
May, 2022                        Int J Agric & Biol Eng      Open Access at https://www.ijabe.org                           Vol. 15 No. 3   167 

 
Method for detecting soil total nitrogen contents based on pyrolysis and 

artificial olfaction 
 

Mingwei Li1,2, Qinghui Zhu1,2, He Liu1,2, Xiaomeng Xia1,2, Dongyan Huang1,2* 
(1. School of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China; 

2. Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China) 
 

Abstract: Soil nitrogen is an essential nutrient element for crop growth and development, and an important indicator of soil 
fertility characteristics.  This study proposed a method based on pyrolysis and artificial olfaction to quickly and accurately 
determine the soil total nitrogen (STN) content.  A muffle furnace was used to pyrolyze the soil samples, and ten different types 
of oxide semiconductor gas sensors were used to construct a sensor array to detect the soil samples’ pyrolysis gas.  The response 
curves of the sensors were tested at pyrolysis temperatures of 200°C, 300°C, 400°C, and 500°C and at pyrolysis times of 1 min,  
3 min, 5 min, and 10 min to obtain the optimal pyrolysis state of the soil samples.  The optimal pyrolysis temperature was 400°C, 
and the pyrolysis time was 3 min.  The response area, maximum value, average differential coefficient, variance value, maximum 
gradient value, average value, and 8th-second transient value of the sensor response curve were extracted to construct an artificial 
olfactory feature space of 121×10×7 (121 soil samples, ten sensor numbers, seven extracted eigenvalues).  Back-propagation 
neural network algorithm (BPNN), partial least squares regression algorithm (PLSR), and partial least squares regression 
combined with back-propagation neural network algorithm (PLSR-BPNN) were used to establish a prediction model of artificial 
olfactory feature space and STN content.  Moreover, coefficient of determination (R2), root mean square error (RMSE), and the 
ratio of performance to deviation (RPD) were used as the performance indicators of the prediction results.  The test results 
showed that the R2 of the PLSR, BPNN, and PLSR-BPNN models were 0.89033, 0.81185, and 0.92186, and the RMSE values 
were 0.24297, 0.37370, and 0.21781, and the RPD were 2.9964, 1.9482, and 3.3426, respectively.  The model established by the 
PLSR-BPNN algorithm has the highest R2 and RPD and the smallest RMSE, can achieve the accurate prediction of STN content, 
and therefore the model is rated as “excellent”.  The detection method in this study achieves a low-cost, rapid, and accurate 
determination of STN content, and provides a new reference for the measurement of STN. 
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1  Introduction  

Soil nutrients supply the elements necessary for plant growth 
and development.  Soil nitrogen is an important nutrient, and an 
indicator of soil fertility characteristics, and its abundance and 
deficiency affect crop growth, quality, and yield[1-4].  The soil 
nitrogen content in China is quite different.  The soil total nitrogen 
(STN) content of cultivated land is 0.4-3.8 g/kg, however, it shows 
an uneven spatial distribution and unreasonable nitrogen fertilizer 
application[5-7].  Therefore, accurate, fast, and low-cost 
determination of STN content and its changes are significant for 
precision agriculture and natural ecology conservation. 

Traditional STN measuring chemical methods include the  
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Kjeldahl method and Dumars combustion method.  Although they 
can accurately measure STN content and have a wide range of 
applications, they are time-consuming, complex to operate and 
generate pollution[8,9].  Spectroscopy technology is widely used 
for STN content determination because it is fast, non-polluting, and 
non-destructive[10-13].  Wang et al.[14] measured soil with different 
particle diameters by spectroscopy and constructed an STN content 
estimation model with the spectral transformation data.  They 
concluded that the smaller the soil particle diameter, the higher the 
estimation accuracy of the total nitrogen (TN) content, where the 
model established by the support vector machine (SVM) is superior 
to partial least squares regression (PLSR) and stepwise multiple 
linear regression (SMLR).  Nie et al.[15] studied the influence of 
drying temperatures on soil nitrogen determination by near-infrared 
spectroscopy.  Low or extremely high drying temperatures will 
adversely affect soil nitrogen detection, and a drying temperature of 
40°C and competitive adaptive reweighted squares-backward 
interval partial least squares-partial least squares (CARS-BIPLS- 
PLS) method is the best method to improve the soil nitrogen 
detection accuracy.  He et al.[16] studied the influence of soil water 
content on soil nitrogen detection by the near-infrared sensor.  
When the soil moisture content is 1.03%, the negative impact on 
soil nitrogen detection was the smallest, and the detection accuracy 
was the highest.  However, the spectroscopy method is affected by 
soil moisture, iron oxide, and soil texture[17-19]. 

Soil gas is caused by the balance between biological activity  
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and gas transfer in the soil is important for plant growth and soil 
formation[20].  During microbial degradation, nutrients and energy 
substrate supply produce many volatile gases in the soil[21-23].  
Therefore, volatile gas in the soil correlates with soil nutrients, 
which can be used to detect soil odor through artificial olfactory 
technology to obtain soil nutrient content.  However, volatile gas 
content in soil is relatively small and requires high-sensitivity gas 
sensors.  Zhu et al.[24,25] used an artificial olfactory system (AOS) 
to detect soil organic matter content and constructed three models, 
PLSR, back-propagation neural networks (BPNN), and support 
vector regression (SVR), and the SVR model had the highest 
prediction performance with R2 of 0.91. 

Pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) 
technology is an effective method that has emerged to study the 
thermal pyrolysis mechanism.  The technology first places the 
sample in a pyrolyzer under strictly controlled conditions for 
heating so that the macromolecular compounds are quickly 
pyrolyzed into volatile small-molecule compounds.  Then, the 
carrier gas carries the small molecule compounds into the gas 
chromatography/mass spectrometer (GC/MS) for separation and 
identification.  Finally, the composition, structure, and chemical 
characteristics of the sample are inferred through the GC/MS 

characteristics[26-30].  Py-GC/MS is fast, highly sensitive, and 
requires a small sample volume, so it is widely used in polymer 
science, microbiology, bioengineering, and geochemistry[31-35].  
De La Rosa et al.[36] used Py-GC/MS to characterize the effects of 
wildfires on soil organic matter by analyzing in detail the pyrolysis 
products of burned and unburned surface soil and conducting 
qualitative and quantitative analysis on the products of 300°C 
desorption and 500°C pyrolyzes.  Chen et al.[37] used 
Py-GC-MS/MS to study the fingerprint differences between the 
five density components of the soil organic matter in the alpine 
grassland, and performed qualitative and quantitative analyses of 
150 pyrolysis products.  According to similar chemical properties, 
pyrolysis products were divided into alkyl compounds, aromatic 
hydrocarbons, polycyclic aromatic hydrocarbons, lignin, phenolic 
substances, and polysaccharides, nitrogen-containing compounds, 
and chitin.  

Pyrolysis technology uses the thermal instability of organic 
matter, and thermal decomposition under anaerobic or anaerobic 
conditions can cause a small amount of soil to produce a large 
amount of pyrolysis gas.  This gas can be used to achieve rapid 
and accurate detection of soil nutrients by artificial olfactory 
technology.  The Py-GC-MS/MS technology can accurately, 
qualitatively, and quantitatively analyze the various nutrients 
contained in the soil.  However, it also has disadvantages such as 
high equipment purchase cost, specialized personnel required for 
operation, non-specialized design for STN monitoring, and 
time-consuming and labor-intensive.  Therefore, it is difficult to 
rapidly measure the TN content for many soil samples. 

This study proposed an STN content detection method based 
on pyrolysis and AOS in response to the above problems.  The 
pyrolysis technology was used to pyrolyze soil samples, and the 
pyrolysis gas was passed into the gas sensor array to obtain the 
sensor response curve.  Seven features of the response curve were 
extracted, including response area, maximum value, average 
differential coefficient, variance value, maximum gradient value, 
average value, and 8th-second transient value, to construct a 
characteristic artificial olfactory feature space (AOFS).  The STN 
content prediction model and AOFS were established by BPNN, 
PLSR, and partial least squares regression combined with 

back-propagation neural network algorithm (PLSR-BPNN), so that 
the STN content could be detected quickly, accurately, and at low 
cost. 

2  Materials and methods 

2.1  Study area and soil sampling 
The study area is in Jilin Province, China (40°50'N-46°19'N, 

121°38'E-131°19'E, Figure 1), which belongs to the central part of 
Northeast China, borders Russia and North Korea, in the 
geographic center of Northeast Asia on the east side of mid-latitude 
Eurasia.  It has a temperate continental monsoon climate.  The 
average annual temperature is between −5°C and 8.6°C, and the 
average annual rainfall is 400-600 mm.  The soil types are mainly 
dark-brown soil, chernozem soil, albic soil, meadow soil, black soil, 
aeolian sandy soil, new soil, and paddy soil. 

 
Figure 1  Study area and sampling location 

 

In this study, 121 soil samples were collected at 121 sampling 
points in the study area (Figure 1).  Due to the heterogeneity of 
the soil, there is a certain degree of variation in each sample.  To 
preserve the actual state of the field soil samples as much as 
possible, 16 soil samples were collected using an S-shaped route 
(Figure 2a), with a sampling depth of 0-20 cm.  The sampling 
points avoid fields, roadsides, ditch sides, special terrain, and 
places where fertilizers have accumulated.  Each sample was 
mixed thoroughly, and 1 kg of soil samples per sampling point was 
retained according to the quartering method (Figure 2b).  
According to the requirements of the test, 121 soil samples were 
dried naturally at a temperature of 23°C, followed by crushing and 
processing through a 0.25 mm screen.  The samples were divided 
into two parts, respectively used for the Kjeldahl method and 
detection based on pyrolysis and AOS to determine the STN 
content. 

 
a. S-shaped sampling point             b. Quarter method 

Figure 2  Soil sample collection 
 

2.2  Kjeldahl Method 
The Kjeldahl method was established by the Danish chemist 

Kedal in 1883 and is a common method for analyzing the nitrogen 
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content of organic compounds.  The theoretical basis of the 
Kjeldahl method is that the nitrogen content of proteins usually 
accounts for about 16% (12%-19%) of their total mass[38,39].  
Therefore, by measuring the nitrogen content in the substance, the 
total protein content in the substance can be estimated.  The main 
principle of this method is to digest with concentrated sulfuric acid, 
use catalysts and warming agents to accelerate the decomposition 
of organic matter, convert organic nitrogen into ammonia in the 
solution, and finally titrate the distilled ammonia with standard 
acid[40-43].  
2.3  Pyrolysis and artificial olfactory testing method 

An STN detection system based on pyrolysis and AOS was 
designed, as shown in Figure 3.  The system consists of a 
pyrolysis furnace, a gas sensor array (installed in a closed reaction 
chamber), a signal processing circuit, an NI data acquisition card, a 
portable computer, a PWM speed control module, a micro vacuum 
pump, a pyrolysis chamber, and a vacuum flange. 

