had a better effect 

on reducing the false extraction rate of non-road points for field 

road extraction.  In the entire modification, calculating the dratio of 

the points in a small coverage was sufficient, with low 

time-consuming but high performance.  The modification part 

improved the road extraction by combining the overall difference 

processing the road curve segments, including Euclidean Clustering 

and boundary restriction.  The proposed method satisfies the 

real-time requirements and provides accurate road extraction for 

autonomous agricultural vehicle driving. 



162   September, 2022                       Int J Agric & Biol Eng      Open Access at https://www.ijabe.org                        Vol. 15 No. 5 

4  Conclusions 

In this study, the proposed extraction method for field roads 

consists of three stages, including 1) Euclidean Clustering based on 

the local distance of the road points; 2) modification applying the 

ratios of the adjacent distance of the road boundary points; 3) 

boundary lines limitation considering the context of the curve 

segments comprising the road points.  The experimental results 

show that an average accuracy of over 98% is obtained in the SSR 

and UR, the average FPR is less than 0.5%, and also achieved high 

real-time performance of less than 30 ms; this confirms the 

robustness of the method. 

Even if the road had a low curvature, the relationship between 

the road curve segments within the space appears to be linear; 

therefore, it was comparable to all segments being determined 

when the closest segments were determined.  The TPR dropped to 

90% of the Extraction with modification and screening from 96% 

of the Simple extraction as the obstacle points inside the road 

affected the modification part.  In addition, the visualization 

results of the method experimented on curved roads of high 

curvature conflicted with that on most parts of the experimental 

data, which was the road of low curvature.  This was possible 

because the line fitting was unsuitable for the curved roads of high 

curvature.  Above all, this study performed well on the extraction 

of field roads of low curvature and real-time.  Since this study 

considered the obstacles in the setup of the LiDAR, future work 

should extend to curved road extraction and explore the drivable 

area of the field roads in agricultural scenarios. 
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