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Abstract: Manual handling is less efficient and sometimes even hazardous to humans in many areas, for example, agriculture.  
Using robots in those areas not only avoids human contact with such dangerous agricultural materials but also improves 
working efficiency.  The motion of a robot is controlled using a technique called visual servoing that uses feedback 
information extracted from a vision sensor.  In this study, a visual servoing method was proposed based on learning features 
and image moments for 3D targets to solve the problem of image moments-based visual servoing.  A Gaussian process 
regression model was used to map the relationship between the image moment invariants and the rotational angles around the 
X- and Y-axes of the camera frame (denoted as γ and β).  To obtain maximal decoupled structure and minimal nonlinearities of 
the image Jacobian matrix, it was assumed two image moment features, which are linearly proportional to γ and β.  Combining 
the four image moment features of the normalized centroid coordinates, area, and orientation angle, a 6-DOF image 
moment-based visual servoing controller for the agricultural material handling robot was designed.  Using this method, the 
problem of visual servoing task failure due to the singularity of the Jacobian matrix was solved, and it also had a better 
convergence effect for the part of the target image beyond the field of view from the initial pose and large displacement visual 
servoing system.  The proposed algorithm was validated by carrying out experiments tracking bagged flour in a 
six-degree-of-freedom robotic system.  The final displacement positioning accuracy reached the millimeter level and the 
direction angle positioning accuracy reached the level of 0.1°.  The method still has a certain convergence effect when the 
target image is beyond the field of view from the initial pose.  The experimental results have been presented to show the 
adequate behavior of the presented approach in robot handling operations.  It provides reference for the application of visual 
servoing technology in the field of agricultural robots and has important theoretical significance and practical value. 
Keywords: image moment, visual servoing, Jacobian matrix, agricultural material handling robot 
DOI: 10.25165/j.ijabe.20231601.7050 
 
Citation: Li H, Zuo Z J, Chi R Q, Du Y F, Mao E R.  Image moments-based visual servoing control of bagged agricultural 
materials handling robot.  Int J Agric & Biol Eng, 2023; 16(1): 212–219. 

 

1  Introduction 

With the rapid development of China’s agriculture, the 
agricultural materials are also in high demand.  In 2020, China’s 
total food production was 669.49 million t[1] and its import was 
142.62 million t[2].  Similarly, fertilizer production was 52.5 
million t in 2020[3].  The majority of food, fertilizers, and other 
agricultural products are transported in bags by rail transport.  
Most of the bags are loaded and unloaded manually, which requires 
intensive labor work and large amounts of human resources.  
Figure 1a shows the manual handling method of handling workers 
at a railway station in Qingzhou, Shandong Province, China, 
loading and unloading fertilizer.  According to the field survey, 
the manual handling efficiency is 600 times/h which is less 
efficient compare to the Kuka Palletizing robot KR 40 PA (load 40 
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kg) of 3000 bags/h[4] (Figure 1b) and SIASUN Palletizing robot 
SRM160A (load 160 kg) of 1400 bags/h[5] (Figure 1c).  In 
addition, some agricultural materials are chemically corrosive, 
which is harmful to humans. 

With the rapid development of computer technology, the 
increasing cost of human resources, and the strict pursuit of 
workers' personal safety, the application of robots has penetrated 
from the industrial field to many fields such as medical treatment, 
military, agriculture, and service industry.  It puts forward higher 
requirements for the intelligence level and environmental 
adaptability of the robot.  Vision sensors have become one of the 
most important sensors because of their rich information, wide 
application range, and non-contact characteristics.  The 
introduction of vision sensors into the robot control system can 
increase the adaptability of the robot to the surrounding 
environment and broaden the application field of the robot.  
Visual servoing technology uses machine vision information to 
control the motion of the robot in a closed loop, which can 
overcome the uncertainty in the model (including the robot, vision 
system, and environment) and improve the accuracy of visual 
positioning or tracking.  The research of visual servoing has a 
history of nearly 40 years.  However, there are still many 
problems not well solved in this research.  Firstly, The method of 
image processing is the biggest difficulty of visual servoing in 
terms of theoretical and practical processing speed.  Secondly, for 
the selection of image features, the performance of visual servoing 
depends closely on the image features used.  In addition, many 
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control methods cannot guarantee global stability, that is, 
convergence to the desired location from any feasible initial one. 