 

 
1. 12 V power supply  2. Vacuum flange  3. Vacuum pump  4. PWM speed 
control module  5. Gas sensor array  6. Signal processing circuit  7. 12 V 
power supply  8.NI data acquisition card  9. Pyrolysis furnace  10. Portable 
computer 

Figure 3  Soil total nitrogen content detection system based on 
pyrolysis and artificial olfactory system 

 

The quartz boat was placed in the center of the quartz tube to 
hold the soil sample, and the vacuum flange kept the quartz tube 
closed to complete the pyrolysis of the soil sample, as shown in 
Figure 4.  The pyrolysis furnace was the Lindberg/Blue M 
Mini-Mite tube (Thermo Fisher Scientific).  The pyrolysis furnace 
uses a microprocessor-based self-adjusting PID controller and was 
insulated with Moldatherm® materials, with a precise response 
temperature of 100°C-1100°C.  The gas sensor array is the core 
component of AOS, responsible for producing a specific response 
to gas after soil pyrolyzing, and is the data basis for building the 
system.  The products after soil pyrolyzing mainly include alkanes, 
alkenes, aromatics, nitrogen-containing compounds, fatty acids, 
lignin, phenolic substances, polysaccharides, and chitin[37,44].  This 
study selected ten oxide semiconductor gas sensors produced by 
Figaro (TGS826, TGS2602, TGS2610, TGS2620, TGS821, 
TGS2603, TGS2611, TGS823, TGS2600, and TGS2612) to form 
the sensor array and their specific parameters as shown in Table 1.  
The signal conversion circuit was used to supply power to the 
sensor array and perform conversion processing on the data 
generated by the sensor.  The sensor array and the signal 
processing circuit were connected through an FFC cord.  The data 
acquisition card was a multifunctional I/O device USB-6210 
produced by National Instruments (NI), connected to the signal 
conversion circuit through a DuPont cable for sensor data 
acquisition.  The collected data was transferred to the computer 
through the USB data cable and stored in the LabVIEW detection 

program.  The PWM speed control module was used to adjust the 
flow rate of the micro vacuum pump, used to circulate air to the 
entire system. 

 
1. Vacuum flange  2. Quartz tube  3. Soil sample  4. Quartz boat   
5. Pyrolysis furnace 

Figure 4  Soil samples in a pyrolysis furnace 
 

Table 1  Gas sensor model and parameters 

Senor 
number Model Monitoring gas type Measuring 

range/mg·m−3

S1 TGS826 Ammonia 30-300 

S2 TGS2602 Air pollutants (ammonia, volatile organic 
compounds (VOC), hydrogen sulfide, etc.) 1-30 

S3 TGS2610 Butane, LP gas 500-10 000
S4 TGS2620 Ethanol, organic solvent 50-5000 
S5 TGS821 Hydrogen 100-1000 
S6 TGS2603 Trimethylamine, methyl mercaptan, etc. 1-10 
S7 TGS2611 Methane, natural gas 500-10 000
S8 TGS823 Ethanol 50-300 
S9 TGS2600 Hydrogen, alcohol, etc. 1-30 
S10 TGS2612 Methane, propane, isobutane 3000-9000

 

When the system was working, a quartz boat was used to hold 
2 g of the soil sample, placed in the center of the quartz tube, and 
sealed with a vacuum flange, then, placed in a pyrolysis furnace for 
pyrolyzing.  To obtain the best pyrolysis state of the soil sample 
and to improve the accuracy of data collection in the monitoring 
method, pyrolysis was performed at 200°C, 300°C, 400°C, 500°C 
for 1 min, 3 min, 5 min, and 10 min, respectively.  The pyrolysis 
chamber, the reaction chamber, and the vacuum pump were 
connected by a rubber tube, forming a closed gas path.  After 
pyrolysis, the LabVIEW detection program was started, the flange 
opened, and the vacuum pump flow was set to 1 L/min.  The 
pyrolysis gas in the pyrolysis chamber entered the reaction 
chamber equipped with the sensor array, and the response data 
were collected for 60 s.  After data collection, the rubber tubes at 
both ends of the flange were removed, and the quartz tube and the 
quartz boat were removed, cleaned, and dried.  The flow rate of 
the vacuum pump was set to 3 L/min to clean the reaction chamber 
and the connecting pipes with clean air for 2 min.  The collection 
of soil sample data was performed once.  The above process was 
repeated once for the collection of other sample data. 
2.4  Feature selection 

