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Abstract: The fruit and vegetable picking has posed a great challenge on the production and markets during the harvest season.  
Manual picking cannot fully meet the rapid requirements of each market, mainly due to the high labor-intensive and 
time-consuming tasks, even the aging and shortage of agricultural labor force in recent years.  Alternatively, smart robotics can 
be an efficient solution to increase the planting areas for the markets in combination with changes in cultivation, preservation, and 
processing technology.  However, some improvements still need to be performed on these picking robots.  To document the 
progress in and current status of this field, this study performed a bibliometric analysis.  This analysis evaluated the current 
performance characteristics of various fruit and vegetable picking robots for better prospects in the future.  Five perspectives 
were proposed covering the robotic arms, end effectors, vision systems, picking environments, and picking performance for the 
large-scale mechanized production of fruits and vegetables in modern agriculture.  The current problems of fruit and vegetable 
picking robots were summarized.  Finally, the outlook of the fruit and vegetable picking robots prospected from four aspects: 
structured environment for fruit planting, the algorithm of recognition and positioning, picking efficiency, and cost-saving 
picking robots.  This study comprehensively assesses the current research status, thus helping researchers steer their projects or 
locate potential collaborators. 
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1  Introduction  

The fruit and vegetable industry has been the largest and 
fastest-growing part of the world's market of agricultural 
production.  Among them, China is one of the primary fruit and 
vegetable producer countries, particularly with a huge total planting 
area.  The production of fruit and vegetable in China has ranked 
the top in the world.  Specifically, the total planting area of fruits 
and vegetables in China in 2018 was 1.1875×107 hm2 and 
2.0439×107 hm2[1], respectively.  Taking China as an example, the 
phenomenon of population aging has gradually intensified in recent 
years, and the proportion of the population aged 65 and over to the 
total population has been increasing year by year, from 5.6% in 
1990 to 11.9% in 2018.  With the development of social 
diversification, the labor force has been continuously transferred to 
other industries in society, and the number of people engaged in 
agricultural production has become less and less.  The reduction 
of labor resources has led to the problems of difficult employment 
and high labor costs in agricultural production.  Therefore, the 
current harvesting of fruit and vegetable cannot fully meet the 
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large-scale production in recent years, due mainly to high labor 
requirements[2].  Moreover, the picking activities can pose some 
danger to the health of operators[3].  Therefore, it is highly urgent 
to develop efficient automatic fruit and vegetable picking robots for 
a higher automation level in agricultural production.  A smart 
harvester has been one of the most important artificial intelligence 
(AI) robots for fruit and vegetable harvesting in modern 
agriculture.  

In recent years, various fruit and vegetable picking robots have 
been proposed by researchers from all over the world, such as apple 
picking robots, tomato picking robots, kiwi fruit picking robots, 
strawberry picking robots, and so on. 

In this article, an extensive literature search was conducted.  
From the perspective of different picking objects, this review 
evaluated the performance characteristics of various current fruit 
and vegetable picking robots.  This study comprehensively 
assesses the current research status and existing problems of fruit 
and vegetable picking robots and provides help for related research 
scholars’ projects. 

2  Research status 

2.1  Apple picking robots 
In this section, five types of apple harvesting robots are going 

to be reviewed, in terms of structural design, simulation, vision 
system, and performance. 
2.1.1  A robot with a spoon-shaped end-effector 

Zhao et al.[4] developed an automatic apple harvesting robot.  
This type of apple harvesting robot consists of a 5-degree of 
freedom (DOF) structure (PRRRP) manipulator, autonomous 
mobile driving of crawler-type vehicle, spoon-shaped end-effector, 
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various sensors, machine vision, and control system, as shown in 
Figure 1. 

 

  
Figure 1  An apple-picking robot using a spoon-shaped end 

effector 
 

The spoon-shaped end effector is specifically designed to 
equip with special pressure sensors on the left and right ends of the 
inner side.  As such, an excessive clamping force can be 
effectively avoided to damage the apples, due to the real-time 
feedback of pressure value acting on the surface of the apple during 
the picking process.  An electric cutting device is also equipped 
on the side of the end-effector to separate the fruit from the stalk. A 
plastic pipe is positioned below the end effector.  Consequently, 
the picked apples can enter the collection device along the plastic 
pipe. 

Mathematical models[5] were also established using ANSYS 
software to clarify the influence of two types of fingers in the robot 
end-effector on the apple during the grasping process.  The 
comparison demonstrates that the arc-shaped finger can cause less 
damage to the apple during the picking, compared with the rest.  
The theoretical threshold of apple damage was also achieved for 
the picking operation. 

In a machine vision system for the apple picking robot, the 
color features are used the Hue and Saturation components in the 

HSI color space.  Furthermore, the shape features are utilized the 
invariance technique of rotation, scale, and translation (RST).  
Specifically, some statistical parameters are also used, including 
the circular variance, variance ellipse, tightness, as well as the ratio 
between perimeter and square area. 

A Support Vector Machine (SVM) training classifier is used to 
realize the apple recognition in the image, according to the 
extracted color and shape features.  Among them, the radial basis 
function is set as a kernel function. 

In performance, the picking success rate of the apple robot is 
86% under the laboratory environment, while the average picking 
time for an apple is 14.3 s in spite of setting time.  By contrast, the 
apple picking robot can recognize 39 apples within 10 min in an 
orchard, where 30 apples were successfully picked, while 6 apples 
were not picked, and 3 apples fell to the ground after being picked, 
due to their small size.  Consequently, the average picking success 
rate is 77% taking 15.4 s on average. 
2.1.2  A grasp-robot using negative pressure adsorption 

Another apple harvester can be the grasp-type automatic robot 
using the negative pressure adsorption developed by Baeten et al.[6] 
The harvester can be posited on a platform mounted behind an 
agriculture tractor[6], as shown in Figure 2.  A 6-DOF industrial 
robotic arm is used in the harvester.  The end-effector adopts a 
typical structure similar to the suction nozzle in a vacuum cleaner.  
The purpose is to avoid any damage to the apple while providing a 
firm suction force. 

A vision camera is also installed inside the harvester.  Once 
the camera detects that the apple is within the working range of the 
suction nozzle, the negative pressure can be activated to absorb the 
apple, and thus the suction nozzle can grasp and pick the apple via 
the rotating and gently tilting operation.  As such, the apple 
picking robot can take 8-10 s on average to pick an apple, and the 
picking success rate is about 80%.  Nevertheless, some apples 
cannot be picked, particularly difficult to detect and reach by the 
robotic arm in this experiment. 

 
Figure 2  A grasp-type automatic apple harvester using negative pressure adsorption 

 

2.1.3  A robot using a shearing force 
Davidson et al.[7-9] have developed an automatic apple 

harvesting robot, as shown in Figure 3.  The robotic arm adopts a 
6-DOF tandem structure.  A novel design is utilized to mimic a 
human index finger for the end-effector.  Specifically, an 
under-actuated clamp with an angle of 30° is installed on the upper 
part of the robot arm. 

During the picking process, the end-effector can grasp and 
rotate the fruit in real-time, then drive the clamp to hold the fruit 
stem, and finally to generate a shearing force at the fruit stem, thus 
causing the fruit stem to break.  This picking method can 
effectively reduce the high demand for the picking power and 
relieve the probability of damage to the fruit during the picking 

process. 
In the vision system, a circular Hough transform is utilized to 

identify independent and clear fruits without shading by leaves or 
stems in an orchard.  A Blob Analysis can also be made to 
identify partially visible fruits iteratively.  An exposure fusion 
technology can be used to capture five images with low to high 
exposure.  Among them, the best area of each image is calculated 
for a well-exposed image, thereby improving image quality.  The 
total time required to capture all five images is about 0.34 s, where 
each image takes 68 ms on average.  Correspondingly, the vision 
system has been tested in the clusters and complex canopy 
structures, where the accuracy of fruit recognition exceeds 90%. 

The specific procedure can be set when picking.  The 
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harvesting robot first detects and locates each apple in the region of 
interest (ROI) view using the RGB-D camera system.  The 
picking priority of each apple is then determined by the expert 
system.  Subsequently, the apple coordinates are transferred to the 
mechanical system, where the 6-DOF manipulator can be used to 
drive the end-effector to move towards the corresponding position 
for the fruit grab and picking.  More importantly, the grabbing 
adopts an open-loop control mode.  As such, this procedure can be 
repeated several times, until all the marked apples are picked.  
Finally, the vehicle can move back to gain the next ROI view for 
picking. 

An average time of 1.5 s is required for the harvesting robot to 
locate each fruit.  Furthermore, the 6-DOF harvesting system 
(six-DOF manipulator + under-actuated end-effector) successfully 
picked 127 fruits from 150, with an overall success rate of 84%, 
and an average picking time of 6.0 s for each fruit. 

Besides, the designer clearly stated that this type of harvesting 
robot can be compatible with the modern apple orchard.  
Therefore, a V-shaped structure planning for the apple orchard can 
reduce the obstacle avoidance of the picking robot, thereby 
simplifying the operation environment for the better picking 
efficiency of the harvesting robot. 

 

 
Figure 3  Fully automatic apple-picking robot using a shear force 

 

2.1.4  Robots using negative pressure adsorption 
The American company Abundant Robotics has developed 

another type of apple harvesting robot using negative pressure 
adsorption, as shown in Figure 4.  Specifically, a feasible 
non-contact end-effector can be adopted, where the negative 
pressure is generated to produce the adsorption force for the apple 
near the picking opening.  As such, the force from negative 
pressure adsorption is used to complete the fruit picking.  
Particularly, this type of apple harvesting robot has entered 
commercialization now[10]. 

 

 
Figure 4  An apple harvesting robot using negative pressure 

adsorption 
 

Yang et al.[11,12] designed an apple-picking robot using a 
multi-DOF parallel manipulator, as shown in Figure 5.  The end 
effector of the robot also adopts the negative pressure.  
Specifically, a three-level buffer is equipped with the end effector 
for the effective protection of fruits[13].  In addition, the end 
effector can be used to fully filter some impurities, such as blades 

residues, thereby preventing their blockage from the generating 
device of negative pressure in the picking robot[14,15]. 