 

 
a. Handling worker at a railway station in Qingzhou,  
Shandong Province loading and unloading fertilizer 

 

 
b. Kuka Palletizing robot KR 40 PA 

 

 
c. SIASUN Palletizing robot SRM160A 

Note: Figure 1a shows the manual handling method of handling workers at a 
railway station in Qingzhou, Shandong Province, China, loading and unloading 
fertilizer.  According to the field survey, the manual handling efficiency is 600 
times/h which is less efficient compare to the Kuka Palletizing robot KR 40 
PA(load 40 kg) of 3000 bags/h[4] (Figure 1b) and SIASUN Palletizing robot 
SRM160A(load 160 kg) of 1400 bags/h[5](Figure 1c). 

Figure 1  Efficiency comparison between the handling  
robot and manual handling method 

 

The vision-guided handling robot using visual servoing 
technology not only reduces human contact with such dangerous 
agricultural materials but also improves working efficiency (Figure 
1).  One of the key problems of visual servoing is the selection of 
image features, which can be used to describe the environment and 
to define control tasks.  The most commonly used image features 
are geometric features such as point features[6], line features[7], and 
ellipse features[8].  However, in practice, it is usually hard or 
impossible to obtain or even track the geometric features.  
Moreover, these geometric features cannot describe the general 
information about the objects.  These features are easily 
influenced by image noise.  And when occlusion or beyond the 
field of view occurs, it is easy to cause servoing task failure. 

Some researchers proposed visual servoing methods, such as 
Fourier descriptors[9,10], wavelet coefficients[11,12], histograms[13,14], 
luminance signal[15-17], shape descriptors[18,19], and so on, based on 
global image features.  These global image features consider all 

image data, rather than simple geometric features, and hence have 
better robustness.  Image moments are invariant to 2D translation, 
2D rotation, and scale conversion and are not sensitive to the 
starting point of contour, which is of great interest to researchers.  
François Chaumette et al.[20,21] was the first to give the analytical 
expression of the image Jacobian matrix of image moments-based 
visual servoing.  As a visual servoing feature, the global image 
feature image moment has better robustness and performs well in 
visual servoing.  However, the feature selection of the rotation 
control around the X- and Y-axes of the camera (ωx and ωy) and the 
visual servoing of 3D objects is still a difficult problem.  Zhao et 
al.[22] and Mebarki et al.[23] improved the image moment features of 
rotation control around the X- and Y-axes of the camera, however, 
the analytical expression of the Jacobian matrix using this method 
is still coupled in ωx and ωy direction motion control, which makes 
the Jacobian matrix still singular in some positions.  Some 
scholars have proposed a feature selection method combining the 
advantages of neural networks[24,25], support vector regression[26], 
and other intelligent algorithms to achieve complete decoupling of 
ωx and ωy directions, which solves the singularity problem in visual 
servoing control.  Bakthavatchalam et al.[27] introduced spatial 
weight into image moments-based visual servoing, which solved 
the problem of visual servoing task failure when the target image 
exceeded the field of view.  Image moments selected as image 
features are widely used in visual servoing.  Most of the research 
studies assumed that the image moments are in the same plane, and 
there exist some technical challenges for image moments to 
implement 3D visual servoing tasks. 

Visual servoing is a very important research area in robotics.  
Despite many research works in this area, software that allows fast 
prototyping of 3D visual servoing tasks is not available.  The 
widely used visual servoing simulation platform is based on 
MATLAB, combined with the Robot and Robot Vision Toolbox 
developed by Peter Corke[28].  It is used for visual servoing 
simulation of points, lines, ellipses, and other simple geometric 
objects.  VISP[29] is a visual servoing platform developed in C++ 
on Unix Workstations that has a large library of elementary 
positioning tasks for various basic control features, such as points, 
lines, circles, spheres, cylinders, and so on, and an 
image-processing library for the tracking of visual cues, such as 
dots, segments, ellipses, splines, and so on. 