Extracting appropriate features from the response curve of the 
sensor array was conducive to a prediction model with strong 
generalization ability and a high coefficient of determination.  
This study extracted the mean differential coefficient value (Vmdc), 
the 8th-second transient value (V8), the response area value (Vrav), 
the maximum gradient value (Vmgv), the maximum value (Vmax), the 
mean value (Vmean), and the variance value (Vvav), to construct a 
feature space, where the formulas of Vmdc, Vrav, Vmgv, and Vvav are as 
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follows: 
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where, Xi is the ith data collected by the sensor; ∆t is the interval 
time between two adjacent collection points, taking 0.1 s; N is the 
total number of collected data; Ximax is the maximum value of the 
collected data; X0 is the initial response value of the collected data; 
i is the time corresponding to the maximum value in the collected 
data; X  is the average value of the collected data. 

A total of 121 soil samples were collected.  The sensor array 
was composed of ten gas sensors.  The response curve of each 
sensor extracted seven characteristic values, combined into a 
121×10×7 artificial olfactory feature space (AOFS).  Due to the 
different dimensions of the extracted eigenvalues, features with a 
large order of magnitude occupy a larger proportion in the 
modeling, which is not conducive to building an accurate 
prediction model.  The z-score standardization method can make 
the feature space meet the standard normal distribution, suitable for 
the case of outlier data beyond the range of values in the sequence.  
To eliminate the influence of the order of magnitude and dimension 
on the modeling, this study used the z-score standardization method 
to normalize the extracted features, and the equation is 

z = (x − u)/s                     (5) 
where, z is the standardized data; x can respectively represent the 
original values of the seven extracted features; u is the average 
value of each feature; s is the standard deviation of each feature. 
2.5  Training set and test set division 

To build a model that can accurately predict the STN content, 
the normalized AOFS needs to be divided into two parts: a training 
set and a test set.  The training set was used for fit data samples, 
train the model's parameters, and reduce the generalization error of 
the model so that the model can reflect reality, and then predict 
future or other unknown information.  The test set was used to 
evaluate the prediction performance of the model.  The 
Kennard-Stone method was used to set the ratio of the training set 
of the test set to 7:3[45]. 

3  Pattern recognition algorithm 

To improve the detection accuracy of this method, PLSR, 
BPNN, and PLSR-BPNN algorithms were used to establish the 
prediction model between AOFS and STN content, to find the 
optimal prediction model of STN content. 
3.1  PLSR model 

Partial least squares regression analysis is a new multivariate 
statistical data analysis method that combines principal component 
analysis and multivariate linear analysis statistics.  When there is 
a high linear correlation between variables, PLSR can establish a 
high prediction model.  To overcome the collinearity problem 
between predictors, PLSR decomposed the independent variables 
and dependent variables sets through linear combination to extract 
the principal component factor (PCF), and established a regression 
model based on the PCF[46,47].  Therefore, an appropriate number 
of PCFs is one of the effective methods to make full use of the 
information of the gas sensor array, filter out noise, and effectively 

avoid over-fitting or under-fitting of the model[48].  The 
leave-one-cross-validation method was used to determine the 
number of PCF retained in the PLSR model, and the PCF impact 
on the model performance was evaluated by the root-mean-square 
error of cross-validation (RMSECV)[49,50]. 
3.2  BPNN model 

BP neural network is a multi-layer feed-forward network 
trained by error back-propagation.  The structure consists of the 
input layer, hidden layer, and output layer.  Each part is connected 
by weight and threshold[51].  The basic BPNN algorithm revises 
the weights of each unit repeatedly through two processes of signal 
forward propagation and error back-propagation, to approach the 
target value infinitely.  The number of hidden layer neurons 
greatly influences the BP neural network performance.  If the 
number of hidden layer neurons is small, the neural network cannot 
fully describe the relationship between output and input variables.  
On the contrary, if the number of hidden layer neurons is large, it 
will lead to a longer learning time of the network, such as 
over-fitting problems.  The selection equation of the optimal 
number of neurons in the hidden layer is as follows: 

( )l m n α= + +                  (6) 
where, n is the extracted eigenvalue; m is the output TN content; α 
is a constant from 0 to 10. 

In addition, the neuron activation function, the number of 
training iterations, and the target error can also affect the prediction 
effect of the model, but they are usually set to fixed values. 
3.3  PLSR-BPNN model 

The causal relationship between soil pyrolysis gas and STN 
content is complex.  The relationship between STN and AOFS 
can be either linear or nonlinear.  Suppose that PLSR and BPNN 
are organically combined to form the PLSR-BPNN model, PLSR's 
linear modeling, and BPNN's nonlinear mapping ability.  In that 
case, both algorithms can be fully utilized to their fullest extent to 
improve the prediction ability of the artificial olfactory detection 
method for STN content.  Therefore, PLSR and BPNN were 
organically combined in parallel mode, as shown in Figure 5. 

 
Note: STN: Soil total nitrogen; AOFS: Artificial olfactory feature space; PLSR: 
least squares regression algorithm; BPNN: Back-propagation neural network. 

