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Abstract: The material feeding changing of combine harvester is easy to cause accumulation and blockage of the vibrating
screen, which seriously affects the harvest operation. In order to alleviate such accumulation and blockages on the vibrating
screen surface, the guide chute rotation angle of the improved variable amplitude screening mechanism was selected as the
target variable, and EDEM-RecurDyn was employed to simulate the anti-blocking process of the variable amplitude under a
changing feeding quantity (0.5 kg/s abnormal, 0.2 kg/s normal) of materials (rice grain and stem mixture). A BP (an error back
propagation algorithm) neural network was designed and the prediction model of the material distribution was subsequently
constructed on the variable screening surface under different chute angles during abnormal feeding. The results revealed a
continuous decrease in the quality and time of the material blockage at the front end of the screen surface with the increasing
guide chute angle. At the guide chute angle of 20°-45° and adjustment time of 3-6 s, the blocked and accumulated materials at
the front-end screen surface was be moved back to Grid 6 for screening. However, overtime, the screen surface materials
continued to move back under the chute angle of 40°-45°, which had a great impact on the screening performance. At the guide
chute angle of 30°-35° and adjustment time of 4 s, the materials on the screen surface were evenly distributed in Grid 1-6. This
was able to alleviate the accumulation and blockage of the screen surface materials. The R of the material distribution
prediction model (BP neural network) on the screen surface was determined as 0.97, indicating the high reliability and accuracy
of the material distribution model on the screen surface based on the BP neural network. This work provides an important
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reference for the variable amplitude intelligent control of screen surface material anti-blocking.
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1 Introduction

The cleaning process is an integral component of crop
harvesting. The vibrating screen is an important part of the cleaning
link, which uses the principle of vibration to screen materials!".
Variations in the crop density and operating parameters of the
combine may alter the material feeding quantity during the combine
harvesting operation. Furthermore, all working links of the combine
are closely related, and the vibrating screen in the cleaning link may
exhibit low load limit and poor adaptability to other links. This can
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result in the material accumulation and blockage on the screen
surface due to changes in the material feeding quantity, seriously
affecting the harvest operation. Thus, improvements must be made
to the vibrating screen in order to reduce the risk of material
accumulation and blockage on the screen surface.

Numerous studies have investigated the anti-blocking screening
of the vibrating screen, including the development of screens with
multi degrees of freedom, the optimization of operating parameters,
the application of variable amplitude principles etc. The multi-
degree-of-freedom screening mechanism is huge, complex, and
expensive, and thus it is not suitable for the limited cleaning space
of combine harvesters®. Previous research has demonstrated
amplitude and vibration frequency as key factors affecting vibration
screening”™, yet the adjustment of the latter is not suitable for the
fixed and related transmission ratios of the working parts included
in the majority of combine harvesters in China. The principle of
variable amplitude is based on the boom reciprocating vibrating
screen in the combine to dynamic change the length of the front
boom and the position of the suspension point. It changes the
original parallelogram structure and motion trajectory, resulting in
an inconsistent amplitude between the front and rear ends of the
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screen surface. Under a variable amplitude, the amplitude of the
screen surface front end of increases, while that of the rear end
decreases. This is able to enhance the throwing strength for the front
end of the screen surface due to the accumulation and blockage of
materials caused by the increased material feeding quantity”’. The
function of variable amplitude screening is relatively single, namely
the materials at the front end of the screen surface disperse and
move back quickly. The variable amplitude adjustment is also
convenient and is able to effectively alleviate the accumulation and
blockage of materials on the screen surface (particularly at the
screen surface front end), improving the adaptation ability to other
links. In addition, the variable amplitude screening structure is
compact and easy to arrange in the limited cleaning space of the
combine harvester and is thus worthy of further study.

The discrete element method (DEM) is a simulation approach
for particle motion that can generate multiple particles to simulate
the vibration screening process under variations in material feeding.
DEM has been widely employed in recent years in the field of
agricultural material screening, reducing test costs and improving
the efficiency®. The applications of DEM include the simulation
and analysis of the vibrating screening process, the investigation of
motion law, the screening and screening mechanism of single and
group particles on the vibrating screen”'?, analyzing the influence
of the vibrating screen working parameters on the particle motion
and screening performance, and optimizing the vibrating screen
working parameters!*'?. However, DEM is only able to simulate
simple motion forms, while complex and adjustable motion forms
prove to be too difficult for this approach. In order to overcome this,
RecurDyn (multi-body dynamics software) and EDEM (discrete
element software) are combined to jointly simulate the vibration
screening process of materials®™'), thus facilitating the regulation of
variable amplitude motion. In addition, several scholars have
investigated the material distribution of the screen surface for the
screening and blocking prevention of vibrating screens!"*".
However, the accumulation and blockage of materials are typically
focus on vibrating screen surface. Thus, there is an urgent demand
for an accurate and reliable material distribution model of the screen
surface to further optimize its structure and operating parameters
and minimize, accumulation and blockages.