 

 
Figure 5  Another apple harvesting robot using negative pressure 

adsorption 
 

2.2  Tomato picking robot 
Six sorts of tomato picking robots can be evaluated at present 

in this section. 
2.2.1  A robot using adsorption 

Wang et al.[16] developed a tomato picking robot, as shown in 
Figure 6.  The picking claw is composed of three units: fruit 
adsorption, clamping, and screwing.  The specific picking 
procedure can be summarized as follows.  The vacuum generator 
can be used to adsorb the tomatoes when moving towards the target.  
At the same time, the telescopic cylinder is utilized to extend the 
sleeve, until the fruit is fully inserted into the sleeve, thereby 
opening the airbag for the clamp of tomato, and finally, the sleeve 
can be used to rotate to separate the tomato fruit from the stalk. 

This type of harvesting robot is designed for the picking of 
tomato fruits grown in the greenhouse.  Furthermore, the tomatoes 
are required to be planted in rows and arranged on both sides of the 
track.  As such, the harvesting robot can travel straight along the 
center of the track.  More importantly, the ripe fruits to be picked 
can better be located above the platform of the track, particularly 
where the tomatoes are densely packed in the case.  In addition, 
the operation area of 100-600 mm2 can be convenient for this type 
of robot to carry out picking. 

The performance of the harvesting robot demonstrated that it 
took 4.0 s to locate the tomato fruit, 12.0 s to move the robotic arm, 
8.0 s to pick the fruit, and 12.0 s to reset the robotic arm in the field 
experiment.  The picking success rate of the robot is achieved 
about 83.9%. 

 

 
Figure 6  A tomato picking robot using absorption 

 

Additionally, Wang et al.[17] designed a new end effector for 
picking the fresh tomatoes, as shown in Figure 7.  Four 
components are also composed of the fruit stalk clamping, fruit 
clamping, and separation mechanism, as well as one control unit.  
Specifically, the fruit clamping mechanism is equipped with a 
sleeve and some airbags for the collection.  Once the target fruit 
enters the sleeve, the handle clamping mechanism can hold to cut 
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from the stalk for the picking of the fruit. 

 
1. Stereo visual unit  2. End-effector  3. Manipulator  4. Fruit collector   
5. Vehicle  6. Rail  7. Controller 
Figure 7  A tomato picking robot with four-wheel steering 

 

2.2.2  A robot with four-wheel steering and navigation 
Wang et al.[18] developed a tomato harvesting robot used in a 

greenhouse, as shown in Figure 8.  A four-wheel independent 
steering system is also designed to automatically navigate and 
avoid some obstacles when harvesting.  The 5-DOF manipulators 
are used, of which 4-DOF comes from the robotic arm, and 1-DOF 
comes from the end effector.  The end effector adopts a 
commonly-used shear grasping method at present.  
Correspondingly, the picking action includes the tomato grasping, 
cutting, and separation. 

 

 
Figure 8  A tomato picking robot with double arms 

 

When working, the robot can move automatically along the 
path predetermined by the navigation system, thereby detecting 
whether there are some ripe tomatoes in the operation area, 
according to the color difference between the ripe tomatoes and the 
background.  Once the ripe tomatoes are detected, the robot can 
stop moving.  Then, a systematic evaluation can be made further 
to determine the spatial location of ripe tomatoes and some 
obstacles that may impede the harvesting using the control system.  
After that, the robotic can move the arm towards the corresponding 
position and pick the tomato with the end-effector. 

Various machine visions are selected for the harvesting robot.  
Specifically, the normalized color difference method is utilized to 
collect the grayscale images.  The Otsu algorithm is also selected 
for segmentation.  An ellipse template matching is used to identify 
the overlapping tomatoes by leaves or stalks in the greenhouse. 

In field experiment, 300 static images of the tomato field are 
captured under the different light intensities (different times on the 
same day) and random backgrounds.  298 images have been 
successfully recognized, indicating the success rate is 99.3%, with 
an average recognition time of 1.5 s per image.  Dynamic tests 
were also performed at different positions by 100 times.  
Consequently, the minimum positioning error was achieved less 
than 10 mm, when the distance of picking position was less than 

600 mm.  Anyway, the picking efficiency of the harvesting robot 
is about 15 s/unit, while, the picking success rate is about 86%. 
2.2.3  A dual-arm tomato harvesting robot 

Ling et al.[19] developed a dual-arm tomato harvesting robot, as 
shown in Figure 9.  This sort of harvesting robot can be deployed 
in the Venlo-type greenhouse, where the mobile platform can move 
on the heating pipes along crop rows.  Two three-DOF robotic 
arms are symmetrically distributed, similar to the Selective 
Compliance Articulated Robot Arm (SCARA) with one moving 
pair and two rotating pairs.  The end-effectors of the left and right 
arm are equipped with a cutting gripper and a vacuum cup, 
respectively.  As such, the dual-arm manipulator can work 
smoothly, by which the vacuum cup can grasp the target fruit, and 
then the cutting gripper detaches the fruit from the plant. 

A sliding window method can be used in the visual system of 
the harvesting robot, thereby extracting Haar-like features within 
each sub-window.  An AdaBoost classifier can also be utilized to 
detect the tomatoes.  The average pixel value (APV) classifier can 
be selected on the I-component image for color analysis, thereby 
merging the above two detections for the final image.  

A total of 171 target tomatoes were tested using 60 sample 
images.  The recognition success rate was 96.5%, and the average 
detection speed was 85 ms/image. 

The experiments of robotic harvesting were conducted on the 
potted tomatoes in the greenhouse.  80 ripe tomatoes were also 
randomly selected as the harvesting objects for the robot.  Totally, 
70 target tomatoes were harvested by the robot.  The success rate 
of robotic harvesting is 87.5%.  The average harvesting speed is 
about 29 s/fruit, except the cruise time for the robot moving on the 
heating pipes in the greenhouse. 

 
Figure 9  A tomato picking robot in Japan 

 

2.2.4  A tomato picking robot in Japan 
Kondo et al.[20-23] did a lot of research work on the 

tomato-picking robots in Japan.  Visual feedback has been used to 
pick the cherry tomatoes in 1996[24].  The image processing was 
also made to identify and locate the entire tomato cluster, including 
threshold, filter, and segment.  The center of a single tomato was 
also calculated for the single fruit picking.  

This type of harvesting robot is equipped with a 7-DOF robotic 
arm and a suction end-effector.  Among them, a photoelectric 
sensor can rapidly and accurately detect the tomato in the proper 
position, and then cut the fruit stem with pliers.  The picking 
success rate is 70%, and the average speed is about 3-5 s/fruit.  

In ordinary tomatoes, Kondo et al.[22] proposed a two-finger 
picking end-effector, and then improved in 1998.  The improved 
end-effector can adapt to the different stalk lengths, where the 
picking success rate increases from 85% to 91%, and the picking 
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efficiency is 15 s/fruit. 
A new end-effector was also developed in 2010[23].  This new 

type of robot can concurrently pick a whole bunch of tomatoes 
rather than only for a single one, indicating the higher picking 
efficiency.  The picking speed is about 15 s/bunch, but the success 
rate is relatively low, only about 50%.  35% of the failures can be 
attributed to the large profile of end effectors that are hindered by 
the leaves. 
2.2.5  Tanigaki's picking robot 

Yaguchi et al.[25] developed a rotary claw end-effector.  Three 
claws are first approaching to clamp the tomato after the end 
effector is positioned on the target fruit.  The tomato was driven to 
rotate relative to the stalk, and then to pull away from the stalk for 
the harvest. 

In the recognition, the hue, saturation, intensity (HIS) color 
space is first used to extract the color features.  The Euclidean 
distance is then selected to cluster the point cloud.  Finally, the 
tomato is identified by spherical fitting.  It takes about 0.2 s in 
total. 

Particularly, the type of robot is equipped with a 6-DOF 
robotic arm and a stereo camera suitable for direct sunlight.  The 
picking efficiency is about 85 s/fruit for the second tomato robot 
competition in the greenhouse.  After the optimization of arm 
movement, the picking efficiency can reach 23 s/fruit under natural 
light.  The picking success rate is about 60%.  The failures 
include the failure to grasp, rupture of the calyx, and grasping 
multiple fruits.  A case study was also conducted on a dual-arm 
robot to imitate the human behavior of picking[26], indicating much 
more feasibility.  

Another cherry-harvesting robot developed by Tanigaki et 
al.[27] has a 4-DOF manipulator, including 3-DOF for rotation and 
1-DOF for movement.  A 3D vision sensor is equipped with 
infrared laser diodes, where both laser beams can simultaneously 
scan the target.  In image processing, the locations of the fruits 
and obstacles can be recognized to determine the trajectory of the 
end effector for the picking and obstacle avoidance.  

As shown in Figure 10, the target fruit trees in the orchard can 
be planted in a row, and trim the branches to grow vertically, in 
order to facilitate identification and picking.  After that, the target 
fruit can be sucked by vacuum.  At the same time, the small 
end-effector can move the finger to clamp the fruit stem. 

 

 
Figure 10  Tanigaki’s picking robot experimental environment 

 

Nevertheless, 41% of the tomatoes cannot be identified in the 
experiment, due to the hiding behind the leaves in the structured 
planting and the pruning of the branches.  As such, the fingers of 
the end-effector are equipped with soft rubber components (Figure 
11), in order to separate from another fruit or obstacles when 
entering between the two fingers. 

 
Figure 11  End effector of Tanigaki’s picking robot 

 

2.2.6  Picking robots in China 
A picking robot system developed by Li et al.[28] includes a 

crawler-type navigation walking platform equipped with a binocular 
stereo vision system, a 4-DOF articulated robotic arm, as well as a 
grasping and shearing two-finger pneumatic end-effector.  The 
picking success rate is 86%, and the picking efficiency is 28 s/fruit. 