Figure 5  Structure diagram of PLSR-BPNN combined model 
 

The modeling and prediction process of the PLSR-BPNN 
model was as follows: 

1) The PLSR and BPNN models were established separately 
using the training set; 

2) The established PLRS and BPNN models were predicted 
using the test set, and the predicted values yp and yb of the two 
models were obtained; 

3) The weighted sum of yp and yb provided the final prediction 
result ˆiy , which equation is 

1 2ˆi p by k y k y= ⋅ + ⋅                (7) 
where, k1 and k2 are the weighting coefficients. 

4) Ai represents the prediction precision sequence of the model, 
and E and σ represent the mean value and mean square deviation of 
Ai, respectively. 

5) S represents the validity of the model.  Therefore S can be 
defined as, 

S=E·(1−σ)                   (8) 
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The larger the S is, the higher the prediction accuracy of the 
model is.  To determine k1 and k2 values, Sp and Sb were used to 
represent the validity of the PLRS model and BPNN model, 
respectively.  Sp and Sb were normalized as values of k1 and k2, 
respectively, namely as, 

1 2,  p b

p b b p

S Sk k
S S S S

= =
+ +

             (9) 

3.4  Model evaluation index 
To evaluate the quality and reliability of the above models, the 

coefficient of determination (R2), the root mean square error 
(RMSE), and the ratio of performance to deviation (RPD) were 
used as performance indicators.  The equations for R2, RMSE, and 
RPD can be expressed as the follows equations: 
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where, n is the number of samples in the training set or test set; yi is 
the actual value of STN of the ith sample; fi is the predicted value 
of STN of the ith sample. 

The closer R2 is to 1, the better the fitting effect of the model.  
RMSE was used to represent the error between the predicted and 
the measured value of the model.  The smaller RMSE is, the 
higher the prediction accuracy of the model.  Vohland et al.[52] 
reported a detailed prediction and evaluation method for soil 
properties, where the predictive performance of the model can be 
evaluated as “excellent” with accurate quantitative analysis when 
R2>0.90 and RPD>3.0.  When R2 is between 0.82 and 0.90 and 
RPD is between 2.5 and 3.0, the model's prediction ability can be 
defined as “good”, and the model has a basic quantitative 
prediction ability.  When R2 is between 0.66 and 0.81 and RPD is 
between 2.0 and 2.5, the model performance index can be defined 
as “qualified”, indicating that the model can be approximately 
quantitatively predicted.  When R2 is 0.50-0.65 and RPD is 
1.5-2.0, the model is judged as “poor” and can only be used to 
distinguish between high and low values.  When R2 is lower than 
0.5 and RPD is lower than 1.5, the calibration of the model is 
“unsuccessful”, and the prediction results have no reference. 

4  Results and analysis 

4.1  Kjeldahl method results of soil total nitrogen content 
The measurement results of the Kjeldahl method were 

statistically analyzed by SPSS 24 software.  As shown in Figure 6, 
the K-S test statistic value is 0.001 (p>0.05), and the total nitrogen 
content of the soil sample approximately obeys normal distribution.  
The total nitrogen content of the sample ranges from 0.20-4.10 g/kg, 
the average value is 1.6789 g/kg, the variance is 0.626 g/kg, and the 
coefficient of variation is 47.11%.  It shows that the distribution 
of total nitrogen content of the sample presents a large spatial 
variability, which provides a more comprehensive data support for 
the establishment of a prediction model of STN content. 
4.2  System influence factor test results 

To obtain the best pyrolysis state of soil samples, the pyrolysis 
gas with a strong response of gas sensor array is obtained.   

 
Figure 6  Statistical analysis results of total nitrogen content in 

soil samples 
 

Pyrolysis temperatures of 200°C, 300°C, 400°C, and 500°C and the 
pyrolysis times of 1 min, 3 min, 5 min, and 10 min were tested to 
find the best pyrolysis temperature and time.  The soil samples 
with the lowest, highest, and average TN content were selected for 
experiments.  The test results showed that the sensor array 
response curve trend of soil samples with different TN contents 
was roughly the same, and as the TN content of the soil increased, 
the response intensity of the sensor had an upward trend.  The soil 
sample with a TN content around the average value of the total soil 
sample has been used as an example to test the pyrolysis 
temperature and time.  The sensor response strength was taken as 
the test standard, and parallel samples were tested five times. 
4.2.1  Pyrolysis temperature test 

To test whether the pyrolysis temperature affects the sensor 
array, a temperature sensor was added to the reaction chamber.  
The results showed that the reaction chamber temperature did not 
change significantly after the soil pyrolysis gas generated at 
different temperatures entered the reaction chamber through the 
conduit and remained at about room temperature.  The pyrolysis 
temperature does not affect the reaction chamber temperature or the 
response of the sensor array. 

The pyrolysis temperature directly affects the pyrolysis 
products of the soil sample.  2 g soil samples were measured, the 
pyrolysis time was 10 min, the data collection time was 1 min, and 
the pyrolysis temperatures were 200°C, 300°C, 400°C, and 500°C, 
respectively.  The gas flow rate was 3 L/min for washing, and the 
sensor array response curve was obtained, as shown in Figure 7. 