Machine learning is a computer technology branch that
employs existing data to determine a model and uses this model to
predict the future. The integration of neural networks with deep
learning is widely used in machine learning due to its capabilities
deep self-learning, self-organization, and self-adaptation®?. The
BP neural network is a multilayer feedforward neural network
trained according to the error back propagation algorithm. The
popular BP neural network possesses numerous favorable
properties, including a strong nonlinear mapping between input and
output, high self-adaptation and self-learning, good fault tolerance,
etc. It is also able to establish an accurate and reliable prediction
model based on the existing data via self-adaptation and deep self-
learning. The BP neural network is widely used in agricultural fields
such as automatic control, agricultural machinery power prediction,
information decision-making, variable rate fertilization and crop
planting, and thus plays an important supporting role in agricultural
intelligence™?!. Specific applications include the identification of
crop varieties and growth status predictions™?", optimizing the
threshing and screening parameters of materials, and screening
performance predictions®’?”. However, limited studies have
employed neural networks to investigate the problem of material
accumulation and blockage on the vibrating screen surface under a

changing material distribution. Previous work has proposed a
vibrating screen particle distribution model based on a biological
neural network (BNN)PY, yet this lacks the advantages of self-
learning and self-adaptive of the BP neural network. Moreover, the
particle through--screen and vibration transportation in the
distribution model cannot by efficiently applied to the variable
amplitude screen material distribution model.

Although the vibrating screen with variable amplitude principle
can effectively alleviate the accumulation and blockage of screen
surface materials, there is still a lack of accurate and reliable screen
surface material distribution models to further optimize and adjust
the wvariable amplitude. Theoretical analysis (i.e., screening
probability and dynamic models) is complex and is not able to fully
establish a material distribution model for variable amplitude screen
surfaces, and the accuracy of the model is difficult to ensure. In
particular, for variable amplitude screen surfaces, the amplitude and
vibration direction angle at different positions of the variable
amplitude screen surface are different, which results in the
inconsistency of the screening probability, moving speed and
acceleration of particles at different positions of the screen surface.
The BP neural network can establish a relatively accurate and
reliable material distribution model based on the existing data via
deep self-learning, which is difficult to achieve through theoretical
analysis and modeling. More specifically, the EDEM can simulate
the variable amplitude screening and blocking prevention process
under changing material feeding quantities in order to collect
enough distribution data of particle groups on the screen surface. In
order to judge the anti-blocking screening effect of variable
amplitude adjustment on vibrating screen under abnormal feeding
conditions, optimize variable amplitude adjustment and establish
variable amplitude adjustment strategy, material distribution model
on screen surface is established through RecurDyn-EDEM
simulation data and BP neural network. This overcomes the
limitations of EDEM simulation and the difficulty of traditional
theoretical modeling, and provide an important reference for the
future amplitudes to alleviate the
accumulation and blockage of screen materials.

regulation of variable

2 Materials and methods

2.1 Variable amplitude principle and screening mechanism
Figure 1 presents the principle of variable amplitude, where AC
and BD represent the front boom and rear boom respectively, CD is
the vibrating screen, HF is the connecting rod, G is the center of the
eccentric wheel, and « is the initial inclination of the vibrating
screen. ACDB to AC'D'B in Figure 1 demonstrates the movement
process of the reciprocating vibrating screen, whereby the screen
surface moved backward, and the amplitude and vibration direction
angle of each position of the screen surface did not change. Front
boom AC was rotated by a certain angle (maximum 45°) from the
vertical state and fixed to the position of A', and thus A'CDB
formed a variable amplitude screening mechanism. A'CDB to
A'C"D'B reveals a change in the motion state of the vibrating screen
at this time. Comparing CD to C'D' and CD to C"D' demonstrates
that the initial attitude inclination angle of vibrating screen CD did
not change. However, parameters such as the amplitude and
vibration direction angle at different positions of screen surface
changed, and the amplitude at the screen surface front end was
significantly greater than that at the rear end. The principle of
variable amplitude is based on changing the length of the front
boom and the position of the suspension point via the boom
reciprocating vibrating screen to change the original parallelogram
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structure and motion trajectory, and to achieve distinct amplitudes
at the front and rear ends of the screen surface. More specifically,
the amplitude of the front end is enhanced, while the rear end
amplitude is reduced. This can alleviate the accumulation and
blockage of the materials on the screen surface, which typically
occurs at the front end"”.
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---- Variable amplitude adjusted motion state
( ---- Variable amplitude unadjusted motion state
— Initial state
~~~~~~~~ Path of particle
o X
Figure 1 The adjusting screen surface amplitude principle by the

variable amplitude screening mechanism.

Figure 2 depicts the improved variable amplitude screening
mechanism, which is composed of a hopper, baffle, vibrating
screen, guide chute, boom, receiving box, connecting rod, eccentric
wheel, and rotating shaft. The length, width and height of the
hopper were 200 mm, 100 mm, and 1000 mm respectively, the
length, width and height of the vibrating screen were 1000 mm,
200 mm, and 200 mm respectively, and the initial attitude
inclination was 4°. Material feeding was realized through the
hopper, and the material feeding rate was controlled by the moving
speed and moving time of the baffle, allowing for changes in the
material feeding quantity. The variable amplitude adjustment was
performed by rotating the guide chute at different angles. An
increase in the guide chute rotation angle enhanced the initial
attitude inclination of the vibrating screen and the amplitude of the
screen surface front end, while the amplitude of the rear end
decreased. This accelerated the backward movement and dispersion
of the materials, making full use of the screen surface, and

20 mm
2.25 mm

a. Model of rice stem

c. Set kinematic model in RecurDyn

alleviating the accumulation and blockage of materials at the screen
surface front end.