Zhao et al.[29] developed a human-robot collaboration dual-arm 
picking robot.  Two 3-DOF robotic arms are equipped with 
different end-effectors, where one is used to grasp tomatoes, 
another is to pick tomatoes.  The heating tube is also taken as the 
guide rail in the greenhouse.  Moreover, the vision system 
contains a 3D reconstruction image display, a robot motion 
simulation, and a command module for a better graphical interface.  
However, the reconstruction of 3D images is often restricted by the 
complex surroundings.  Much more running time is also 

consumed to directly result in the longer cycle time of picking. 
Liu et al.[30,31] also conducted a series of researches on the 

tomato picking robots, including the laser cutting device of the 
end-effector, the vacuum suction cup[32], the mechanical damage of 
the fruit[33], the creep characteristics[34], and the clamping collision 
model[35]. 

Chiu et al.[36] designed a four-finger end-effector with a nozzle, 
as shown in Figure 12.  The suction nozzle can absorb the fruit for 
better grip performance.  The four fingers can grasp the tomato to 
realize the picking via rotating and pulling.  Furthermore, the 
material of four fingers is made of foam rubber in contact with the 
tomato, indicating free of damage.  In addition, a five-axis tandem 
robotic arm is selected in the harvesting robot.  Consequently, the 
picking success rate can reach 92%, and the average picking time is 
74.6 s. 
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Figure 12  Chiu’s end effector 

 

2.3  Strawberry picking robots 
This section reviewed 13 types of strawberry-picking robots in 

recent years. 
2.3.1  A picking robot for high-ridge strawberries 

Arima et al.[24] developed a multifunctional robot covering the 
operation from the spraying, harvesting, and grading for the 
high-ridge strawberries.  

In harvesting, a three-DOF rectangular coordinate robotic arm 
is selected in the robot.  The specific harvesting procedure can be 
as follows.  First, the mature strawberry is recognized by the color 
CCD camera.  Then, the target strawberry is separated from the 
surrounding strawberry by the end effector.  Finally, the target 
fruit is cut by the national stem.  Correspondingly, there is also a 
relatively smaller impact on the non-target strawberries, compared 
with the suction end effector. 
2.3.2  A picking robot with four-DOF manipulator 

Nagata et al.[37] also developed a strawberry picking robot with 
a four-DOF Cartesian coordinate manipulator.  The end effector 
of the robot adopts a pneumatic clamping, in order to ensure that 
the strawberry fruit remains intact during the picking using the 
integrated clamping and cutting.  As such, this type of robot can 
also effectively reduce fruit damage.  It is very necessary to 
ensure that the air supply is appropriate when cutting the fruit stem.  
Consequently, the cutting success rate can be close to 100%.  
2.3.3  A picking robot for suspended cultivation bed 

Arima et al.[38] developed a strawberry picking robot with a 
four-DOF robotic arm for the suspended cultivation bed[39].  The 
picking robot can be installed for the cultivation bed environment.  
Furthermore, the distance between the robot and the fruit can be set 
as an approximate constant for better depth measurement from the 
visual sensor.  In harvesting, a vacuum suction head is used to 
suck the fruit, after that the strawberry position is determined by 
the CCD camera.  Subsequently, the actuator wrist is turned to cut 
off the fruit stem, when confirming that the fruit is in the proper 
position using three pairs of photoelectric sensors.  In this way, 
the single picking time is about 10 s. 
2.3.4  A picking robot for elevated strawberries 

Shiigi et al.[40] developed a three-DOF arm picking robot that 
was installed on a guide rail-mobile platform for the elevated 
strawberries in the greenhouse cultivation.  As shown in Figure 13, 
five LED lighting devices are used in the vision system.  Three 
CCD color cameras are also utilized to locate the strawberries, two 
of which are used to detect the position of the target fruit, another is 
used to detect the stem and its inclination angle.  The end effector 
is also the suction clamping type. 

In harvesting, the stalk is clamped with two fingers after the 
fruit is fixed by the suction device.  The stalk is then cut to the left 
and right, according to the inclination angle.  Nevertheless, the 
picking success rate is only 38%, mainly due to the stereo 
positioning and incorrect recognition of fruit stems. 

 
Figure 13  Strawberry picking robot 1 

 

2.3.5  A picking robot with an orbital mobile platform  
Yamamoto et al.[41] developed a strawberry picking robot 

combined with an orbital mobile platform for the elevated 
strawberries, as shown in Figure 14.  A gantry structure can be 
used to arrange the rail-mobile platform under the cultivation rack 
of strawberry.  A three-DOF articulated robotic arm can also be 
used to pick the strawberry fruits on both sides of the cultivation 
rack.  

 
Figure 14  Strawberry picking robot 2 

 

In a vision system, a pair of stereo cameras are used to 
determine the position of the fruit.  As such, the robot arm can 
move the end effector to the side closer to the current position on 
both sides.  As such, the end effector can clamp and harvest the 
fruits, finally put them into the storage bins on both sides, after 
identifying the position of the fruit stem via the hand-eye camera.  
The success rate of actual picking is as high as 89%, while the 
success rate of single picking is 84%, and the average picking cycle 
is 22.2 s. 
2.3.6  A picking robot for ridge-growing strawberries 

Chen[42] designed a robot picking system for the ridge-growing 
strawberries, as shown in Figure 15.  This type of robot is mainly 
composed of a three-DOF Cartesian coordinate system manipulator, 
a grasping and shearing end effector, and a vision system.  The 
picking process can be as follows: Camera 1 is used to collect the 
strawberry images, thereby determining the position of the center 
of gravity for each acquired target for sorting out.  Then, the 
manipulator can move the end effector to the position of the center 
of gravity of the first target.  Subsequently, Camera 2 is used to 
collect the strawberry images, thereby further determining the 
position of the center of gravity and the picking.  Finally, the 
manipulator can move the end effector to the picking position.  As 
such, the manipulator can move back to the designated position for 
the storage of the strawberries after the end effector completes the 
picking work.  

In the vision system, a Luminance and Red Color Difference 
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(LRCD) method is used to segment strawberry images.  The color 
difference of each pixel is also obtained using the RGB color 
model.  Then, the geometric features of the strawberry image are 
extracted to position under the gray image. 

 

 
Figure 15  A strawberry picking robot 3 

 

2.3.7  A picking robot with full automation and mechanization 
Li et al.[43] designed an elevated strawberry picking robot 

system to realize the automation and mechanization harvesting, as 
shown in Figure 16.  This type of robot can be suitable for the 
rapid promotion of the elevated strawberry planting area in China.  
Particularly, the traditional manual strawberry picking cannot fully 
meet the large-scale production of the strawberry in recent years. 

 
1. Three-degree-of-freedom workbench  2. Walking system  3. Shearing  
system  4. Air pump 

Figure 16  Strawberry picking robot 4 
 

Five components are mainly composed of this type of 
strawberry picking robot, such as a crawler walking, a three-DOF 
table moving, an end-effector picking, a camera, and a lighting 
system.  The end effector can be used to implement the cutting 
and clamping of strawberry stalks. 

Another modified part can also consist of a double-rod cylinder, 
two cutting hands, two cameras, and four lighting devices.  
Specifically, the total length of the picking mechanism is 15 cm, 
the width is 8cm, and the height is 5 cm.  The cutting hand is 
composed of a blade and a rubber layer.  Among them, one 
cutting hand is fixed on the bottom plate, and another one is 
connected with a double-rod cylinder that is fixed on the bottom 
plate. 

In the vision system, two cameras are located above the cutting 
hand at a fixed angle.  The lighting equipment is also evenly 
distributed around the camera.  The specific position of the target 
strawberry stalk is calculated using the binocular vision 
measurement.  An air pump is also used as the driving source of 
the shearing hand. 

When picking, the end picking mechanism is driven by the 
three-DOF workbench to move towards the position of the target 
strawberry stalk.  Particularly, the strawberry stalk is located 
between the two cutting hands.  The air pump is then controlled to 
drive the cylinder for the shearing hand 2 moving quickly.  The 

resulting impact force is used to cut the strawberry stems.  The 
rubber layer is also located on the blade to realize the clamping of 
the strawberry for better picking.  The recognition rate of ripe 
strawberry can reach over 95%, while the positioning accuracy of 
binocular strawberry within 1120 mm is 1.5 cm±5%, and each 
strawberry is picked in about 8s on average. 
2.3.8  A strawberry picking robot with/without suction 

Hayashi et al.[44] developed a strawberry picking robot, as 
shown in Figure 17.  The type of picking robot consists of a 
cylindrical manipulator with three-DOF, an end effector, a machine 
vision unit, a strawberry storage device, and a mobile device.  
Three components are composed of in the end effector, such as a 
gripper to simultaneously grab and cut the stem, a suction device to 
fix the fruit, and a photoelectric sensor to detect the picked fruit.  
The picking robot can recognize the strawberries via the camera 
positioning system.  The recognition is to identify the color of the 
image.  

 
a. General view 

 
b. Detailed view of the main components 

Figure 17  Strawberry picking robot 5 
 

When picking strawberries, the end effector can choose the 
working mode with/without suction.  In the suction mode, the end 
effector can approach to suck the target fruit via the forward 
suction device.  Then, the gripper can slide forward on either side 
of the stem, while grasping and cutting the stem.  In the 
non-suction mode, the suction device can remain in the retracted 
position. 

The picking success rate of the picking robot is 41.3% (suction 
mode) and 34.9% (non-suction mode), respectively.  The 
relatively lower rate of picking success can attribute that the vision 
system cannot well identify the strawberry stems and strawberries 
with a ripeness higher than 80%.  Consequently, the success rate 
of strawberry grabbing is more than 80%, where the execution time 
is 11.5 s for successfully harvesting a single fruit, including the 
time required to transfer the harvested fruit to the tray. 
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2.3.9  A picking robot with a 5-DOF robotic arm 
A strawberry harvesting robot system developed by Xiong et 

al.[45] consists of four subsystems: vision, arm, grabber, and mobile 
platform.  An RGB-D camera is installed on the top frame to 
detect the front view of the strawberry.  A 5-DOF robotic arm is 
also installed on the self-developed mobile platform, as shown in 
Figure 18. 