Figure 7 shows that when the pyrolysis temperature is 200°C, 
all sensors have evident responses except sensor S2.  When the 
pyrolysis temperature is 300°C, the response of the sensor array is 
significantly improved, and the response of sensor S2 is very strong, 
indicating that the pyrolysis temperature of 300°C increases the 
pyrolysis products of soil samples and the concentration of 
pyrolysis gas, resulting in ammonia, VOC, hydrogen sulfide, and 
other gases.  When the pyrolysis temperature is 400°C, the sensor 
S1 response is stronger than before, while the responses of other 
sensors do not change significantly compared with 300°C, 
indicating that more ammonia is pyrolyzed at this temperature, 
which makes the sensor S1 respond strongly.  When the pyrolysis 
temperature is 500°C, the sensor array response is greatly reduced 
because the higher pyrolysis temperature allows for complete 
pyrolysis, and changes the pyrolysis gas composition.  The gas 
detected by the sensor array is reduced, leading to a decrease in the 
sensor response intensity.  Therefore, the optimal pyrolysis 
temperature of 400°C was selected in this study. 
4.2.2  Pyrolysis time test 

The pyrolysis time may affect the response of the sensor array, 
so the pyrolysis times of 1 min, 3 min, 5 min, and 10 min were 
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selected for testing.  2 g soil samples were measured, the pyrolysis 
temperature was 400°C, the data collection time was 1 min, the gas 

flow rate was 3 L/min for washing, and the response curve of the 
sensor array was obtained as shown in Figure 8. 

 
a. Pyrolysis temperature 200°C  b. Pyrolysis temperature 300°C 

 
c. Pyrolysis temperature 400°C  d. Pyrolysis temperature 500°C 

 

Figure 7  Influence of pyrolysis temperature on sensor response 
 

 
a. Pyrolysis time 1 min  b. Pyrolysis time 3 min 

 
c. Pyrolysis time 5 min  d. Pyrolysis time 10 min 

 

Figure 8  Influence of pyrolysis time on sensor response 
 

As shown in Figure 8, when the pyrolysis temperature is 
400°C and the pyrolysis time is 1 min, the sensor array has an 
evident response.  Especially sensor S1 has a stronger response 
than other pyrolysis times, but the initial response of other sensors 
within 5-10 s is relatively low.  The sensor array responds 
strongly and changes little when the pyrolysis time is 3 min, 5 min, 
and 10 min.  To improve the working efficiency of the system and 
reduce the acquisition time, the pyrolysis time selected was 3 min. 
4.3  Modeling soil total nitrogen content 
4.3.1  PLSR model establishment 

The number of principal component factors (PCF) affects the 
PLSR model prediction accuracy, and an appropriate number of 
PCFs effectively improve the model's prediction performance.  
Here, a 20-component and one-retention cross-validation method 

was used to find the appropriate number of PCF, and the robustness 
of the model was verified by the root-mean-square error of 
cross-validation (RMSECV).  The relationship between RMSECV 
and PCF was obtained, as shown in Figure 9.  When the number 
of PCFs is 10-15, the RMSECV is small.  To obtain the most 
appropriate number of PCFs, 10-15 PCF numbers were used to 
establish the PLSR model, and the influence of the PCFs number 
on the prediction performance of the PLSR model training and test 
sets was obtained as shown in Table 2.  As the number of PCF 
increases, the R2 and PRD of the training set increase, while RMSE 
decreases.  However, the prediction performance of the test set is 
different from that of the training set.  When the number of PCF is 
12, R2 and PRD reach the maximum, RMSE is the minimum, and 
then the prediction performance decreases.  Therefore, as the 
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number of PCFs increases, the PLSR model has overfitting.  A 
smaller number of PCFs can reduce the complexity of the model.  
Therefore, this study used 12 PCFs to establish a PLSR prediction 
model. 

 
Note: PCF: Principal component factor. 

Figure 9  Relationship between the number of PCFs in PLSR and 
RMSECV 

 

Table 2  Influence of the number of PCFs on the prediction 
performance of the PLSR model 

Training set Test set Number of  
PCF R2 RMSE RPD R2 RMSE RPD 

10 0.89847 0.23187 3.1308 0.88157 0.24773 2.9388
11 0.90387 0.22543 3.2201 0.88235 0.24632 2.9498
12 0.90803 0.22054 3.2916 0.89033 0.24297 2.9964
13 0.91313 0.2145 3.3842 0.88338 0.24682 2.9497
14 0.91619 0.21066 3.4459 0.88506 0.24909 2.9228
15 0.91649 0.2102 3.4534 0.88423 0.25142 2.9344

Note: PCF: Principal component factor. 
 