In this study, Gaussian process regression (GPR)-based image 
features were adopted to decouple the rotational control around the 
X- and Y-axes of the camera frame in a six-degree-of-freedom 
(6-DOF) robotic visual servoing system. Combining the four image 
moment features of the normalized centroid coordinates, area, and 
orientation angle, a 6-DOF image moments-based visual servoing 
controller was also designed for the agricultural material handling 
robot.  A visual servoing simulation platform based on MATLAB 
and V-REP (virtual robot experiment platform) was also built to 
achieve the visual servoing simulation of 3D targets.  Finally, the 
proposed algorithm was validated by conducting simulations and 
experiments on tracking bagged agricultural materials (3D objects) 
in a 6-DOF robotic system. 

2  Image moments-based visual servoing 

2.1  Image moments-based visual servoing controller model 
The control principle of visual servoing is to regulate the error 

vector e(t)=s(t)s* to 0, where s and s* are the current and the 
desired image features, respectively.  Using the real-time feedback 
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of the image error, combined with the appropriate control law, the 
manipulator is driven to obtain the desired pose.  A visual 
servoing controlled 6-DOF manipulator has 6-DOFs in 3D space: 
vx, vy, vz (3D translation along the camera coordinate system axis) 
and ωx, ωy, ωz (3D rotation around the camera coordinate system 
axis).  To avoid redundancy of the visual servoing system, six 
image features were designed by 

s=(s1, s2, s3, s4, s5, s6)T                (1) 
where, si (i=1, 2, 3, 4, 5, 6) represents a selected image feature. 

The control law is classically given by 
vc = −λLs

+e                     (2) 
where, vc=(vx, vy, vz, ωx, ωy, ωz)T, λ is a positive scalar gain defining 
the convergence speed of the control law, Ls

+ is the pseudo-inverse 
of the interaction matrix, and e is the image feature error. 

The area of image a, the coordinates of centroid xg and yg, and 
the orientation angle α are selected as the four image features.  A 
better choice can be obtained from these intuitive features, by just 
adding an adequate normalization. More precisely, it was defined as, 
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where, a* and Z* are the area and depth of the target image at the 
desired pose, respectively, a=m00; mpq and μpq are the image 
moments and central image moments of order i+j defined by 
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where, R(t) is part of images acquired by the camera at time t where 
the object projects. 

The Jacobian matrix of four image moment features (xn, yn, an, 
α) is written as 
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To obtain maximal decoupled structure and minimal 
nonlinearities of the image Jacobian matrix, it was assumed two 
image moment invariants (to 2D translation, to 2D rotation, and to 
scale), which are referred to as virtual image moments and denoted 
as mx and my, respectively, and are written as 
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where, cx and cy are constants and β and γ are the rotational angles 
around the X- and Y-axes with respect to the desired camera frame, 
respectively. 

The Jacobian matrix of image moment features mx and my is 

0 0 0 cos cos sin cos sin
0 0 0 (cos sin sin sin cos ) (sin sin sin cos cos ) cos sin
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where, α is the rotational angle around the Z-axis with respect to 
the desired camera frame.  When the camera moves to the desired 
pose, α=β=γ=0, and the interaction matrices of image moment 
features mx and my are written as 

[0 0 0 0 0],
    

[0 0 0 0 0].
mx x

my y

L c
L c




              (8) 

If the values of γ and β are known, then we easily calculate 
the image moment features mx and my in the visual servoing 
process.  From Equation (5), the overall interaction matrix of six 
image features at the desired pose (β=γ=0) of the camera is 
written as 
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2.2  Estimation of γ and β based on GPR 
To obtain maximal decoupled structure and minimal 

nonlinearities of the image Jacobian matrix, a GPR-based 
regression model was designed to map the relationship between the 

image moment invariants and the rotational angles around the X- 
and Y-axes of the camera frame with respect to the desired pose.  
Using Hu’s seventh-order moment invariants I1–I7 and the aspect 
ratio b/a as learning features, the nonlinear mapping modeling of γ 
and β based on GPR was established as follows: 

γ=fGPRX(I1, I2, I3, I4, I5, I6, I7, b/a)            (10) 
β=fGPRY(I1, I2, I3, I4, I5, I6, I7, b/a)            (11) 

Table 1 lists the regional features and their invariant attributes. 
 