 
Figure 18  Strawberry picking robot 6 

 

The end effector is composed of three active fingers, three 
driven fingers, and a cutting mechanism.  Specifically, the active 
finger can spread to drive the follower finger under the target 
strawberry, thereby separating the distracting objects near the target.  
After swallowing the target, a cutter made up of two curved blades 
inside the device can spin quickly to cut the stem.  Besides, three 
infrared sensors are installed to identify the relative position of the 
grabber and target.  There is also a small space inside the grabber 
to collect strawberries, resulting in the picking process do not need 
to go back and forth greatly saving the picking time.  Once the 
space is full, the grabber can be retracted.  After that, the lower 
baffle is opened to pour the strawberries into the target container.  
In addition, a simple color threshold using RGB channels is also 
used to detect strawberries in the vision system of the picking 
robot. 

The average cycle of the robot is 7.5 s for the continuous 
picking of strawberries, where all procedures are 10.6 s.  The 
success rate for the isolated strawberries is 96.8%.  Nevertheless, 
the picking success rate is only 53.6%, due to the piles of 
strawberry clusters under natural conditions in a greenhouse. 

Xiong et al.[46] also improved the strawberry harvesting robot 
in 2017, in terms of the agricultural applications and cost 
requirements.  A multi-arm 3-DOF Cartesian robotic arm was 
achieved from the 5-DOF arm using the end effector, positioning 
driver, motion platform, and vision sensor system. 
2.3.10  A picking robot with accurate positioning 

De Preter et al [47] developed a picking robot, as shown in 
Figure 19.  This type of robot consists of seven parts: the electric 
vehicle, positioning, camera and detection, custom-designed 
robotic arm, fixture, logistics processing module, and quality 
monitoring software. 

The position of the vehicle is determined by wheel encoders, 
gyroscopes, and an ultra-wideband (UWB) indoor positioning 
system.  The strawberries are first detected by three RGB cameras, 
according to the color of the image.  The end effector is also a 3D 
printed finger with a soft frame structure.  As such, the picking 
process can mimic human picking.  There is no cutting or burning 
involved in the picking process, only a gentle pull while applying 
the rotation motion. 

In performance, the picking time is 4 s.  According to 
different strawberry varieties, 70%-95% of strawberries can be 
picked in elevated strawberries. 

 
Figure 19  Strawberry picking robot 7 

 

2.3.11  A picking robot for desktop cultivation 
A strawberry picking robot for desktop cultivation has also 

been developed by Han et al.[48], as shown in Figure 19.  This type 
of robot is composed of four main parts: an autonomous car, a 
manipulator with four-DOF, an end effector with two-DOF, and a 
color vision system. 

The robot manipulator is also designed with an additional 
rotation axis, including the Cartesian linkage structure, as shown in 
Figure 20.  Each joint axis is set with the X-axis parallel to the 
farming line, the Y-axis corresponding to the vertical height, and 
the Z-axis align to the direction of the strawberry plant.  Besides, a 
rotating shaft is introduced on both planting sides. 

 

 
Figure 20  Strawberry picking robot 8 

 

The end effector can be operated to cut the stems of 
strawberries during harvest, without damaging other stems, leaves, 
or strawberries.  The specific structure of the end effector is 
shown in Figure 21.  Furthermore, a color camera, cutting device, 
and clamp are installed at the end to compensate for the change in 
the cutting position caused by the bending effect of the end effector.  
Picking experiments show that the strawberry picking robot can 
complete a non-destructive picking operation within 7 s. 
2.3.12  A picking robot for two sides. 

The strawberry picking robot has developed by Feng et al.[49].  
Five parts are composed of a four-wheel mobile platform, a 6-DOF 
manipulator, an end effector, a binocular camera, and a controller 
system.  The total weight of the robot is 105 kg, and the size of the 
robot is 1500 mm×700 mm×1600 mm.  

As shown in Figure 22, a Denso VS-65556G manipulator is 
selected in the picking robot, according to a systematic evaluation 
of the size of the target area and working environment in the 
greenhouse.  This type of manipulator can reach up to 650 mm, 
while bearing a load of 5 kg, and move with a steady-state accuracy 
of ±0.02 mm.  

This type of robot can also be possible to pick the fruits on 
both sides.  The reason can be that the bottom joint together with 
6 rotating joints in the manipulator can rotate in an angle range of 
0°-345°. 
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Figure 21  Strawberry end effector 

 

 
Figure 22  Strawberry picking robot 9 

 

In the end effector, two fingers are mounted on a pneumatic 
clamp, thereby grasping the fruit stem.  A suction cup is used to 
grasp the fruit.  Moreover, an electric cutting device is used to 
separate the fruit from the fruit stem. 

The experimental results show that the successful harvest rate 
of the strawberry picking robot is 86%, and it takes an average of 
31.3 s, indicating that the average error position of the fruit is less 
than 4.6 mm. 
2.3.13  A picking robot with pneumatic devices 

A strawberry picking robot has also developed by Guo et al.[50] 
As shown in Figure 23, this type of robot is composed of five parts: 
an X-Y-Z three-axis motion platform, pneumatic end effector, 
global camera, local camera, and personal computer (PC).  The 
end effector also consists of pneumatic scissors and two pneumatic 
fingers.  In the harvesting operation, the scissors are used to cut 
off the stems, and then the pneumatic fingers are used to pick the 
stems, and then place the fruit on the rotating wire. 

Experimental results show that the robot can achieve 93% 
detection accuracy of strawberry stems, as well as more than 90% 
accuracy of maturity and shape quality judgment, indicating fully 
meeting the requirements of agricultural machinery. 
2.4  Kiwi fruit picking robot 

Three types of kiwi fruit picking robots can be introduced in 
this section. 
2.4.1  A picking robot with a route navigation 

Flemmer et al.[51] developed a kiwi fruit picking robot, as  

shown in Figure 24.  This type of robot consists of a vehicle, four 
3-DOF robotic arms, an end effector, a vision system, as well as the 
kiwi storage and replacement device.  The end effector is composed 
of the clamping jaws to fit the kiwi fruit shape, a small motor that 
drives the clamping jaws to rotate, and a connecting rod structure. 

 

 
Figure 23  Strawberry picking robot 9 

 

 
Figure 24  Kiwi fruit picking robot 1 

 

The robot can navigate to pick the fruits along a specific route 
under the identifying benchmarks in the orchard using the GPS.  
A vision system is also composed of eight cameras to recognize the 
fruits hanging on the canopy, particularly to distinguish the size 
and serious defects for the appropriate picking operation[51].   

The specific process of picking can be divided into the 
following three steps: 1) To open the clamp, and then to clamp the 
kiwi; 2) To keep the clamp and kiwi relatively still, thus rotating to 
cut off the stalk on one side of the clamp; 3) To reset the clamp, 
where the picked kiwi fruit can fall automatically to roll into the 
collection box along a predetermined route.  

In the vision system, two additional cameras are used to 
identify the plane of the collection box aligned to the fruit 
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placement, thereby evenly filling the storage box.  Once the 
system assumes that the storage box is full, the robot can move to 
the end of the row and put the fruit down.  The robot can be 
utilized to search for an empty storage box using the vision system, 
thereby real-time adjusting the pose (such as approaching and 
forking the arm), and then returning to the original position for the 
subsequent picking operation. 

In performance, the picking speed of each robotic arm is 
4s/piece, according to experimental statistics, that is, the overall 
speed of the robot is 1 s/piece[53]. 
2.4.2  A picking robot with multiple sub-modules 

Williams et al.[54] designed another kiwi fruit picking robot, as 
shown in Figure 25.  Multiple sub-modules can also be divided 
into the kiwi fruit picking robot.  Specifically, four components 
are contained in each multiple sub-modules, such as a camera, a 
robotic arm, an end effector, and a controller.  

 

 
Figure 25  Kiwi fruit picking robot 2 

 

The control system of the kiwi harvester can be divided into 
the following subsystems: the machine vision system for object 
recognition, stereo depth positioning, dynamic harvesting scheduler, 
arm path planning with the servo control, and the control system 
for fruit grasping and separation. 

In the vision system, the robot can recognize the position of the 
kiwi.  The deep neural networks and stereo matching are utilized 
to reliably detect and locate the kiwis under real lighting conditions.  
During the picking process, the end effector of the device can drive 
the 3D printed fingers and a silicon buckle mechanism to complete 
the grasping and rotating actions of the kiwi fruit for the picking 
with the minimum damage. 

In terms of design recognition, the vision system of the robot 
can detect 89.6% of the kiwis that can be picked by the current 
harvester, accounting for 70.0% of all kiwis in the canopy in the 
field of camera view, but a 25.0% damage rate.  Thus, the current 
15.3% missed picking rate and 6.7% false picking rate can be 
reduced for the higher picking rate of the robot.  The picking 
speed is also about 5.5 s/piece. 

A later improved robot[55] can detect 90% of the kiwi in the 
orchard, using Faster-Regions with Convolutional Neural Networks 
(RCCN).  Specifically, 86.0% of kiwis can be picked by the 
improved device (55.8% of all kiwis).  The actual picking speed 
was 2.78 s/piece, and the damage rate was reduced to 8.47%.  
2.4.3  A picking robot with end effectors in upward rotation 

Fu et al.[56] designed and tested the end effector of a kiwi fruit 
picking robot.  An upward rotation is used in the end effector to 
separate the stalk, as shown in Figure 26. 

The specific picking process can be as follows: 1) The 
coordinate position of the fruit can be first obtained using the 
machine vision, and then the robotic arm can be used to control the 
end effector, in order to align the origin of the end effector and the 
fruit coordinate with the same vertical line; 2) The end effector can 
raise vertically to automatically approach the fruit within the range, 
where the infrared switch sensor is also used to detect whether the 
fruit enters the finger grasping range or waiting line; 3) After the 

fruit enters the finger grasping range, the front finger can rotate and 
extend into the gap envelope to separate the adjacent fruits.  At 
the same time, the front and back fingers can be close to grabbing 
the fruit.  The pressure sensor at the center of the front finger can 
be utilized to detect the clamping force; 4) Once the preset 
clamping force is reached, the rotary picking mechanism can rotate 
upward to separate the stalks for the complete picking action.  
After that, the motor can be reset to release the fruit for the next 
picking. 