The PLSR prediction model was established using the training 
set divided into 12 PCFs and AOFS.  The model prediction 
performance was verified using the test set, as shown in Figure 10.  
The model built with the training set is R2

 = 0.90803, RMSE = 
0.22054, RPD = 3.2916 (Figure 10a), and the test set R2

 = 0.89033, 
RMSE = 0.24297, RPD = 2.9964 (Figure 10b).  The model 
prediction results showed that the R2 of training and test sets of the 
STN prediction model established by the PLSR algorithm was 

 
a. Training set 

 
b. Test set 

Figure 10  Prediction results of the PLSR model 

greater than 0.89, RMSE was less than 0.24297, and RPD was 
greater than 2.9964.  The model’s prediction ability could be 
defined as “good”, with basic quantitative prediction ability and 
good generalization ability. 
4.3.2  BPNN model establishment 

The neural network toolbox in MATLAB 9.7.0.1190202 
(R2019b) software was used to establish the BPNN prediction 
model.  The tansig function was used as the transfer function of 
the hidden layer, linear function purelin was used as the transfer 
function of the output layer, and newff function was used to create 
the neural network.  The learning rate was set as 0.01, the target 
error was set as 0.001, the number of training iterations was set as 
1000, the training set was brought into the neural network for 
training by train function, and finally, the BPNN model which had 
been trained was simulated and predicted by the sim function. 

In BPNN modeling, the number of hidden layer neurons 
directly affects the model’s predictive performance.  According to 
Equation (6), the number of neurons was 8-18.  The minimum, 
maximum, and average values of the determination coefficients of 
training and test sets corresponding to the program running 15 
times were selected as evaluation indexes.  The obtained results 
are listed in Table 3.  A too-small number of neurons leads to 
inadequate model fitting and low model accuracy.  An excessive 
number of neurons leads to over-fitting and affects the model’s 
generalization ability.  Table 3 shows that when the number of 
neurons is 11, the training set’s min, mean, and three indicators in 
the test set are the highest.  Therefore, the model parameters were 
identified as collateral 70-11-1 (70 inputs, 11 hidden layer neurons, 
and 1 output), and the predicted results of its training set and test 
set are shown in Figure 11. 

 

Table 3  Influence of neuron number on BPNN model 
prediction performance 

Training set R2 Test set R2 Number of 
neurons Min Max Mean Min Max Mean 

8 0.74444 0.91141 0.82797 0.44527 0.72187 0.62905
9 0.74573 0.90545 0.85386 0.45987 0.77321 0.65920
10 0.74806 0.9114 0.83811 0.43088 0.72338 0.59701
11 0.76955 0.92511 0.86931 0.59020 0.81185 0.69744
12 0.55438 0.90864 0.83039 0.50233 0.71754 0.63657
13 0.65971 0.90746 0.84156 0.51564 0.72467 0.64891
14 0.58961 0.92549 0.81381 0.56518 0.70789 0.63549
15 0.70981 0.91982 0.81419 0.55491 0.73597 0.59987
16 0.69181 0.89771 0.82116 0.56941 0.74164 0.61094
17 0.54249 0.88540 0.80200 0.46971 0.71697 0.60159
18 0.53100 0.91056 0.82469 0.44569 0.70163 0.59483

 

The model prediction results show that the model established 
by the BPNN algorithm has R2

 = 0.92511, RMSE = 0.20276, RPD = 

3.5802 in the training set (Figure 11a), and an R2
 = 0.81185, an 

RMSE = 0.37370, and an RPD = 1.9482 in the test set (Figure 11b).  
The model has high accuracy and fitting effect in the training set, 
but the R2 and RPD in the test set have dropped significantly.  It 
shows that the STN prediction model established by the BPNN 
algorithm is lacking in generalization ability. 
4.3.3  PLSR-BPNN model establishment 

From the PLSR and BPNN model prediction results 
established above, the PLSR model has basic quantitative 
prediction capabilities and good generalization capabilities, but its 
prediction accuracy needs to be improved.  The BPNN model has 
good accuracy in the training set; however, its prediction 
performance in the test set is significantly reduced, and the model’s 
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generalization ability is insufficient.  To improve the accuracy and 
generalization ability of the model, PLSR and BPNN models were 
combined to establish an STN prediction model based on the 
PLSR-BPNN algorithm.  The parameter settings of the two 
parallel combined branch algorithms, PLSR and BPNN, are the 
same as the modeling parameters of the single PLSR and BPNN 
models, respectively.  The PCF of PLSR is 12, and the number of 
neurons in the hidden layer of BPNN is 11.  According to 
Equation (9), the weighted coefficients of PLSR and BPNN can be 
calculated as k1=0.72 and k2=0.28, respectively, and the prediction 
results of the training set and test set of the PLSR-BPNN model are 
obtained as shown in Figure 12. 

 
a. Training set 

 
b. Test set 

Figure 11  Prediction results of the BPNN model 
 

 
a. Training set 

 
b. Test set 

Figure 12  Prediction results of the PLSR-BPNN model 

Figure 12 shows that the prediction model established by the 
PLSR-BPNN algorithm has an R2

 = 0.92454, an RMSE = 0.20186, 
and an RPD = 3.5961 in the training set (Figure 12a), and R2

 = 

0.92186, RMSE = 0.21781, and RPD = 3.3426 in the test set (Figure 
12b).  The PLSR-BPNN model training and test sets showed an 
R2>0.93 and an RPD>3.73; therefore, the prediction performance 
of the model can be rated as “excellent”, with accurate quantitative 
analysis capabilities and good generalization capabilities. 
4.4  Comparative analysis of STN content models 

To improve the detection method accuracy, PLSR, BPNN, and 
PLSR-BPNN algorithms were used to test the training and test sets 
of AOFS to find the optimal relationship model.  Among the 
prediction models of the PLSR, BPNN, and PLSR-BPNN training 
sets, the prediction effect of the PLSR-BPNN model was the best 
(the R2 and RPD are the largest, and the RMSE is the smallest), 
followed by BPNN, and PLSR, as shown in Figures 10a, 11a, and 
12a.  However, the R2 of the three models are all greater than 0.90, 
and the RPD is greater than 3.29, indicating that the prediction 
performance of the three models in the training set can be rated as 
“excellent”, and they have accurate quantitative analysis 
capabilities. 