1. Hopper 2. Baffle 3. Vibration sieve 4. Boom 5. Receiving box 6. Connecting
rod 7. Eccentric wheel 8. Guide chute 9. Rotating shaft
Figure 2 Three dimensional model of the improved variable
amplitude screening mechanism

2.2 EDEM-RecurDyn simulation model

Three-dimensional models of rice and stem grains were
established through the particle function of EDEM. Some scholars
studied the influence of the ratio of ball to powder diameter (BPDR)
and the shape of powder particles on the EDEM simulation results
and time. The results showed that the size and shape of powder
particles would not significantly change the motion mode and
simulation results of the ball, and the simulation time and data size
increased exponentially with the increase of BPDRM™. Therefore, a
cylindrical rice stem model (Figure 3a) and elliptical rice grain
model (Figure 3b) were employed to instead of various sizes
particles for simulation according research”’.
SoildWorks was used as the three-dimensional solid model of the

to previous

variable amplitude screening mechanism. This model was imported
into RecurDyn to set the relevant kinematic pairs and driving

> o

K2
b. Model of rice grain

<\Mﬁdefact°ry

|+ Computational
domain

d. Set simulation model in EDEM

Figure 3 Model settings in the variable amplitude screening process
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functions. Figure 3c presents the kinematic model of the variable
amplitude screening mechanism and the relevant constraints and
function settings. The key components (contact with the rice grain
and stem particles in EDEM) were set as the WALL format in
RecurDyn, and the WALL files were imported into EDEM to set
the particle factory, contact model, calculation domain, etc. Figure
3d presents the WALL models and several EDEM settings.
2.3 Simulation parameters setting

RecurDyn is a multi-body system dynamics simulation
software that can simulate the statics, kinematics, and dynamics of a
model. RecurDyn was employed to add the corresponding
kinematic pairs and constraints to each three-dimensional model
component of the variable amplitude screening mechanism for the
subsequent kinematic simulation. Table 1 reports the kinematic
pairs and constraint settings of the components for the RecurDyn
variable amplitude screening mechanism.

Table 1 Motion pairs and the constraints of the variable
amplitude screening mechanism in RecurDyn.

Number Motion pair Connector
1 Fixed hinge Hopper and Ground
2 Slip hinge Hopper and Baffle
3 Rotating hinge Boom and Ground
4 Rotating hinge Boom and Vibrating screen
5 Rotating hinge Connecting rod and Vibrating screen
6 Rotating hinge Connecting rod and Eccentric wheel
7 Rotating hinge Eccentric wheel and Ground
8 Rotating hinge Pulley and Vibrating screen
9 Slip hinge Pulley and Guide chute
10 Fixed hinge Guide chute and Rotating shaft
11 Rotating hinge Rotating shaft and Ground
12 Fixed hinge Receiving box and Ground

The driving functions of the variable amplitude screening
mechanism were set via RecurDyn (Table 2). STEP (unit step
response function) was created, amongst other functions to control
the baffle displacement (for material feeding rate changes), the
guide chute rotation angle (variable amplitude adjustments), and the
eccentric rotational speed (for the vibration frequency control and to
drive the variable amplitude screening mechanism). Based on
previous work on the optimization of the vibrating screen operating
parameters (i.e., the vibration frequency)™, the vibration frequency
of the vibrating screen was set to 5 Hz. For the RecurDyn-EDEM
simulations, the variable amplitude screening process under
abnormal feeding needs to set the same simulation time and time
steps, respectively. The final simulation time was set to 12.6 s: i) the
guide chute rotation angle for the variable amplitude screening
mechanism was adjusted within 0-2.5 s; ii)the dynamic generation
of particles in the EDEM particle factory to fill the hopper with
materials was performed within 0-2.5 s; iii) and the opening the
hopper outlet baffle to feed materials occurred between 2.5-2.6 s;
and iv) the material feeding and variable amplitude screening
processes were performed within 2.6-12.6 s.

The rice and stem particle factories were set at 400 mm above

Table 2 Set the driving functions of variable amplitude
screening mechanism in RecurDyn.

Name Function expression

STEP (time,0,0,2.5,0) + STEP (time,2.5,0,2.6, -0.06) +
STEP (time,7.6,0,12.6,0)

Guide chute STEP (time,0,0d,2.5, -5d) + STEP (time,2.5,0d,12.6,0d)
Eccentric wheel 10PI

Hopper and baffle

the hopper, respectively, for the importation of the WALL model
into EDEM. Both particle factories were rectangular, with a length
and width of 190 mm and 90 mm, respectively. Following the
calculations, the generation rate of the rice and stem was set to
0.475 kg/s and 0.025 kg/s, the total mass to 2.375 kg and 0.125 kg,
and the total number of particles to 53 096 and 3499, respectively.
This ensured that the rice grain and stem particles could complete
the material filling of the hopper within 2.5 s. The relationship
between the vertical cross-sectional area of the hopper outlet and
the material feeding rate was obtained by fitting the preliminary
simulation test data. The STEP function was set in RecurDyn to
control the upward moving distance of the baffle, to change the
cross-sectional area of the outlet, and to control the change of the
feeding rate (e.g., 0.5 kg/s). The no-slip Hertz-Mindlin model was
adopted for the contact model between particles, and between
particles and numerous components. The predecessors have
conducted experimental measurement of relevant parameters . No
relevant parameters of rice grains and stems have been measured to
reduce the duplication of research work, and only some parameters
have been slightly adjusted to improve the calculation efficiency
and save simulation time. Table 3 lists the material properties and
contact parameters of the rice grain and stem in EDEM.