The picking success rate of the end effector is up to 96.0%, and 
the average picking speed is 22 s/piece. 

 
1. Linear stepping motor I  2. Hall sensor I  3. Slider I  4. Hall sensor II  5. 
Rack I  6. Deceleration stepper motor  7. Connectors II  8. Hall sensor III  9. 
Rack II  10. Infrared sensor  11. Pressure sensor  12. Front fingers  13. Back 
Finger  14. Slider  II 15. Hall sensor IV  16. Linear stepping motor II  17. 
Connectors I  18. Guide plate 

Figure 26  End effector of kiwi fruit picking robot 3 
 

2.5  Citrus picking robot 
Four types of citrus picking robots can be addressed in this 

section, in terms of structure components, end effectors, control 
system, vision and performance. 
2.5.1  A picking robot with STM32 microcontroller 

A citrus fruit picking robot has been designed to pick and box 
citrus fruits by Liu et al.[57], as shown in Figure 27.  Two 
components consist of mechanical and control parts.  Furthermore, 
the mechanical part can be included in the end-effector, mechanical 
arm, moving platform, rising, storage, and transportation 
mechanism.  The control part can be included the OpenMV image 
acquisition and the control system of each module that is equipped 
with the STM32 microcontroller as the core chip. 

 

 
Figure 27  Citrus picking robot 1 

 

Various movements of the citrus picking robot are designed, 
according to the growth distribution characteristics of citrus fruit 
trees.  

The specific working process can be as follows.  The camera  
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can be used to first scan the citrus.  If the ripe citrus is identified, 
the citrus coordinate can be transmitted to the STM32 
microcontroller through serial communication.  Then, the 
microcontroller can be used to drive the robot arm for the 
designated position.  At the same time, the servo system can be 
started to drive the ring scissors for the stalk cutting from the citrus 
fruit.  As such, the citrus can be entered the chute inside the box 
along the pipe for preliminary sorting and boxing.  Thus, the 
integrated identification, picking, sorting, and boxing can greatly 
reduce the labor intensity in large-scale orchards.  

The end execution device consists of two parts, such as the 
camera and the ring scissors.  The camera can be used to capture 
the color of the ripe citrus as the recognition target for the OpenMV 
image processing.  The color of the citrus skin can also be 
collected using the camera at the front end of the robot.  As such, 
the location and coordinate of the citrus can be quickly determined 
by the camera.  Another module is also installed at the end of the 
robotic arm to expand the recognition range. 

The structural design of the ring scissors can be considered the 
hard stalk of citrus fruit, where the shear mechanisms in most 
picking methods rely on the manual application of force.  
Therefore, a servo system can be used to provide a large torque as 
the power source.  

Once the camera identifies the ripe citrus, the mechanical arm 
can drive the ring scissors to reach the designated position, then to 
activate the servo, where the drive shaft can drive the second arc 
linkage in reciprocating motion, with a blade fixed at the arc 
linkage groove, which in turn cuts the fruit stalk. 

The citrus picking robot takes an average time of 2.7 s for 
recognition and 5.4 s for picking, which picks 1 or 2 fruit per time, 
and the maximum height of the picking is 1.85 m. 
2.5.2  A picking robot using modular design 

A modular design concept is adopted for the citrus picking 
robot that was developed by the School of Mechanical Engineering 
of Chongqing University.  This type of robot consists of four 
systems, such as visual positioning, visual navigation, robotic arm 
motion, and end-effector system.  The four systems work together 
to realize the automated picking of citrus, as shown in Figure 28[58].  

 
a. Citrus harvesting robot exterior      b. Citrus harvesting robot interior 

1. Tracked chassis  2. Binocular camera  3. Robotic arm  4. End effector    
5. Shell  6. Fruit basket  7. Industrial computer 

Figure 28  Citrus picking robot 2 
 

The mechanical structure of this picking robot is composed of 
three parts, such as the mechanical arm, end-effector, and mobile 
chassis.  The mechanical arm is also equipped with a six-DOF 
robot manufactured by Oceanic, where an arm span of 1 m, a 
mounting position of 1 m from the ground, and a picking range of 
0-2 m.   

The vision system is based on a BB2 binocular camera to 
capture the images on the citrus fruits and obstacles, where the 
accuracy of the binocular camera reached 1.58% in the preliminary 
laboratory study, fully meeting the positioning requirements in the 

picking operation[59]. 
The end-effector is designed in the picking robot using the 

bionic concept.  Three parts are included, the cutting device, the 
suction cup and retracting mechanism.  Among them, the biting 
end-effector is designed to imitate the structure of the snake 
mouth[60,61].  The swallowing action of a snake and the structure of 
the upper jaw are taken as the prototype in the configuration. 

The picking robot can take about 14 s to complete one picking 
action.  A picking success rate of 80.51% can be achieved, 
together with an obstacle avoidance success rate of 75.79%[62] 
under the natural environment of the orchard. 
2.5.3  A picking robot with five-DOF tandem 

As shown in Figure 29, a five-DOF tandem citrus picking 
robot has also been designed by Song et al.[63].  This citrus picking 
robot mainly includes the base, waist, large arm, middle arm, small 
arm, each joint axis and motor, reducer, photoelectric code plate, 
and coupling unit.  A motorized circular tooth saw blade is also 
used to cut the citrus stalks, which requires less power from the 
cutting motor and less stalk pressing force, indicating a higher 
shearing efficiency. 

 
Figure 29  Citrus picking robot 3 

 

In picking, the suction cup installed at the front of the threaded 
suction tube is used to attract the fruit in the distance or hidden in 
the leaves, where the telescopic motor drives the threaded suction 
tube to pull the fruit toward the cylinder through the gear pair.  
Once the fruit is close to the cylinder, the drive motor of the fruit 
driving ring can pull up the fruit using the pull rope.  Then, the 
driving ring can drive the fruit into the cylinder, while pushing the 
fruit stalk to the saw blade. 

The citrus picking robot can be used to smoothly locate, 
thereby to precisely and efficiently pick the target citrus.  The end 
positioning accuracy is 3 mm.  The average single shearing time 
of the end-effector is 3 s for the citrus stalk of Φ3 mm, whereas, 9 s 
for the citrus stalk of Φ6 mm, indicating the more ideal picking 
effect. 
2.5.4  A 7-DOF picking robot 

A 7-DOF citrus picking robot developed by Mehta et al.[64], as 
shown in Figure 30.  A closed-loop control system is also used for 
timely feedback, as well as dual cameras, one mounted in a fixed 
position, and another mounted in the center of the end-effector 
moving with the robot.   

The random picking trials of citrus were conducted in the 
laboratory, where the picking success rate reached 95%.  However, 
this type of robot is only suitable for the effective picking of large 
and medium-sized citrus rather than small ones.   
2.6  Eggplant picking robot 

This section can review two types of eggplant picking robots 
for the V-frame cultivation and open system. 
2.6.1  A picking robot for V-frame cultivation 

Hayashi et al.[65,66] developed a picking robot for the eggplant 
cultivated in V-frame, as shown in Figures 31 and 32.  This type 



44   January, 2022                        Int J Agric & Biol Eng      Open Access at https://www.ijabe.org                         Vol. 15 No. 1 

of robot consists of a five-DOF articulated robotic arm, a vision 
processing, and a mobile platform.  A humanoid pneumatic 
structure in the end-effector can gently grasp a size-compliant 
target by four rubber actuators and two suction cups, where a 
cutting mechanism can also be used to cut the fruit stalks. 

 
Figure 30  Citrus picking robot 4 

 
Figure 31  Eggplant picking end effector 

 
Figure 32  Schematic diagram of eggplant planting pattern 

 

The harvesting process is as follows.  Firstly, the target 
position for the robot movement can be determined by the vision 
system.  Then, the end position of the eggplant is determined by 
the photoelectric sensor installed at the bottom of the end-effector 
to grasp the target.  The robot arm is moved to tilt the eggplant, 
thereby separating the fruit from the nearby leaves.  After that, the 
shearing device approached the fruit stalk and cut off.  Finally, the 
target is moved to the designated container for the whole harvesting 
process. 

The machine vision is used to detect the eggplant fruits, 
according to their color and morphological features.  Specifically, 
the low-gray pixels are segmented using the color features, whereas, 
the interference of leaves and stems is removed using the 

morphological features.  The picking success rate is 62.5%, and 
the average picking time is 64.1 s, without considering branches 
and leaves in the laboratory. 
2.6.2  An open eggplant picking robot 

Song et al.[67,68] independently developed an open eggplant 
picking robot, as shown in Figure 33.  This type of robot includes 
a PC, DMC2280 multi-axis motion controller, Yaskawa AC servo 
drive system, and Daheng DH-CG320.  A machine vision system 
is composed of a typical image capture card, a Panasonic 
WV-CP470 color camera, and a 4-DOF articulated robot.  The 
vision system of the picking robot uses a histogram-based fixed 
dual-threshold method to segment the G-B grayscale image, 
thereby extracting the features of eggplant fruits, such as centroid, 
cutting point, and grasping position. 

Experiments were conducted in a simulated growth environment 
in the laboratory.  The picking robot presented a successful 
picking rate of 89%, and the average picking time is 37.4 s. 

 

 
Figure 33  Eggplant picking robot 

 

2.7  Bell pepper picking robot 
Three types of picking robots can be introduced for the green 

house, V-type cultivation, and plan planting. 
2.7.1  Picking robot for sweet peppers in a greenhouse 

Kitamura and Oka[69] developed a picking robot for sweet 
peppers grown in a greenhouse.  As shown in Figure 34, the 
picking robot consists of a mobile device, a three-DOF picking 
execution, and image processing.  Once the sweet pepper is 
located, the picking execution device can drive the end effector to a 
designated position.  The end effector is also equipped with two 
cameras to further position the stem of the sweet pepper.  The rear 
end effector can be used to cut the stem for complete picking.  
However, the picking robot has only a cutting system without a 
storage part. 