Table 1  Regional features and their invariance  
relative to motions 

Features 2D translation 2D rotation Scale 

Area √ √  
Centroid  √ √ 

Orientation angle √  √ 

Aspect ratio √ √ √ 

Hu’s moment invariants √ √ √ 
Note: ‘√’ indicates that the feature has motion invariance, ‘’ indicates that the 
feature does not have motion invariance 

 

3  Simulations 

Figure 2 shows a robot visual servoing simulation platform 
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based on V-REP and MATLAB.  Figure 3 shows the block 
diagram of visual servoing control based on image moments, where 
the robot, robot controller, camera image acquisition, and the image 
preprocessing module are carried out at the V-REP module, which 
transmits the image of the flour bag to MATLAB, and image 
moment calculation, the GPR regression model, image moment 
features, and the image moments-based visual servo controller 
module are implemented in MATLAB. 
3.1  Regression model of γ and β 

When the pose of the camera is β=γ=0, the robot was driven 
continuously to rotate the camera around the X- and Y-axes to 
collect the sample data of the regression model of γ and β.  For 
Hu’s seventh-order moments and aspect ratio b/a, the sampling 
angle interval is set as ∆θ=1°, and the number of unidirectional 
acquisition points corresponding to γ and β is Nh=20.  The 

sampling interval was β∈[20°, 20°], γ∈[20°, 20°], and a total 
of 1200 sets of data were collected. 

 
Figure 2  Robot visual servoing joint simulation platform  

based on R-VEP and MATLAB 
 

 
 
 

Figure 3  Block diagram of visual servoing control based on image moments 
 

To evaluate the prediction effect, expressions for the 
evaluation indices such as root mean square error σRMSE, mean 
absolute error σMAE, and determination coefficient R2 are written as, 
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Two groups of comparative experiments were designed.  
Tables 2 and 3 present the effect of different regression models for 
Hu’s seventh-order moments and aspect ratio b/a (eight features), 
respectively, and Tables 4 and 5 present those for Hu’s 
seventh-order moments (seven characteristics), respectively.  It 
understands that the addition of feature aspect ratio b/a improves 
the fitting effect of all regression models to a certain extent. 

 

Table 2  Regression effects of different regression  
methods on γ (eight features) 

Evaluation  
indices 

Estimator γ (aspect ratio b/a and Hu’s seventh-order  
moment invariants) 

RQ SE Matern 5/2 EP C-SVM L-SVM
σRMSE 0.230 0.230 0.218 0.263 0.651 0.660 
σMAE 0.167 0.167 0.158 0.197 0.523 0.542 

R2 1 1 1 1 1 1 
Note: σRMSE: Root mean square error; σMAE: mean absolute error; RQ: Rational 
quadratic, SE: Squared exponential; EP: Exponential; C-SVM: Cubic-Support 
Vector Machine; L-SVM: Linear-Support Vector Machine. 

 

Then GPR and SVM prediction models were compared.  The 

kernel functions of C-SVM and L-SVM are cubic and linear, 
respectively.  Tables 2-5 list that the GPR model performs better 
than the SVM prediction model.  And among the four different 
kernel functions (RQ, SE, Matern 5/2, and EP) of the GPR model, 
Matern 5/2 has the least prediction error than other kernel 
functions.  Using the GPR model of the Matern 5/2 kernel 
function, σRMSE is 0.218 (estimator γ) and 0.704 (estimator β), σMAE 
is only 0.158 (estimator γ) and 0.439 (estimator β), and R2 is 1.  
The results indicate that the prediction performance of the GPR 
model-adopted kernel function Matern 5/2 was the best. 