Table 3 Material properties and contact parameters of

particles in EDEM.
Item Attribute Numerical value
Poisson’s ratio 0.3
Rice grain Shear modulus/Pa 2.6x10°
Density/kg-m™ 1350
Poisson’s ratio 0.4
Rice stem Shear modulus/Pa 1x10°
Density/kg-m™ 100
) ) Poisson’s ratio 0.3
sngr?nl; zlnggkllggi; Shear modulus /Pa 7x10*
Density /(kg-m™) 7850
Restitution coefficient 0.2
Rice grain-Rice grain Static friction coefficient 1.0
Dynamic friction coefficient 0.01
Restitution coefficient 0.2
Rice grain-Rice stem Static friction coefficient 0.8
Dynamic friction coefficient 0.01
Rice grain-Variable Restitution coefficient 0.5
amplitude screening Static friction coefficient 0.7
mechanism Dynamic friction coefficient 0.01
Restitution coefficient 0.2
Rice stem-Rice stem Static friction coefficient 0.8
Dynamic friction coefficient 0.01
Rice stem-Variable Restitution coefficient 0.2
amplitude screening Static friction coefficient 0.8
mechanism Dynamic friction coefficient 0.01

2.4 Simulation test scheme

0.5 kg/s was selected as the abnormal constant feeding rate for
testing. When the feeding quantity of the materials increased, the
angle of the guide chute at the front end of the screen surface was
adjusted, the amplitude and vibration direction angle at screen
surface were changed for positions, and the simulation test of the
variable amplitude anti-blocking screening process was performed.
The Grad Bin Group of EDEM was implemented to divide the
screen surface into several grids along the length direction and
subsequently derive the material distribution on the screen surface
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with variable amplitudes at different times. Then the distribution of
the material backward movement on the screen surface was
analyzed with variable amplitude under different guide chute
angles. Table 4 reports the simulation test scheme for the anti-
blocking of the variable amplitude screen surface.

Table 4 Test scheme for the anti-blocking of a variable
amplitude with increasing material feeding.
Order number Guide chute angle/(°)
1 0

O 00 N N L B W
383
S

._
o
~
O

2.5 Simulation data
The Grid Bin Group of EDEM was employed to divide the
screen surface of the variable amplitude screening mechanism into

10 grid areas along the length direction (from the screen front to
rear) in Figure 4, named as Grid 1-10 respectively. Under the
changing material feeding quantity (abnormal constant feeding: 0.5
kg/s) and different guide chute angles (variable amplitude
adjustment), the material quality change was determined in the
screen surface grid areas across different times. The vibration
frequency of the variable amplitude screening mechanism was 5 Hz,
the movement was completed in 0.2 s, and data was collected every
0.1 s. The material distribution changes in the screen surface grid
areas under different guide chute angles were then derived. Table 5
reports the material quality changes in 10 example grid areas of the
screen surface at the guide chute angle of 5°.

Rice grain
Rice stem

Grid 1-10

Figure 4 Schematic diagram of simulation processing.

Table 5 Material quality distribution in different screen surface grid areas (guide chute angle: 5°).

Order number ~ Time/s  Grid 1/kg ~ Grid 2/kg  Grid3/kg  Grid4/kg  Grid 5/kg  Grid 6/kg  Grid 7kg  Grid 8/kg  Grid9/kg  Grid 10/kg
1 2.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 2.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 2.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 2.90 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 3.00 0.06 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 12.10 0.05 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 12.20 0.04 0.05 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 12.30 0.05 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9 12.40 0.04 0.05 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 12.50 0.05 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2.6 Establishment of BP neural network model

The BP neural network (BPNN) is a multilayer feedforward
neural network trained according to the error back propagation
algorithm. It is composed of input, output and hidden layers and
searched by gradient descent method (along the gradient descending
direction to approach minimum deviation) in order to minimize the
error mean square deviation of the actual and expected output
values of the network™. The BP neural network has a strong
nonlinear mapping ability, which can automatically extract the
"reasonable rules" between input and output data through learning,
and has strong self-adaptive and self-learning capabilities. The BP
neural network is currently the most widely used neural network
plays an important supporting role in agricultural intelligence.

The BP neural network model was designed using Matlab2017a
(MathWorks). The rotation angle of the guide chute, feeding quan-
tity and time were taken as the input layers in BP neural network
model. Each input layer had three nodes and each grid area on the
variable amplitude screen surface was taken as the output layer. The
number of nodes in the output layer was set to 10. The basic prin-
ciple for selecting the number of nodes in the hidden layer was to
select between the number of nodes in the input and output layers,
which was approximately two-thirds of the sum of the number of

input and output layers. Therefore, the number of nodes in the
selected hidden layer was 8, 9 and 10 respectively. The BP neural
network model was trained with different numbers of hidden layer
nodes. When the number of neurons in the hidden layer was deter-
mined as 10, the gradient of the BP neural network model decreased
rapidly, the error was small and the fitting accuracy was high.

Due to the large number of samples, the training, verification,
and test set samples of the BP neural network model were randomly
selected according to the proportion 80% : 10% : 10% with the aim
of increasing the number of training samples, and ultimately
improving the training model accuracy. The Levenberg Marquardt
function, a nonlinear optimization approach based on the Newton
and gradient descent methods, was selected as the training function.
The gradient and Newton methods are the most widely used
nonlinear least square algorithms. The former is fast and has a short
training time, yet it consumes a lot of computer memory. Therefore,
a high-performance workstation was employed to build and train the
BP neural network model, allowing for a short completion time.