 

 
Figure 34  Bell pepper picking robot 

 

The picking robot can recognize the fruits of sweet peppers 
through the binarization of the HIS color under the additional LED 
lighting compensation.  Moreover, the binocular vision system on 
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the end effector can further locate the picking position[70,71]. 
Subsequently, Kitamura and Oka[72] developed an articulated  

arm picking robot for the sweet peppers in the V-shaped cultivation, 
as shown in Figure 35.  The picking robot is composed of three 
parts, such as recognition, picking, and mobile system.  The 
picking system consists of grabbing and thermal cutting.  
Specifically, two aluminum chain links are used as the grabbers to 
grab fruits.  As shown in Figure 36, the clamping jaws are driven 
by a specially designed notch plate in the thermal cutting part.  
Two electrodes are installed at the front end of the notch plate for 
the electrical input to the electrodes.  Once the jaws are closed to 
grasp the sweet pepper, the thermal cutting electrode can move 
forward to complete the stem cutting. 

 
Figure 35  Schematic diagram of sweet pepper picking 

 
Figure 36  Bell pepper picking actuator 

 

The CCD cameras and artificial lighting are used to capture  

images in the recognition system.  The binarization of the HSV 
color designation is also used to identify the fruit.  Halcon 
software is further selected for real-time image processing.  After 
that, the X, Y, and Z coordinates of bell peppers are taken as the 
output after the image processing system.  The fruits can be 
detected by the light reflection function, even when the fruits are 
overlapped or covered by leaves. 
2.7.2  A picking robot for V-type cultivation 

As shown in Figure 37, Wouter et al.[73] introduced an 
automatic harvesting robot suitable for the ‘V’-type sweet pepper 
cultivation in the greenhouse.  The manipulator module of the 
picking robot includes a 9-DOF robotic arm, an end effector, an air 
compressor for a pneumatic end effector, as well as a cabinet 
containing computers and electronic equipment.   

Two end-effectors were tested in this study.  One is the Fin 
Ray end effector, where four fingers are used to hold the fruit and 
then cut the stalk.  Another is the Lip-type end effector, where a 
suction cup is used to absorb the fruit, and then close the lips to cut 
the stalk. 

In the vision system, the color images can be captured by the 
camera, in order to detect the sweet pepper fruit for maturity.  The 
positioning of the fruit can also be realized to cooperate with the 
depth image from another camera.  The multiple sensors are used 
in the picking robot to achieve a higher harvest success rate, 
together with the relatively lower picking efficiency[74,75].  As 
such, this type of picking robot can be used to cope with the 
complex plant structure, particularly for the improved ability to 
perceive and avoid obstacles under a suitable grasping posture.  

In performance, the gripping success rate of the sweet pepper 
picking robot is 80% using the Fin Ray end effector.  Nevertheless, 
the gripping success rate is 52% under a complex environment 
using the Lip-type end effector.  Furthermore, the cutting success 
rates of both Fin Ray and Lip-type are less than 15%, indicating a 
relatively low picking success rate.  Once the picking environment 
is simplified, the grasping success rate of Fin Ray end effector 
(93%) is higher than that of Lip-type end effector (61%), while the 
cutting success rate of Lip-type end effector (76%) is higher than 
Fin Ray end effector (29%).  The picking cycle of the sweet 
pepper picking robot is 94 s, much longer 6 s than before, 
indicating an economically feasible picking for the sweet pepper. 

 
Figure 37  Bell pepper picking robot 
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2.7.3  A picking robot for planar planting 
As shown in Figure 38, Christopher Lehnert et al.[76], have 

developed a sweet pepper picking robot.  This type of robot 
consists of a differential drive platform, a 6-DOF rotating 
manipulator (universal robot UR5), a mobile joint (Thomson 
LM80), computer hardware, a robot controller, and a forward laser 
scanner.  In the end effector, a blade is used to cut the stalk after 
the fruit is sucked by the suction cup.  Furthermore, a decoupling 
mechanism is also designed to continuously grasp and 
independently cut fruits at different selected positions. 

 
Figure 38  Bell pepper picking robot 

 

In the vision system, an RGB-D camera is used to scan the 
target crop in the sweet pepper picking robot.  Kinect fusion is 
selected to create a 3D model of the scene using a multi-view point 
cloud.  A Naïve Bayesian classifier is also used to separate the 
sweet peppers from the background, according to the mean and 
variance in the rotated-HSV color space.  A clustering method is 
then used to obtain the clusters of different sweet peppers.  Finally, 
the appropriate grasping posture is calculated, according to the 
point cloud of each sweet pepper[77]. 

This type of sweet pepper picking robot is suitable for the 
sweet pepper with a planarized planting environment.  The field 
experiments demonstrated that the picking success rate of the robot 
is only 46% under a complex picking environment; while the rate 
can reach 58% after the picking environment is simplified. 
2.8  Cucumber picking robot 

This section can review four types of picking robots. 
2.8.1  A picking robot using autonomous navigation 

A cucumber picking robot has developed by Li et al.[78], as 
shown in Figure 39.  A crawler mobile platform is used to 
real-time obtain the navigation line image for autonomous 
navigation.  A 4-DOF compact articulated robotic arm is also 
adopted in the machine.  Furthermore, the end effector is 
composed of a flexible finger, a cutter, and a secondary close-range 
positioning camera.  Among them, the secondary close-range 
positioning camera can be utilized to calculate the precise 
coordinates of the cutting point, thereby compensating for the 
initial positioning error.  In performances, the picking success rate 
of the robot is 85%, and the picking time for a single cucumber is 
28.6 s. 
2.8.2  A two-finger pneumatic picking robot  

Yang et al.[79] designed a novel end effector with two-finger 
pneumatic flexible joints, according to the cucumber gripping 
characteristics.  As such, the effective gripping rate of the end 
effector for cucumber is 90%, while the success rate of fruit stem 
cutting is 100%, and the average picking time is 3 s.  This type of  
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6. Cutter  7. Close-range positioning camera  8. Joint  9. Link  10. Fruit box  
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14. Navigation camera  15. Vehicle-mounted industrial computer  16. Track  
17. Walking chassis 

Figure 39  Cucumber picking robot of Li’s team[75] 
 

picking robot is equipped with the novel end effector, indicating a 
higher picking success rate of 86% in the cucumber picking 
experiment that cultivated on diagonal pull lines[75], where the 
average picking time for a single cucumber is 18 s[80].  
Additionally, an incomplete cucumber recognition from the vision 
system can be attributed to the picking failure, particularly where 
the stems were beyond the range of the end effector. 
2.8.3  An automatic picking robot in a greenhouse 

A greenhouse cucumber automatic picking robot has 
developed by van Henten et al.[81], as shown in Figure 40.  This 
type of robot consists of an autonomous car, a 7-DOF manipulator, 
an end effector, two camera vision systems, as well as various 
electronic and pneumatic hardware. 

 

 
Figure 40  Automatic cucumber picking robot in a greenhouse 

 

Specifically, a feasible 7-DOF manipulator is used to position 
the end-effector during the harvest operation.  The manipulator 
also consists of a linear slide on the top, where also mounted a 
Mitsubishi RV-E2 manipulator with an anthropomorphic arm and a 
spherical wrist. 

As shown in Figure 41, the end-effector contains the following 
parts: a gripper and suction cup to grasp the fruit, and a thermal 
cutting device to separate the fruit from the plant.  During the 
harvest, the two fingers of the electric gripper can grip the stem of 
the fruit to cut.  Moreover, the suction cup installed under the 
fingers of the gripper can secure the falling fruit for transportation.  
After that, the fruit can be placed in a horizontal direction, and then 
gently lowered into the storage box.  Finally, the grippers can 
release the fruit for the next round of picking. 

In the vision system, two cameras are used in the harvesting 
robot.  One camera is mounted on a rail of the vehicle, in order to 
extend on both sides of the manipulator and curve at the front end 
of the vehicle.  As such, the camera can be used to inspect the 
crop on both the left and right sides of the vehicle.  More 
importantly, this camera can also move independently from the 
manipulator.  Another camera is set as a lightweight system 
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mounted on the top of the end effector.  Each camera system has 
also performed different tasks.  The camera mounted on the 
vehicle is used to detect the fruit, thereby determining the ripeness 
and quality of the fruit.  Another camera is used to perform the 3D 
positioning of the fruit for the motion planning of the robot.  
Finally, the gripper is used to fix the cucumber on the end effector 
for the stereo imaging near the cucumber. 

In performance, this type of fully automatic robot can pick 
more than 80% of cucumbers in a greenhouse, and the average 
picking time is 45 s/cucumber. 

 
Figure 41  End effector of cucumber-picking robot 

 

2.8.4  A picking robot for high-wire cultivation 
van Henten et al.[82] reported another picking experiment of a 

cucumber picking robot, as shown in Figure 42.  The cucumber 
picking robot can pick the fruit by grasping and cutting off the stem, 
and then transporting the cucumber to the collection with a suction 
cup. 

 
Figure 42  Cucumber picking robot 

 

This type of picking robot is suitable for the high-wire 
cultivation of cucumber.  The high-wire cultivation is much more 
suitable for automatic picking, compared with traditional one.  
This large-scale cultivation is also conducive to improving the 
quality and quantity of cucumbers, but a much more labor intensity 
is required for crop maintenance. 

This type of cucumber picking robot presents an average 
picking success rate of 74.4% in the harvest test (a total of 195 
cucumber fruits are ready to be harvested), and the entire 
harvesting cycle at a fixed position takes an average of 65.2 s. 
2.9  Picking robots for other fruits and vegetables 

This section included various robots for picking cherry and 
heavy crops. 
2.9.1  A cherry-picking robot 

As shown in Figure 43, a cherry-picking robot was developed 
by Tanigaki et al.[27]  This type of robot is mainly composed of a 
4-DOF manipulator, a vision sensor, an end effector, and a personal 
computer.  This type of manipulator can carry the end effector to 
pick fruits around the tree trunk, where one axis of the manipulator 
can move up and down, and another three axes can move left and 

right.  A three-dimensional vision sensor installed on the robot 
arm can also move with the manipulator, thereby reducing visual 
blind spots.  Once the visual sensor receives the position 
coordinates of the fruit, the end effector can move to the location 
ready for the picking.  A vacuum cleaner can provide negative 
pressure to the end effector, where the cherry can be absorbed into 
the vacuum nozzle through the pipe.  The mechanical finger of the 
end effector can be used to clamp the fruit stem, and then pick the 
fruit together with the stem from the tree, finally to send the fruit 
into the collecting box for one complete cheery harvesting. 

