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Abstract: The black spot disease caused by Alternaria alternata on Yali pears is a great concern as it compromises their edible 
quality and commercial value.  To realize rapid and non-destructive classification of this disease, hyperspectral imaging (HSI) 
technology was combined with two-dimensional correlation spectroscopy (2DCOS) analysis.  A total of 150 pear samples at 
different decay grades were prepared.  After obtaining the HSI images, the whole sample was demarcated as the region of interest, 
and the spectral information was extracted.  Seven preprocessing methods were applied and compared to build the classification 
models.  Thereafter, using the inoculation day as an external perturbation, 2DCOS was used to select the feature-related 
wavebands for black spot disease identification, and the result was compared to those obtained using competitive adaptive 
reweighting sampling and the successive projections algorithm.  Results demonstrated that the simplified least squares support 
vector model based on 2DCOS-identified feature wavebands yielded the best performance with the identification accuracy, 
precision, sensitivity, and specificity of 97.30%, 94.60%, 96.16%, and 98.21%, respectively.  Therefore, 2DCOS can effectively 
interpret the feature-related wavebands, and its combination with HSI is an effective tool to predict black spot disease on Yali 
pears. 
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1  Introduction  

The Chinese pear ‘Yali’ (Pyrus bretschneideri Rehd) is a 
variety in the ‘White pear’ system, which is rich in vitamin C and 
minerals, such as calcium, phosphorus, and iron.  It is flavorful 
and popular among consumers in China[1].  However, during 
storage, Yali is prone to infection by Alternaria alternata and, 
consequently, the black spot disease.  With fungal infections, 
brown spots appear locally on the surface of pears[2].  Additionally, 
the physicochemical property value of the diseased pear changes, 
resulting in quality loss, which critically affects its commercial 
value.  Thus, it is crucial to detect and classify the black spots in 
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pears.  Presently, the conventional method for black spot disease 
identification and detection is recognition by the human eye and 
morphological identification of Alternaria alternata.  However, 
these methods have the disadvantages of low efficiency, 
time-consuming, and laborious.  Additionally, the inefficiency of 
the industrially prevalent method of simple visual inspection by 
trained personnel and the high degree of subjectivity in the 
inspection process are major concerns[3].  Therefore, the 
development of a rapid nondestructive detection method is needed 
to identify black spots in Yali pear. 

Hyperspectral imaging (HSI) combines near-infrared 
spectroscopy and two-dimensional imaging to obtain spatial and 
spectral information simultaneously[4].  In recent years, HSI has 
been widely investigated as a promising technology for disease 
identification in fruits and vegetables, such as peach[5], mandarin[6], 
apple[7], citrus[8], potato[9], and onion[10].  All of these studies 
indicate that HSI is effective for the recognition of fruit and 
vegetable diseases. 

However, the acquired hyperspectral images typically have 
high dimensional data and contain a large amount of redundant 
information.  The collinearity and redundancy of images at 
contiguous wavelengths reduce the computational efficiency and 
deteriorate the performance of the model[11].  To solve these 
problems, characteristic wavelength selection is generally 
implemented to select informative variables and remove 
uninformative and noisy ones while ensuring a shorter duration for 
computational modeling[12].  Some of the methods for selecting 
characteristic wavelengths are competitive adaptive reweighted 
sampling algorithm (CARS), genetic algorithm, and successive 
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projection algorithm (SPA).  Although they are commonly used, 
the selection criteria of most of these methods are not driven by 
real relevance to spectral features; instead, they use a searching 
algorithm based on prediction accuracy from a statistical 
perspective.  Further, the selected variables representing a 
functional group of the analytes or a property of interest were 
poorly interpreted[13].  In comparison with traditional 
one-dimensional (1D) spectra, two-dimensional correlation 
spectroscopy (2DCOS) can enhance spectral resolution by 
spreading the original data over the second dimension, and 
emphasize the features not readily observable in 1D spectra[14].  It 
can discern small spectral changes and interpret them at the 
molecular level.  The 2D correlation spectra provide chemical 
fingerprints that aid in interpreting chemometric models.  This 
facilitates the identification of the chemical components present in 
the sample.  Currently, this technology is used to identify 
adulterated rice[15] and edible oils[16].  However, the combination 
of 2DCOS and HSI to identify black spots in the Yali pear has 
rarely been reported. 