The weights and thresholds of the BP neural network model were
set as the default values, and the default learning function was used
to establish the adjustment rules. Figure 5 depicts the BP neural
network structure built using Matlab2017a (MathWorks).
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Figure 5 BP neural network structure designed based on Matlab

3 Results and analysis

3.1 Simulation process and results
Figure 6 depicts the anti-blocking simulation process of the

al. Guide chute angle=0°, time=2.6 s.

shniaiionl "

a2. Guide chute angle=0°, time=6.1 s.

: '
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meeeiimennionny .. .. _

a3. Guide chute angle=0°, time=10.1 s.

e :
ciderel i -

a4. Guide chute angle=0°, time=12.6s.

variable amplitude screen surface under the abnormal and constant
feeding of materials (0.5 kg/s). Considering the dynamic changes of
the material feeding quantity in the subsequent tests, a particle
factory above the hopper was established to dynamically generate
particles for material filling, and controlled the baffle to move a
certain distance in RecurDyn, hence changing the material feeding
quantity. The rice grain and stem particles continuously collided
with the screen surface during the simulation process, and
penetrated and moved backward with the movement of the variable
amplitude screening mechanism. The amplitude of the screen
surface front end increased with the guide chute angle, as did the
local throwing strength of the materials, while the materials at the
front end of the screen surface accelerated backwards. This
effectively alleviated the accumulation and blockage of the
materials at the front end of the screen surface and achieved the

bl. Guide chute angle = 35°, time=2.6 s.

e i ootk L

b2. Guide chute angle = 35°, time=6.1 s.

i TR e = X 1

b3. Guide chute angle = 35°, time=10.1 s.

b4. Guide chute angle = 35°, time=12.6 s.

Figure 6 Simulation screening process of rice grain and stem under different variable amplitude regulation.
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normal screening of the materials.

At the guide chute angle of 0°, the variable amplitude screening
mechanism was in the form of a reciprocating vibrating screen
(Figure 6a). As the simulation proceeded, the materials on the
screen surface were generally concentrated at the front screen
surface for screening. Such conditions are likely to exceed the upper
load limit of the vibrating screen for the continuous feeding of
materials under changing quantities (abnormal constant feeding:
0.5 kg/s). This can cause the accumulation and blockage of
materials at the front end of the screen surface and affect the normal
material screening progress. At the guide chute angle of was 35°,
the material quickly moved back to the middle area of the screen
surface within a period (2.6-6.1 s) when it fell to the front end of the
screen surface (Figure 6b). As the simulation progressed, the
materials were generally concentrated in the center of the screen
surface for screening. Comparing the guide chute angles of 35° and
0° reveals a reduction in the material quantity at the screen surface
front end during the guide chute angles of 35° effectively
alleviating the accumulation and blockage of the screen surface
caused by the increased feeding quantity, and shorting the screening
time of the changed feeding quantity.

3.2 BP neural network training results and analysis

The BP neural network model was used to train randomly
selected samples several times. The R of each training exceeded
0.96. The best training results (the R and the error) were selected to
establish the BP neural network prediction model. Figure 7 presents
the mean square error (MSE), error histogram and regression curve
of the model. When the training reached 76 steps, the MSE of the
training, verification, and test sets converged to a lower level, with a
rapid convergence speed Figure 7a. The error difference between
the predicted and output values of the training, verification, and test
sets was small, and the error followed a normal distribution (Figure
7b), with error values generally concentrated between —0.009 05 to
0.009748. The error difference distribution was relatively
concentrated near the zero line, with error values approximately
0.000348. This indicates small errors between the BP predicted data
and output values, as well as a high fitting degree. Furthermore, the
correlation between the predicted and output values of the training,
verification, and test sets exceeded 0.97 (Figures 7c-7f). This
reveals the closeness between the BP neural network model
predictions and the simulation values, with the BP neural network
prediction model demonstrating a high reliability. The changes in
the screen surface material distribution with variable amplitude
were predicted by the BP neural network model and compared with
the equivalent simulation values. This verified the accuracy and
reliability of the BP neural network training model in predicting the
screen surface material distribution.

3.3 Prediction material distribution model results and analysis

Figure 8a depicts the changes in the screen surface material
distribution of the variable amplitude screening process under
different guide chute angles simulated by the EDEM-RecurDyn
model. The continuous increase in the guide chute angle resulted in
a reduction in the material quality of Grid 1, 2 and 3 at the screen
surface front end, while that of Grid 4, 5, 6 and 7 gradually
increased, and the materials on the screen surface were evenly
distributed. The time taken for the accumulation and retention of
materials at the screen surface front end decreased (particularly for
materials in Grid 1-3) with the increasing guide chute angle. This is
because the greater guide chute angle (variable amplitude
adjustment) enhanced the amplitude at the screen surface front end,
which accelerated backward movement of materials, and they thus

no longer accumulated at the front end. However, at the guide chute
angles of 40°-45°, some of the material fell into the rear area of the
screen surface during the screening, and it could be predicted that
the materials would be discharged from the vibrating screen with
the vibration of the screen surface over time. This had an adverse
impact on the screening performance.