 
1. Computer  2. Manipulator  3. 3D vision sensor  4. End effector  5. Vacuum 
cleaner  6. Fruits box 

Figure 43  Cherry picking robot 
 

The end effector is designed about 80 mm high, 30 mm wide, 
and 145 mm long.  Four devices are included in this type of end 
effector, such as a fruit suction, an opening, and closing, a 
back-and-forth movement, as well as a pair of fingers. 

When harvesting the target fruit can be sucked under vacuum 
pressure.  The fruit position can be then fixed at the tip of the pipe.  
The finger can also be opened or closed by the rotation of the servo 
motor that is connected to the end effector.  Once the fingers 
grasp the branches, the end effector can be lifted to pick the 
cherries from the tree. 
2.9.2  A picking robot for heavy crops 

Ali et al.[83] developed a feasible manipulator for the harvesting 
of heavy crops.  This type of manipulator has 5-DOF of the rotary 
joint (4-DOF of the manipulator and 1-DOF of the end actuator), 
with an effective load of 25 kg.  As such, this type of robot 
installed on the tractor can be used to identify and pick heavy crops, 
such as pumpkin, watermelon, melon, and cabbage, while the 
tractor is moving forward. 
2.10  Differences in the structure of picking robots 

The structure of the end effector is different.  The shape, size, 
and surface characteristics of picking objects are different.  
Therefore, end effectors with different structures should be 
designed for picking.  Even with the same picking object, different 
grasping methods will lead to different end effector structures. 

The structure of the manipulator is different.  The fruit and 
vegetable picking robots retrieved in this study mainly use serial 
manipulators, Cartesian coordinate manipulators, and parallel 
manipulators.  Among them, the serial manipulator and the 
Cartesian manipulator have a large range of motion, flexible joint 
motion, and relatively low picking efficiency; the parallel 
manipulator has a small range of motion and relatively high picking 
efficiency. 

3  Situation analysis 

This section can review the structural components, such as  
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robotic arms, end effectors, and vision systems, together with the 
situation analysis for the planting environment and harvesting 
performance.   
3.1  Robotic arm for harvesting 

The robotic arm is used to move the end effector of the 
harvesting robot towards the required position for harvesting.  
Two types of profile can generally be divided, including series 
robotic arms and parallel robotic arms.  The series robotic arm is 
much cheaper and commonly used for easier control, while, the 
parallel robotic arm has high failure resistance and fast-moving 
speed[84,85].  Furthermore, the current harvesting robots are mostly 
used in the series structure, particularly with the DOF ranging from 
3 to 7 DOF[68,85,87].  In addition to a single series robotic arm, 
there are also multiple series of robotic arms to improve harvesting 
efficiency[87-89]. 
3.2  End effector 

The end effectors of agricultural harvesting robots usually need 
to be adaptively designed for different harvesting objects, 
particularly for the physical characteristics of the target fruits.  
There are three types under the various picking methods, including 
the negative pressure adsorption, gripping twist, and shearing.  
Furthermore, the selection of picking methods is closely related to 
the mechanical properties of the target fruit.  

In negative pressure adsorption, a vacuum generator is used to 
generate the negative pressure, thereby adsorbing the fruit body of 
the target fruit.  As a result, the fruit stem can be broken under the 
transverse shear force.  

The gripping twist type also can pose the target on the fruit 
body.  The end effector can clamp the fruit body tightly while 
twisting, where the fruit stem is sheared to be broken using torsion 
force. 

In shearing type, the cutting is the most traditionally used 
typical blade to directly cut the fruit stems[90-92].  Various forms 
are also widely used, such that high-temperature electrodes can 
prevent fruit infection[93], and laser cutting can reduce the 
complexity of the end effector due to non-contact[25].  Since the 
shearing type has the widest range of applications, the shearing 
structure needs to be greatly simplified, particularly for grasping or 
receiving the target fruit.  

Free of damage is also necessary to be considered in the design 
of the end effector, due to the fruits generally vulnerable to damage.  
Specifically, the negative pressure adsorption type can produce a 
much larger suction force to effectively absorb the target fruit, 
where the resulting fruit can often reach a much higher speed after 
separation from the stem.  Therefore, a buffer structure also needs 
to be designed to avoid collision damage.  

There is also the generally larger gripping force in the gripping 
twist type.  Especially, the end effector can be required to firmly 
hold the target fruit, thereby avoiding the relative sliding during 
twisting in the harvesting process.  Therefore, a force sensor is 
normally required to accurately control the gripping force[94].  The 
clamping structure of the end effector is often designed to fit the 
target object, but even the same fruit has still different shapes and 
sizes.  As such, the human-like multi-finger structure is the most 
widely used because of its flexibility and excellent adaptability.  
In terms of the index[95-97], two, three, and four fingers can be 
divided for this type of structure[22,98].  Among them, the two 
fingers are suitable for the small fruits with regular shapes, whereas 
the three and four fingers are mostly used for the fruits with 
irregular shapes or large sizes.  Additionally, the fruit is free of 
damage in the shearing type, where there is no directly exerting 

force on the fruit. 
3.3  Visual algorithm 

The vision system can greatly contribute to the environmental 
perception of the harvesting robot, including the fruit recognition 
and positioning during the harvesting process.  However, a highly 
effective method is still lacking in the current vision system to 
rapidly identify and accurately locate the target fruit in the complex 
field environment.  Furthermore, the high performance of the 
vision system can directly dominate the harvesting success rate and 
harvesting efficiency of the robot[2].  

Most visual algorithms have been proposed for the various 
harvesting robots collected in Section 2.  It can be found that the 
color features of mature fruits are often utilized to distinguish the 
target fruit from the background environment.  The color spaces 
are commonly used, including the RGB, HSI, Lab, YIQ, YCbCr, 
HSV, and LCD.  Even one or more color spaces are selected for 
the vision system in most harvesting robots.  For instance, Zhao et 
al.[99] identified the mature tomatoes in the field using the HIS color 
features.  Si et al.[100] proposed an algorithm to segment the apple 
images by normalizing the difference between red and green.  
Yang et al.[101] have also calculated the 2R-G-B in an RGB color 
space for the Otsu threshold segmentation.  More importantly, an 
adaptive Hough circle transform has been used with some local 
parameters to identify apples in the figure.  

Subsequently, the segmentation can be designed to recognize 
the target fruit, according to the extracting features and the 
background.  Six algorithms have also been commonly used to 
segment and identify the fruit in recent years, including the 
threshold segmentation, clustering algorithm, region growing 
method, support vector machine (SVM), artificial neural network 
(ANN), and combined multiple algorithms.  For instance, Jiang et 
al.[102] used an adaptive threshold Otsu algorithm to segment the 
apple image.  Ji et al.[103] also proposed an SVM-based apple 
recognition classification, according to the extracting color and 
shape features from the apple images.  Specifically, some pixels 
are taken as the initial seed area, corresponding to the color with 
the highest probability in the RGB histogram of the apple images.  
As such, the area growth can be achieved to measure the color 
similarity between each pixel in the seed area and the 8 
neighboring pixels.  Lei et al.[104] used the kernel fuzzy C-means 
clustering to segment the pomegranate images.  Song et al.[105] 
achieved the segmentation of eggplant images using artificial 
neural networks. 

Many detection algorithms have also appeared using deep 
learning in recent years.  Fu et al.[106,107] successively used the 
Faster R-CNN based on ZFnet and VGG16 to realize the kiwi 
detection.  Liang et al.[108] have used the SSD to real-time detect 
mangoes in trees.  Kushtrim et al.[109] used the YOLOv2 to 
real-time detect and then count apples and pears in the canopy.  
Lu et al.[110] used an improved YOLOv3-LITE lightweight neural 
network to identify the citrus in the orchard.  

It is also very necessary to repair the fragmented and 
incomplete images, particularly for the fruit that is easily blocked 
by some branches and leaves during the harvesting process.  For 
instance, Xun et al.[111] performed the circle fitting on the occluded 
apple area that was segmented by the three-layer BP neural 
network to achieve target positioning.  Silwal et al.[112] used a 
Blob analysis to identify occluded apples.  

In the occluded part, if an apple target is divided into multiple 
regions by the occluded object, these regions can also be merged 
using a clustering algorithm, according to the principle of 
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Euclidean distance.  For instance, Zhuang et al.[113] used the 
convex hull operation to estimate the occluded part, where the 
foreground area is used to approximate the real conditions.  The 
new clustering algorithm can also be applied to the images of point 
cloud.  That can also be an efficient way to overcome the 
interference of occlusion[114]. 

In overlapping fruits, Wang et al.[115] used the K-means and 
Ncut spectral clustering algorithm to segment the apple targets.  
Fu et al.[116] detected the two pits on the edge that is the closest to 
two adjacent kiwifruit calyxes, in order to determine whether it is 
the dividing line of adjacent kiwifruit by the intersection and the 
angle of the line of two pits, or the line of the two calyxes. 

Special lighting environments are considered in various vision 
algorithms, such as night and fog.  For instance, Ji et al.[117] 
proposed a Retinex image enhancement algorithm for the night 
apple images, particularly with the edge-preserving features using 
guided filtering.  Jia et al.[118] proposed a WT-ICA fusion noise 
reduction method to remove the noise in the images of apple night 
vision.  Particularly, the wavelet transform and independent 
component analysis are introduced into the night vision image 
processing,  

In the case of severe haze conditions, Zhu et al.[119] proposed a 
novel method for the parameter adjustment and improvement in the 
visual positioning of apple-picking robots, particularly on the dark 
channel rather than the defogging of apple images.  Yang et al.[120] 
used the super-pixel segmentation to improve the robustness of 
recognition in different lighting  
3.4  Planting environment 

The crop cultivation and planting environment also require 
completely different structures and technical designs of harvesting 
robots. 