 

Table 3  Regression effect of different regression  
methods on β (eight features) 

Evaluation 
indices 

Estimator β (aspect ratio b/a and Hu’s seventh-order  
moment invariants) 

RQ SE Matern 5/2 EP C-SVM L-SVM
σRMSE 1.223 1.224 0.704 1.108 1.113 3.484 
σMAE 0.443 0.443 0.439 0.763 0.824 2.744 

R2 0.99 0.99 1 0.99 0.99 0.91 
 

Table 4  Regression effect of different regression  
methods on γ (seven features) 

Evaluation 
indices 

Estimator γ (Hu’s seventh-order moment invariants) 
RQ SE Matern 5/2 EP C-SVM L-SVM

σRMSE 0.234 0.234 0.223 0.286 0.677 0.666 
σMAE 0.170 0.170 0.168 0.216 0.553 0.551 

R2 1 1 1 1 1 1 
 

Table 5  Regression effect of different regression  
methods on β (seven features) 

Evaluation 
indices 

Estimator β (Hu’s seventh-order moment invariants) 
RQ SE Matern 5/2 EP C-SVM L-SVM

σRMSE 1.109 1.109 0.734 1.179 1.187 3.499 
σMAE 0.763 0.442 0.441 0.827 0.832 2.745 

R2 0.99 0.99 1 0.99 0.99 0.91 
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By comparing the regression effects of different regression 
characteristics and different regression functions, the final 
regression model for estimation of γ and β was determined, and 
GPR based on Matern 5/2 kernel function was used to map the 
relationship between Hu’s seventh-order moment invariants I1-I7, 
the aspect ratio b/a (eight features), and γ and β. 
3.2  Simulation results and analysis of image moments-based 
visual servoing 

Simulations were carried out to validate the proposed 

algorithm.  Four servo positioning tasks were designed, as listed 
in Table 6 and Figure 4, including four application scenes.  The 
notation ∆=(t, θu)=(dx, dy, dz, δx, δy, δz) was used, where t is the 
translation part of the homogeneous matrix related to the 
transformation from the current to the desired frame, while its 
rotation part is expressed under the form θu, u is the unit rotation 
axis vector, and θ is the rotation angle around this axis.  This 
representation is also considered in the plots to report positioning 
errors. 

 

Table 6  Four servoing positioning tasks and application scene 
Task Initial pose/(m,  

m, m, rad, rad, rad) 
Desired pose/(m,  

m, m, rad, rad, rad) Space displacement/m Application scene 

1 (0.3, 0.3, 0.3, 0, 0, 0.2) 

(0, 0, 0, 0, 0, 0) 

0.520 4-DOF motion, the image does not exceed the field of view 
2 (0.3, 0.4, 0.3, 0.2, 0.2, 0.6) 0.705 6-DOF motion, the image does not exceed the field of view 
3 (0.3, 0.3, 0.3, 0.2, 0.2, 0.2) 0.520 6-DOF motion, image beyond the field of view 
4 (0.4, 0.4, 0, 0.2, 0.2, 0.6) 0.825 6-DOF large displacement motion, image beyond the field of view 

 

 
a. b. c. d. e. 

Note: a-d: The initial image of Task 1-4; e: the desired image of the four tasks. 
Figure 4  Initial and desired images of four servoing positioning tasks 

The translation errors, rotation errors, and the shape of the 3D 
path are the indices considered in the performance evaluation of the 
control law.  The translation and rotation errors give the positioning 
accuracy, whereas the shape of the 3D path gives the spatial motion 
characteristics of the task and are defined, respectively, as 
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Table 7 and Figures 5-8 present visual servoing results of 
Tasks 1-4, respectively.  Figure 5 is the simulation results of Task 
1 (4-DOF motion; the image does not exceed the field of view).  It 
infers from Figure 5a that the four image moment features are 
exponentially attenuated, and the trajectory of the camera in 3D 
space is close to a straight line (the shortest trajectory). 