At the guide chute rotation angles of 0°-15°, the backward
moving speed of the material was slow, the backward moving mass
of the material was small, with an extensive retention time of the
material at the screen surface front end (Figures 8al-8a4; Figures
8b1-8b4). At around 8 s, the material began to approach Grid 5. The
variable amplitude adjustment (guide chute angles of 0°-15°) did
not have any obvious effect on relieving the accumulation and
blockage of the material on the screen surface. At the guide chute
angles of 20°-25°, the backward movement effect of the material on
the screen surface began to appear, and the material on the screen
surface reached Grid 6 in approximately 6 s. At this time, the
materials on the screen surface were evenly distributed (Figures 8a5-
8a6; Figures 8b5-8b6). The variable amplitude adjustment was
observed to alleviate the material accumulation and blockage at the
front end of the screen surface to some extent. At the guide chute
angles of 30°-40°, the materials were maintained at the screen
surface front for a sort time (Figures 8a7-8a9; Figures 8b7-8b9). At
around 4 s, the materials on the variable amplitude screen surface
were evenly distributed in Grid 1-6 and the backward movement
effect of the screen surface materials under the variable amplitude
adjustment (relative to other guide chute angles) improved.
However, as the material screening time progressed, the screen
surface materials at the guide chutes angle of 30° were generally
maintained in Grid 1-6 for screening. This was conductive to
avoiding the blocking of the variable amplitude screen surface and
for material screening. The screen surface material under the guide
chute angle of 40° began to gradually move to Grid 7-9 in the rear
region of the vibrating screen. This may lead to the material being
discharged from the rear part of the vibrating screen during the
screening, which can have a serious impact on the screening
performance, namely a decline in the screening efficiency and a
continuous increase in the loss rate. At the guide chute angle of 45°,
the material at the screen surface front end reached Grid 6 in 3 s,
with an obvious backward moving effect (Figures 8a10 and 8b10).
However, as the time progressed, the materials on the screen surface
also began to move towards Grid 7-10 and the materials moved
further backwards. This variable amplitude adjustment is thus not
desirable. The screening and anti-blocking time under the guide
chute angle of 45° should be controlled according to the change of
material feeding quantity. For example, when the feeding quantity is
0.5 kg/s, the screening and anti-blocking time should not exceed 3 s.

At the guide chute angles of 20°-40°, the materials at the front
end of the screen surface were evenly distributed in Ggrid1-6 within
3-6 s. Under small guide chute angles, a longer time was required
for the material to move back (Figures 8al-8a3; Figure 8b1-8b3),
indicating the long time taken to alleviate the accumulation and
blockage of the screen surface. Again, this is not desirable. It aimed
to quickly move the materials back to the vicinity of Grid 6 (not
passing Grid 7), such that they were able to make full use of the
front and middle screen surface (Grid 1-6) for screening. This could
better alleviate the problem of material accumulation and blockage
at the front end of the screen surface. Therefore, the angle and time
of the guide chute need to be regulated. When the material feeding
quantity changed (abnormal and constant feeding: 0.5 kg/s), the
optima guide chute angle was 20°-45°, with a regulation time of 3-
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Figure 7 Training processes and results of the BP neural network model based on Matlab

6 s. At this time, the materials at the screen surface front end were
able to move quickly back to the vicinity of the Grid 6 to alleviate
the accumulation and blockage of the material.

Figure 8b presents the material distribution diagram of the
variable amplitude screen surface predicted by the BP neural
network model. The change trends of the variable amplitude screen

surface material distributions in Figures 7a and 7b are essentially
consistent. As the vibration frequency of the vibrating screen was
5 Hz, the variable amplitude screening mechanism completed its
movement every 0.2 s and collected the material quality in different
grid areas every 0.1 s. Therefore, the material distribution diagram
of the variable amplitude screen surface obtained from the
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Figure 8 Comparison of variable amplitude screen surface material distributions under simulation and BPNN prediction

simulation test presented a sawtooth shape across time. Moreover,
the material distribution diagram of the variable amplitude screen
surface predicted by the BP neural network training model was
relatively smooth.

Comparing Figures 8a and 8b reveals a high fitting degree
between the BP-predicted and simulated screen surface material
distribution for the area with the most material on the variable
amplitude screen surface. The area with less material (dark blue
area in Figure 8) was associated with a certain error in the BP-
precited screen surface material distribution (i.e., the difference
between zero values and small negative values, with errors mainly
concentrated around —0.001 09, Figure 7b). This had minimal
impact on the material distribution on the variable amplitude screen
surface. Therefore, the fitting degree between Figure 8a and 8b was
very high, indicating the reliability of the BP neural network
prediction model. This verified the feasibility and accuracy of the
BP neural network for predicting the varying material distribution in
different grid areas of the variable amplitude screen surface, and
provides a part of the basis to establish the regulation model of
variable amplitudes under changes in material feeding.

4 Conclusions

In this study, the guide chute rotation angles were selected as
the variable, the process of variable amplitude screening and anti-
blocking under a changing feeding quantity was simulated based on
EDEM-RecurDyn, and the prediction model of the material
distribution on the screen surface under different variable amplitude
was constructed by the BP neural network.

The results indicated that the material accumulation mass and
time at the front end of the variable amplitude screen surface
decreased with the increasing guide chute angle. Under the
abnormal feeding rate of 0.5 kg/s, the angle and adjustment time of
the guide chute should be controlled at 20°-45° and 3-6 s
respectively, such that the material at the front end of the screen
surface can quickly move back to the center of the screen surface.