This study attempted to combine HSI and 2DCOS to detect 
black spot disease in Yali pears.  The main objectives are as 
follows: 1) acquisition of hyperspectral images of Yali pears with 
and without black spots; 2) region of interest (ROI) segmentation 
from hyperspectral images and extraction of average spectra; 3) 
pretreatment of original spectra; 4) selection of characteristic bands 
using 2DCOS, CARS, and SPA; 5) use of the least-squares 
support-vector machine (LS-SVM) for modeling based on the full 
band spectra and characteristic bands.  In this study, an efficient 
method was expected to be developed to interpret HSI spectra of 
diseased pears and identify the most effective variables in a rapid 
and accurate manner. 

2  Materials and methods  

2.1  Sample preparation 
Fresh Yali pear fruits were purchased from a local fruit market 

in Baoding, Hebei, China, and were immediately transported to the 
laboratory of Hebei Agricultural University, where were stored at 
4°C prior to use.  A total of 151 pears with comparable maturity, 
shape, and weight and free from apparent defects, physical injuries, 
or disease infection were selected.  They were cleaned with 
detergent, surface-sterilized with 70% ethanol to eliminate other 
microbes, rinsed thrice with distilled water, and finally air-dried at 
room temperature (25°C). 

Six Yali pears with natural black spot disease were selected as 
the source of pathogenic bacteria.  After being purchased from a 
local farmers' market in Baoding, Hebei, China, the diseased pear 
was wiped and disinfected with alcohol cotton balls, and the 
pericarp was removed with a sterile knife.  Then, the diseased 
pulp was placed on a prepared potato dextrose agar (PDA) plate 
and stored in a 25°C incubator.  After 3 d, new mycelium grew 
around the pulp, and they were picked by an inoculation ring for 
purification on another PDA plate.  After 7 d of culture at 25°C, 
the pathogen spores on the PDA plate were scraped off with a 
triangular glass rod, suspended in sterile distilled water containing 
0.05% Tween-80, and placed into a 50 mL triangular flask.  The 
flask was then shaken for 15 s and filtered with four layers of gauze 
to make the sporozoan suspension.  The concentration of conidial 
suspension was adjusted to about 106 spores conidia per milliliter 
with the aid of a hemocytometer[17]. 

A 20 μL of Alternaria alternata conidial suspension was 
injected 3 cm deep into the fruit's equator with a sterile syringe 

perpendicular, and the fruits were incubated at 24°C-25°C, 80% 
RH.  Seven pear fruits were inoculated daily, and the experiment 
lasted for 18 d.  The lesion diameters of the disease spots on each 
fruit were recorded during cultivation, and samples were classified 
according to the grading standard shown in Table 1[18].  All 
samples were classified into four grades: healthy samples (Grade0, 
G0), light decayed samples (Grade1, G1), medium decayed 
samples (Grade2, G2), and severely decayed samples (Grade3, G3).  
After the elimination of one abnormal decayed sample, a total of 25 
fresh and 125 inoculated pear fruit were acquired for subsequent 
analysis.  

 

Table 1  Grading standard for Yali pears used in this study 

Category Grading standard Number 

Healthy (G0) No inoculation, no disease spots 25 
Light decayed (G1) Percentage of spot area≤20% 55 
Medium decayed (G2) 20%<Percentage of spot area≤60% 59 
Severely decayed (G3) Percentage of spot area>60% 11 

 

2.2  Hyperspectral imaging system 
Images of pear fruit were acquired using a pushbroom HSI 

system in reflectance mode.  The system mainly consisted of four 
components: a charge-coupled device camera (SPECIM FX 10, 
Specim company, Finland) with a resolution of 1024 pixels (pixel 
size is 8×8 μm) in the spatial dimension and 224 bands in the 
spectral dimension, a hyperspectral imaging workstation 
(SisuCHEMA, Specim company, Finland) with the spectral range 
of 398-1004 nm, two halogen lamps (JCR, 15 V, 150 W, BAU, 
Japan) and a computer with a hyperspectral image analysis 
software.  The spectral resolution is 5.5 nm and the imaging speed 
of full-band acquisition is 330 fps. 