Figure 6 is the simulation results of Task 2 (6-DOF motion; the 
image does not exceed the field of view).  From Figure 6a, it 
understands that the six image moment features show exponential 

attenuation, and the trajectory of the camera’s 3D space is a smooth 
curve.  There is a slight error jitter in my, but it basically converges 
exponentially.  Task 2 reflects the visual servoing results of general 
motion in 3D space, which proves the effectiveness of the proposed 
method, and has a high positioning accuracy.  The final 
displacement positioning accuracy reached the millimeter level, and 
the orientation angle positioning accuracy reached the level of 0.1. 

Task 2 adds rotation angles around the X- and Y-axes to the 
initial pose of Task 1.  The 3D space trajectory of the camera in 
Task 2 is a smooth curve and is longer than in Task 1 because the 
camera needs to adjust its pose continuously to achieve the final 
pose after rotation angles were added to the initial pose. 

Figure 7 is the simulation results of Task 3 (6-DOF motion; the 
image is beyond the field of view from the initial pose).  As 
shown in Figure 7a, it understands that features an and yn increase 
first and then decrease, whereas all other features show exponential 
attenuation because, near the initial pose, part of the target image 
exceeds the camera field of view. 

 

Table 7  Simulation results of four servoing positioning tasks 

Data Translation/m Rotation/() Translation error/mm Rotation error/() 
X Y Z α β γ Δdx Δdy Δdz Δd Δδx Δδy Δδz Δδ 

Desired pose 0.3135 1.2835 0.8600 180.00 0.00 0.00 -- -- -- -- -- -- -- -- 
Results of Task 1 0.3139 1.2832 0.8556 179.96 0.00 0.19 0.40 0.30 4.40 4.43 0.04 0.00 0.19 0.20
Results of Task 2 0.3141 1.2851 0.8568 179.97 0.11 0.00 0.60 1.60 3.20 3.63 0.03 0.11 0.00 0.12
Results of Task 3 0.3141 1.2820 0.8571 179.96 0.06 0.00 0.60 1.50 2.90 3.32 0.04 0.06 0.00 0.07
Results of Task 4 0.3139 1.2819 0.8566 179.93 0.06 0.00 0.40 1.60 3.40 3.78 0.07 0.06 0.00 0.09

 

 
a. Positioning error (in m and rad) b. Camera velocity (in m/s and rad/s) c. 3D camera trajectories (in m) 

Figure 5  Simulation results of Task 1 in this study 
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a. Positioning error (in m and rad) b. Camera velocity (in m/s and rad/s) c. 3D camera trajectories (in m) 

Figure 6  Simulation results of Task 2 in this study 

 
a. Positioning error (in m and rad) b. Camera velocity (in m/s and rad/s) c. 3D camera trajectories (in m) 

Figure 7  Simulation results of Task 3 in this study 

 
a. Positioning error (in m and rad) b. Camera velocity (in m/s and rad/s) c. 3D camera trajectories (in m) 

Figure 8  Simulation results of Task 4 in this study 
 

Figure 8 is the simulation results of Task 4 (6-DOF large 
displacement motion; the image is beyond the field of view from 
the initial pose).  It is a very large initial error for a visual 
servoing task.  It can be seen from Figure 8a that image feature 
errors have a large oscillation because, at the beginning of the 
servoing task, part of the target image is beyond the field of view 
from the initial pose.  However, due to the robustness of the servo 
control system, a good control effect is still achieved, converging 
near the desired pose. 

4  Experiment and results 

To verify the performance of the control laws proposed in 
this study, a visual servoing experimental platform (Figure 9) 
was built for a bagged flour-handling robot and carried out the 
visual servoing grabbing experiments on a 6-DOF YASKAWA 
ES165D robot equipped with a CCD camera mounted on the 
end effector.  The camera frame rate is 30 frames-per-second 
(fps) for a resolution of 640×480 pixels, and the angle of view is 
120°.  The camera calibration and the hand-eye calibration 
were done manually.  The image processing and the control 
law computation were performed on a 2-core 2.3-GHz Intel 
Core i5 PC.  The code was written in C++ and MATLAB.  
The model of γ and β estimator was trained in advance 
according to the processes explained in Section 3.1 to calculate 
mx and my.  Figure 10 shows the flow chart of specific visual 

servoing. 