The angle of the guide chute was 30°-35°, and the materials at the
front of the variable amplitude screen surface were evenly
distributed in grid areas 1-6 within just 4 s, with more favorable
screen surface anti-blocking effect.

The R values of BP neural network model exceeded 0.97,
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which indicated the higher accuracy. This provides an important
basis for the prediction and analysis of the material distributions for
screen surfaces with variable amplitudes. In particular, the variable
amplitude can be adjusted to alleviate the accumulation and
blockage of the material on the screen surface, facilitating the
intelligent control of the material on screen surfaces with variable
amplitude.

Predicting the material distribution on the screen surface
through a BP neural network allows us to determine the adjustment
size and time of the guide chute angle. This provides a basis for
establishing variable amplitude adjustment strategy. The proposed
approach has great potential. In the future, additional variable
amplitude adjustment data (more abnormal feeding rate of the
threshed mixture) are required for accurate predictions and analysis,
so as to establish an intelligent control strategy and model with
variable amplitude that can better alleviate the accumulation and
blockage of the material on the screen surface.

Acknowledgements

This work was supported financially by National Natural
Science Foundation of China (Grant No. 51975256, 52375249),
Jiangsu Province and Education Ministry Co-sponsored Synergistic
Innovation Center of Modern Agricultural Equipment (Grant No.
XTCX2011), Jiangsu Modern Agricultural Machinery Equipment
and Technology Demonstration and Promotion Project (Grant No.
NJ2021-07), a project funded by the Priority Academic Program of
the Development of Jiangsu Higher Education Institutions (PAPD).

[References]

[1] Wang L J, Song L L, Feng X, Wang H S, Li Y H. Research status and
development analysis of screening devices of grain combine harvester.
Transactions of the CSAM, 2021; 52(6): 1-17.

[2] LiH B, Zhao X Q, Geng K H. Design and analysis on configuration of a
multiple DOF and rigid-flexible coupling sieving machine. Mining &
Processing Equipment, 2020; 48(4): 46-50. (in Chinese)

[3] ChangJ, Wang CJ, Hu Z B, Han D D, Chen L. Design of a variable degree
of freedom parallel vibration sieve. Mechanical Engineering &
Automation, 2015(4): 97-99+102. (in Chinese)

[4] Li J. Research of three-dimensional parallel vibration screen for grain
cleaning. PhD dissertation, Zhenjiang: Jiangsu University, 2013; 133p. (in
Chinese)

[5] Bao C Y. Study on vibrating screening process mechanism basing on
DEM. MA thesis. Xuzhou: China University of Mining and Technology,
2016; 96p. (in Chinese)

[6] Wang Z Y, Ren N, Wu W B, Li Y X. Research on screening results of
reciprocating vibration screen based on discrete element method. Journal of
Agricultural Mechanization Research, 2016; 38(1): 33-38. (in Chinese)

[77 MaZ,LiY M, XuL Z. Discrete-element method simulation of agricultural
particles’ motion in variable-amplitude screen box. Computers and
Electronics in Agriculture, 2015; 118: 92-99.

[8] Zeng Z W, Ma X, Cao X H, Li Z H, Wang X C. Critical review of
applications of discrete element method in agricultural engineering.
Transactions of the CSAM, 2021; 52(4): 1-20. (in Chinese)

[97 MaZ,LiYM, XuL Z, Chen J, Zhao Z, Tang Z. Dispersion and migration
of agricultural particles in a variable-amplitude screen box based on the
discrete element method. Computers and Electronics in Agriculture, 2017;
142: 173-180.

[10] Li H, Wang J S, Yuan ] B, Yin W Q, Wang Z M, Qian Y Z. Analysis of
threshed rice mixture separation through vibration screen using discrete
element method. Int J Agric & Biol Eng, 2017; 10(6): 231-239.

[11] Ma X D, Zhao L, Guo B, Dang H. Simulation and experiment of rice
cleaning in air-separation device based on DEM-CFD coupling method. Int
J Agric & Biol Eng, 2020; 13(5): 226-233.

[12] WuXJ,LiSY, FangP,XiZJ,HouY J, Liu Y P. Particle migration DEM
simulation of shale shaker under different screen surface shape. Mechanical
Research & Application, 2017; 30(5): 45-49. (in Chinese)

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

(23]

[26]

[27]

(28]

[29]

[30]

311

[32]

[33]

[34]

[35]

Harzanagh A A, Orhan E C, Ergun S L. Discrete element modelling of
vibrating screens. Minerals Engineering, 2018; 121: 107-121.
Van Xo N, Linh N K. Applications of Discrete Element Method (DEM) in
modeling the impact of dynamic and technological parameters on the
material movement on the vibrating screen surface//IOP Conference Series:
Materials Science and Engineering. IOP Publishing, 2020; 843(1): 012024.
XuY F, Zhang X L, Wu S, Chen C, Wang J Z, Yuan S Q, et al. Numerical
simulation of particle motion at cucumber straw grinding process based on
EDEM. Int J Agric & Biol Eng, 2020; 13(6): 227-235.