In tomato harvesting, Yasukawa et al.[121] designed a robot for 
single-frame cultivation.  Feng et al.[122] also designed a robot for 
the hanging-line cultivation.  Liu et al.[123] designed an efficient 
and accurate harvesting robot for tomato cultivation in the 
greenhouse. 

In strawberries harvesting, the high-ridge and high-rack 
cultivation are widely applied at present, due to the labor-saving, 
neat, and high yield, compared with the ordinary ground cultivation.  
Correspondingly, more and more strawberry harvesting robots are 
designed for the mainstream high-ridge and high-rack cultivation in 
Japan[124].  There is also an excellent performance of the strawberry 
harvesting robot for the high-rack cultivation in China[125-127]. 

In addition, the artificially cultivated and structured plantation 
can reserve enough space for the harvesting robot to move.  
Furthermore, the crops with the artificially restricted planting mode 
can present denser fruit distribution and fewer obstructions, 
compared with the crops cultivated in the traditional model.  
Therefore, smaller working space and higher recognition accuracy 
can be achieved for the harvesting robot that is designed for the 
structured orchard. 
3.5  Harvesting performance 

The performance of fruit harvesting can be evaluated by the 
harvesting success rate, harvesting efficiency, fruit damage, and 
harvesting environment. 

The harvesting success rate depends on the visual recognition 
and positioning algorithm in the vision system, as well as the end 
effector.  Therefore, the higher picking success rate can be 
attributed to the higher recognition and positioning accuracy of the 
vision system, while the lower error rate of the picking action from 
the end effector. 

In picking efficiency, the specific influencing factors can be 
relatively complex, including the recognition and positioning speed 
of the vision system, the movement efficiency of the robotic arm, 
as well as the complexity of picking action from the end effector. 

The damage of the fruit is totally determined by the end 
effector.  Much more effective picking methods or reasonable 
fruit protection measures can contribute to effectively reducing the 
damage rate of the fruit. 

The harvesting environment can also pose a great impact on 
the harvesting performance.  For instance, the harvesting 
performance of the robot is significantly better in the structured 
orchard harvesting environment than that in the unstructured one.  
The higher harvesting performance can also be attributed to the 
improved recognition and positioning of the vision system, while 
the fewer requirements for the obstacle avoidance of the robotic 
arm during the harvesting.  The reason can be that there is a more 
regular spatial distribution of fruits in the structured orchard, where 
the branches and leaves are less blocked. 

4  Summary and challenges 

4.1  Complex and changeable harvesting environment 
The growth environment of fruits can generally be divided into 

indoor and outdoor modes. 
In the outdoor environment, there are complex and changeable 

influencing factors during the harvesting process.  Among them, 
weather can cause some great variation in the light, temperature, 
and humidity environment, especially in the light for the 
identification and positioning of the vision system.  Furthermore, 
a harsh requirement can be addressed on the obstacle avoidance of 
the picking robot, where the fruits may grow in places with dense 
branches and leaves in the outdoor environment.   

In the indoor environment, there are fewer influencing factors 
than those in the outdoor environment.  The indoor crops are more 
consistent in the location, while more controllable in the light 
parameters.  However, there is a much greater planting density of 
crops in the indoor environment, leading that there is less space 
between crops.  Therefore, a higher requirement can be addressed 
on the shape and obstacle avoidance of the picking robot.  In 
addition, the indoor architectural background may also pose a 
certain impact on the identification of fruits. 
4.2  Low accuracy of recognition and positioning in vision 
system 

The fruit identification and positioning algorithms in the vision 
system can be used to accurately and rapidly locate the target fruit, 
according to the color, texture, and shape feature of fruits.  

The accuracy of recognition and positioning in the vision 
system is very susceptible to the light parameters because the light 
can cause much greater interference to the color feature.  
Specifically, the light spots can be formed on the surface of fruits 
and vegetables under a well-lit environment, leading to the loss of 
color and texture information in the target area.  By contrast, the 
overall color of fruits and vegetables can be dark, resulting in the 
color information being distorted under a low-lit environment.  In 
addition, the uneven lighting can also cause to be darker on some 
surfaces, while to be brighter on the rest surface of the fruits and 
vegetables, inevitably leading to errors of identification and 
positioning. 

The shading of branches and leaves can be another influencing 
factor for the accuracy of recognition and positioning in the vision 
system.  The fruits are easily obscured by other branches and 
leaves in a natural environment.  As such, there is also an 
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incomplete area of segmented fruits using color and texture 
features.  The centroid position can also be shifted after 
calculation based on the shading features.  If the obscured area is 
too large, the regions of interest can be unrecognizable for the 
vision system.  Once the covered area of fruits exceeds 80% in the 
best case, the covered fruits cannot be identified, according to the 
current report[111].  

Besides, overlapping fruits are very easy to occur, particularly 
on some fruits in clusters.  Therefore, the multiple overlapping 
fruits may be misjudged as one during identification, resulting in 
the algorithm collecting the wrong number of fruits and the wrong 
position of the centroid, even for the subsequent picking path 
planning. 
4.3  Picking efficiency chasing commercial requirements 

Most current harvesting robots can pick only one fruit or 
vegetable at a time, indicating a limited improvement of harvesting 
efficiency.  Firstly, some harvesting robots with multiple robotic 
arms can also bring bulkiness in the profile and cost, as the 
harvesting efficiency increases. 

Secondly, the current harvesting robots from the laboratory 
environment cannot fully meet the complex and changeable actual 
working conditions.  Various situations can often occur in the 
natural environment, such as the repeated picking actions for the 
target fruits difficult to pick, and the redundant picking actions that 
are caused by misidentification.  All these situations can greatly 
reduce the harvesting efficiency of the harvesting robot. 
4.4  High cost of harvesting robots 

The high manufacturing cost can be attributed to the relatively 
complicated structure of the harvesting robot.  More importantly, 
a mechanical arm and a special end effector are required to 
complete the picking action, as well as a corresponding vision 
system, a control system, and a mobile carrier during harvesting. 

In addition, the harvesting robots are only used in the 
harvesting season of the year, but they idle for the rest of the year, 
due to the obvious seasonality and timeliness of fruit harvesting, 
thus leasing to the relatively lower economics of the harvesting 
robots. 

5  Outlook 

5.1  Structured environment for fruit planting 
A structured fruit planting environment can be a better choice 

for harvesting robots in the near future.  In contrast, the complex 
environment of fruit planting often requires a strong ability of the 
harvesting robot to avoid obstacles for picking operations.  Much 
more DOFs and complicated obstacle avoidance algorithms have 
been proposed to improve the obstacle avoidance ability, thereby 
undoubtedly increasing the production cost, while reducing the 
harvesting efficiency of the harvesting robot.  Alternatively, the 
structured fruit planting environment can be used for the tradeoff.  
For instance, the sweet pepper plantation in Florida adopts the 
Spanish planting mode or the Dutch ‘V’ planting mode, as shown 
in Figure 44.  As such, the growing position of the sweet pepper 
can be more regularly suitable for automated harvesting[128-130].  A 
further study of planting mode is also under the way for the 
automated large-scale harvesting in apple orchards[131]. 
5.2  Higher precision algorithm of recognition and positioning 

A higher precision algorithm of recognition and positioning in 
the vision system can be a high demand for the excellent robustness 
of illumination in the future harvesting robot.  Particularly, it is 
very necessary to correctly identify and locate the occluded or 
overlapping fruits and vegetables in the complex environment. 

 
Figure 44  “V” planting model of sweet peppers (left) and the 

Spain planting model (right) 
 

For instance, Lv et al.[132] used the adaptive gamma correction 
to improve the illumination of the image.  Zhuang et al.[113] used 
the convex hull operations to repair the image of occluded citrus.  
Luo et al.[133] proposed an algorithm to segment overlapping grape 
clusters for the stalk-cut point.  Yang et al.[134] proposed a color 
image segmentation of Hangzhou white chrysanthemum using the 
LS-SVM.  The success rate of the algorithm can be more than 
81%. 

In addition to the conventional visual algorithm, the spectrum 
technologies can also be applied for the recognition and 
localization to improve the robustness of the vision system in the 
harvesting robot[135-137]. 
5.3  Picking efficiency to improve 

Large-scale commercialization can be a critical indicator to 
evaluate the efficiency of harvesting robots.  Most current 
harvesting robots still cannot fully meet the efficiency requirements 
of commercialization at present. 

Firstly, one way can be to optimize the structural design of the 
end effector for a higher harvesting efficiency.  Particularly, the 
end effector can be designed to pick the fruits most concisely and 
efficiently, according to the characteristics of harvesting fruits. 

Secondly, the working time can also be extended to improve 
the picking efficiency.  Therefore, the night image recognition and 
positioning algorithm can be required for the vision system, where 
the harvesting robot can work during the day, and then continue at 
night. 
5.4  Cost-saving picking robots 

A relatively lower cost can greatly contribute to 
commercialization.  The cost-saving harvesting robots are 
required to simplify the structure components without loss of 
harvesting efficiency.  

Once a structured fruit planting environment can be used to 
reduce the requirements for the obstacle avoidance function of the 
picking robot, the DOF of the robotic arm can be reduced for 
manufacturing costs.  Particularly, many current harvesting robots 
with more DOF mechanical arms can also be attributed to obstacle 
avoidance in the complicated planting environment. 

Secondly, the less multi-function of the harvesting robot can 
also relatively reduce the cost.  Some fruit harvesting robots have 
similarities in the design of the robotic arm.  If the harvesting 
robot can easily switch the end effector and software, the 
harvesting of various types of fruits can be achieved with one 
picking robot, thereby improving the utilization efficiency of the 
picking robot with cost savings. 
5.5  Integration of multiple functions 

Combined with the structured planting environment, fruit and 
vegetable picking robots are developing into a comprehensive 
mobile harvester that integrates automatic harvesting, automatic 
sorting, and automatic packaging.  At the same time, different end 
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effectors can be automatically replaced to realize bagging, pruning, 
and other work. 
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