 
Figure 9  Visual servoing platform for a bagged  

flour-handling robot 
 

 
Figure 10  Visual servoing flow chart based on image moments 
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Two experiments were conducted to verify the performance of 
the control laws in 4-DOF and 6-DOF visual servoing tasks 
separately (Table 8 and Figure 11). 

The experimental results of 4-DOF and 6-DOF visual 
servoing tasks, as listed in Table 9.  Figures 12 and 13 are in 
agreement with the simulation results.  The image feature 
errors are all exponentially attenuated, which further verifies 
the good characteristics of the control laws proposed in this study.  
Moreover, it has a good convergence effect for 3D flour bags. 

Table 8  Initial and desired pose of 4-DOF and  
6-DOF visual servoing 

Experiment 
Translation/mm Rotation/() 

X Y Z α β γ 

Desired pose 1509.960 0.0110 134.940 180.00 0.00 0.00
Initial pose of 
4-DOF task 1625.190 242.172 443.766 180.00 0.00 19.34

Initial pose of 
6-DOF task 1785.179 242.198 443.714 175.39 0.89 19.57

 

 

  
a. 4-DOF b. 6-DOF c. Desired image of the two tasks 
Figure 11  Initial and desired image of 4-DOF and 6-DOF visual servoing 

 

Table 9  Experimental results of 4-DOF and 6-DOF visual servoing tasks 

Task 
Camera convergence pose/mm Camera convergence pose/() Translation error/mm Rotation error/() 

X Y Z α β γ Δdx Δdy Δdz Δd Δδx Δδy Δδz Δδ 
4-DOF task 1509.43 0.56 135.76 179.93 0.00 0.08 0.53 0.55 0.82 1.12 0.07 0.00 0.08 0.11
6-DOF task 1509.31 0.67 130.15 179.91 0.46 0.24 0.64 0.66 4.79 4.88 0.09 0.46 0.24 0.53

 

 
a. Positioning error (in m and rad) b. Camera velocity (in m/s and rad/s) c. 3D camera trajectories (in m) 

Figure 12  Experimental results of 4-DOF visual servoing using image moments 

 

a. Positioning error (in m and rad) b. Camera velocity (in m/s and rad/s) c. 3D camera trajectories (in m) 

Figure 13  Experimental results of 6-DOF visual servoing using image moments  
 

5  Conclusions 

Image moments selected as image features are widely used in 
visual servoing.  Unfortunately, most of the research studies 
assumed that the image moments are in the same plane, and there 
exist some technical challenges for image moments to implement 
3D visual servoing tasks.  Aiming at the problem of image 

moments-based visual servoing, a visual servoing method based on 
learning features and image moments for 3D targets was proposed.  
To obtain maximal decoupled structure and minimal nonlinearities 
of the image Jacobian matrix, a GPR-based regression model was 
designed to map the relationship between the image moment 
invariants and the rotational angles around the X- and Y-axes of the 
camera frame with respect to the desired pose.  This method 
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solved the problem of visual servoing task failure due to the 
singularity of the Jacobian matrix in the visual servoing system, 
and it also has a better convergence effect for the part of the target 
image beyond the field of view from the initial pose and large 
displacement visual servoing system (about 0.825 m).  
Experiments were conducted to validate the proposed algorithm 
tracking bagged flour in a 6-DOF robotic system.  The final 
displacement positioning accuracy reached the millimeter level, 
and the direction angle positioning accuracy reached the level of 
0.1°.  The method has a certain convergence effect even if the 
target image is beyond the field of view from the initial pose.  The 
experimental results have been presented to show the adequate 
behavior of the presented approach in robot handling operations.  

However, the current method only studied the situation in that 
the desired pose of the camera is parallel to the target plane.  It 
also needs to extract the binary image of the target, and the 
extraction result directly affects the visual servoing control effect.  

In future works, the proposed robot visual servoing scheme 
will be further extended into two aspects: 1) the situation that the 
desired pose of the camera is three-dimensional arbitrary can be 
further studied; 2) visual servoing control without image 
processing can be studied, such as direct visual servoing control. 
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