The test set was brought into the already trained BPNN, PLSR, 
and PLSR-BPNN models to obtain the prediction results in Figures 
10b, 11b, and 12b.  For a more direct comparison, a scatter plot of 
the prediction results of the three models, and the actual STN 
content was drawn as shown in Figure 13, and the relevant 
prediction performance of the model test set is listed in Table 4.  
The prediction result of the BPNN model has a large deviation 
from the actual value, consistent with its lower R2, as shown in 
Figure 13.  Compared with the BPNN model, the accuracy of the 
model established by the PLSR algorithm is significantly improved, 
and it can quantitatively predict the STN content.  For the 
PLSR-BPNN model, except that the predicted values of soil 
samples 3 and 6 are significantly different from the actual STN 
content, the rest of the test set samples can predict the STN content 
accurately.  The results showed a high correlation between soil 
pyrolysis gas and STN content. 

 
Figure 13  Comparison of model prediction results and actual soil 

total nitrogen content 
 

Table 4  Comparison of prediction performance of model test 
set 

Models R2 RMSE RPD 

PLSR 0.89033 0.24297 2.9964 
BPNN 0.81185 0.37370 1.9482 
PLSR-BPNN 0.92186 0.21781 3.3426 

Note: PLSR: least squares regression algorithm; BPNN: Back-propagation 
neural network. 

 

The comparison of the prediction performance of the test set 
(Table 4) shows that the R2 of the three models are all greater than 
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0.81, and the RMSE<0.38, indicating that all models have good 
prediction capabilities.  However, in terms of model rating, the 
BPNN algorithm prediction model can barely be defined as 
“qualified”, the PLSR model can barely be defined as “good”, and 
only the PLSR-BPNN model can be defined as “excellent”, with 
accurate quantitative analysis capabilities.  The modeling results 
showed that the PLSR-BPNN-algorithm STN-prediction model 
could effectively improve the prediction accuracy of the PLSR 
model, solve the problems of the insufficient generalization ability 
of the BPNN model, and provide a new reliable method for STN 
measurement.  The reason is that there is a certain degree of linear 
and nonlinear correlation between the STN content and the AOFS.  
The PLSR-BPNN model compensates for the lack of nonlinear and 
linear relationships between the PLSR and BPNN models to 
establish a more accurate STN prediction model. 

5  Conclusions 

This study proposed a method of soil total nitrogen (STN) 
content detection based on pyrolysis and an artificial olfaction 
system.  The method overcomes the disadvantages of the 
traditional STN content determination methods, such as 
time-consuming, complicated operation, and pollution.  The 
spectroscopic method for determining STN is affected by soil 
moisture, soil texture, and iron oxide.  The disadvantages of the 
Py-GC/MS method are that the equipment acquisition cost is high, 
it cannot be used exclusively to determine STN, and it is 
time-consuming and difficult to rapidly determine the TN content 
in many soil samples.  The detection method in this study achieves 
a low-cost, rapid, and accurate determination of STN content. 

The gas sensor array used in this study has specificity and 
cross-sensitivity to produce specific responses to different soil 
pyrolysis gases, which lays the foundation for establishing STN 
prediction models.  The high prediction accuracy of the three 
models proved that the soil pyrolysis gas has a high correlation with 
the STN content.  The optimal pyrolysis temperature of 400°C and 
the pyrolysis time of 3 min were used for soil samples pyrolysis, and 
ten different types of gas sensors were used to build an artificial 
olfactory system to complete pyrolysis gas collection, and the PLSR, 
BPNN, and PLSR-BPNN algorithms were used to construct the 
STN prediction, achieving the accurate STN content prediction. 

The detection accuracies of PLSR, BPNN, and PLSR-BPNN 
models in the STN content detection method based on pyrolysis 
and artificial olfactory system were compared and analyzed.  The 
relationship between artificial olfactory feature space and STN 
content was established using these three models.  R2, RMSE, and 
RPD were used as performance indexes to compare the prediction 
ability of the models.  The modeling results showed that all 
models had good prediction ability for STN content, but the 
PLSR-BPNN model had the highest R2 and RPD and the lowest 
RMSE.  The reason is that there is a certain degree of linear and 
nonlinear correlation between STN content and AOFS.  The 
PLSR-BPNN model can make up for the lack of nonlinear and 
linear relationships between PLSR and BPNN models respectively, 
to establish a more accurate prediction model of STN content.  
The method based on pyrolysis and artificial olfactory system was 
stable and effective for determining STN content and provided a 
new basis for rapid and accurate measurement of STN content. 
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