Zhang J, Liu F Y, Chen J. Virtual vibration screening experiments of grain
cleaning sieve based on DEM. Journal of Agricultural Mechanization
Research, 2019; 41(2): 187-191. (in Chinese)
JiL L, Xie H X, Yang H G, Wei H, Yan J C, Shen H Y. Simulation
analysis of potato dry soil cleaning device based on EDEM-RecurDyn
coupling. Journal of Chinese Agricultural Mechanization, 2021; 42(1):
109-115. (in Chinese)
Wen P F, Qiao J P, Duan C L, Jiang H S, Zhao Y M. Research on
Screening Behavior and Distribution of Materials during Variable
Amplitude Equal Thickness Screening. Coal Mine Machinery, 2020;
41(4): 165-167. (in Chinese)
Jiang H S. Research on the Mechanism of Variable-amplitude Equal-
thickness Elastic Deep Screening of Moist Coal. Xuzhou: China University
of Mining and Technology, 2017; 166 p. (in Chinese)
ZhuNY, Liu X, Liu Z Q, Hu K, Wang Y K, Tan J L, et al. Deep learning
for smart agriculture: Concepts, tools, applications, and opportunities. Int J
Agric & Biol Eng, 2018; 11(4): 32-44.
Huang Y B. Research status and applications of nature-inspired algorithms
for agri-food production. Int J Agric & Biol Eng, 2020; 13(4): 1-9.
Zhang Q. Research and application of BP neural network in agricultural
engineering. Agricultural Engineering, 2012; 2(5): 17-20. (in Chinese)
Wang J Q. Research on BP neural network theory and its application in
agricultural PhD dissertation, Shenyang: Shenyang
Agricultural University, 2011; 115p. (in Chinese)
Hu J, Xin P P, Zhang S W, Zhang H H, He D J. Model for tomato
photosynthetic rate based on neural network with genetic algorithm. Int J
Agric & Biol Eng, 2019; 12(1): 179-185.
Li T, Zhang M, Ji Y H, Sha S, Jiang Y Q, Li M Z. Management of CO, in a
tomato greenhouse using WSN and BPNN techniques. Int J Agric & Biol
Eng, 2015; 8(4): 43-51.
Feng X B, He P J, Zhang H X, Yin W Q, Qian Y, Cao P, et al. Rice seeds
identification based on back propagation neural network model. Int J Agric
& Biol Eng, 2019; 12(6): 122-128.
Shanmugam B K, Vardhan H, Raj M G, Kaza M, Sah R, Hanumanthapp.H.
Artificial neural network modeling for predicting the screening efficiency

mechanization.

of coal with varying moisture content in the vibrating screen. International
Journal of Coal Preparation and Utilization, 2021; 1-19.

Li X, Sun X Y, Li L Y. Optimization design of angular velocity control of
threshing cylinder in combine harvester based on wavelet neural network.
Journal of Agricultural Mechanization Research, 2016; 38(11): 64-68. (in
Chinese)

Ge Y S, Zhou D D, Xu R. Research on loss detection of combine harvester
based on neural network. Journal of Nanjing Institute of Technology
(Natural Science Edition), 2018; 16(2): 57-61. (in Chinese)

Song B C, Liu C S, Cheng J, Hu M. Optimization of parameters for wet
phosphate rock screening based on neural network and DEM technology.
Industrial Minerals & Processing, 2016; 45(9): 6-8. (in Chinese)

Zhao Z, Jin M Z, Qin F, Yang S X. A novel neural network approach to
modeling particles distribution on vibrating screen. Powder Technology,
2021; 382: 254-261.

Kim K C, Jiang T, Kim N I, Kwon C. Effects of ball-to-powder diameter
ratio and powder particle shape on EDEM simulation in a planetary ball
mill. Journal of the Indian Chemical Society, 2022; 99(1): 100300.

MaL R, Cao S K, Zhong W Z, Song X W, Shen H. Simulation research on
operation parameters of cleaning device based on EDEM. Agricultural
Technology & Equipment, 2017; 7: 80-83. (in Chinese)

Li H C. Theoretical and experimental study on air -and -screen cleaning
unit. PhD dissertation. Zhenjiang: Jiangsu University, 2011; 119p. (in
Chinese)

Zhang C, Guo Y, Li M. Review of development and application of
artificial neural network models. Computer Engineering and Applications,
2021; 57(11): 57-69. (in Chinese)


https://doi.org/10.1016/j.compag.2015.08.030
https://doi.org/10.1016/j.compag.2015.08.030
https://doi.org/10.1016/j.compag.2017.08.030
https://doi.org/10.1016/j.mineng.2018.03.010
https://doi.org/10.25165/j.ijabe.20181104.4475
https://doi.org/10.25165/j.ijabe.20181104.4475
https://doi.org/10.25165/j.ijabe.20201304.5501
https://doi.org/10.25165/j.ijabe.20191201.3127
https://doi.org/10.25165/j.ijabe.20191201.3127
https://doi.org/10.3965/j.ijabe.20150804.1572
https://doi.org/10.3965/j.ijabe.20150804.1572
https://doi.org/10.25165/j.ijabe.20191206.5044
https://doi.org/10.25165/j.ijabe.20191206.5044
https://doi.org/10.1016/j.powtec.2021.01.001
https://doi.org/10.1016/j.jics.2021.100300

	1 Introduction
	2 Materials and methods
	2.1 Variable amplitude principle and screening mechanism
	2.2 EDEM-RecurDyn simulation model
	2.3 Simulation parameters setting
	2.4 Simulation test scheme
	2.5 Simulation data
	2.6 Establishment of BP neural network model

	3 Results and analysis
	3.1 Simulation process and results
	3.2 BP neural network training results and analysis
	3.3 Prediction material distribution model results and analysis

	4 Conclusions
	Acknowledgements
	References