The measured sample was placed on the mobile platform, and 
the lesion area was manually placed upward to facilitate image 
acquisition.  To prevent image over-saturation, the speed of the 
moving platform, the camera exposure time, and the collection 
distance need to be set in advance.  After repeated tests, the 
aforementioned three parameters were set as 9.74 mm/s, 8.50 ms, 
and 500 mm, respectively.  The images acquired under this 
condition are clear and full.  The camera records the spectral 
information reflected by the sample in the form of line scan, and a 
group of hyperspectral information of size (x, y, λ) can be obtained, 
where x and y are spatial dimensions (the number of rows and 
columns in pixels), and λ is the number of spectral bands. 

Due to the dark current and different lenses' sensitivity to light, 
the captured images are not consistent with the real situation.  
Therefore, it is necessary to correct the data through 
black-and-white reference[19].  A Teflon white board (Spectraon 
SRT-99-100, Labsphere Inc., North Sutton, NH, USA) was used to 
obtain the white image.  The dark image was acquired by covering 
the lens with an opaque cap.  The corrected relative image was 
calculated according to the formula as follows: 
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where, I is the corrected spectral image; Io is the original spectral 
image; Iw is the white image; Id is the dark image. 
2.3  Spectral data acquisition 

Spectral extraction of hyperspectral images was performed 
using the Environment for Visualizing Images software (ENVI 5.1, 
Research System Inc., Boulder, MT, USA).  The selection of the 
region of interest (ROI) greatly affects the accuracy of the model.  
In order to contain as much information as possible, all the pixels 
of the pear were selected as ROI.  The pear and background were 
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distinguished by the threshold segmentation method, which 
involves setting a gray value in advance, retaining the region 
greater than this value, and removing other regions.  In this study, 
three points were selected at the junction of the samples and black 
background, and the average grayscale value was considered as the 
threshold value.  Then the average spectrum of all pixel points 
was calculated by ENVI and considered as the spectral information 
of the sample.  As the collected spectral images were clear in all 
bands, the whole spectral range with 224 bands was retained for the 
analysis. 
2.4  Spectral pretreatment 

To reduce or eliminate the influence of spectral drift or 
migration on the prediction ability of the model, the original 
spectra are treated by some pretreatment methods[20].  In this study, 
the original spectral data underwent: 1) scattering correction 
(standard normal variate (SNV) correction), which was used to 
eliminate the scattering effects caused by the particle size or an 
uneven distribution within the spectrum[21,22]; 2) mathematical 
pretreatments (first derivative (FD) treatment and second derivative 
(SD) treatment), which can eliminate baseline drift and baseline 
rotation[23]; 3) combinations and different orders of use thereof 
(SNV-FD, SNV-SD, FD-SNV, SD-SNV).  The spectral 
pretreatment was carried out in PLS_Toolbox 7.5 (Eigenvector 
Research Inc., Manson, WA, USA).   
2.5  Effective variables selection 

It is important to conduct wavelength selection to reduce the 
redundant information in the hyperspectral data for further 
designing a robust model[24].  In this study, 2DCOS was used for 
identifying spectra features related to fruit decay from the full 
spectral range.  Meanwhile, the commonly used methods CARS 
and SPA were also employed and compared with 2DCOS. 

2DCOS was carried out using the 2DCOS software freely 
available on the website designed by Tao Zhou 
(http://muchong.com/t-9696009-1).  2DCOS extends the spectral 
information from one dimension to two dimensions, improves the 
resolution of the data, and makes it easier to discover the hidden 
information[25].  It can help deeply understand the spectral changes 
affected by external perturbation at the molecular level.  In this 
study, inoculation day was used as the external perturbation to 
select a series of dynamic spectra.  Thus 19 samples were selected, 
including 18 samples with different decay grades and 1 fresh 
sample.  Before the 2D-COS analysis, SD was used to process the 
spectra as it can remove some high-frequency noise and 
interference between components.  

CARS is a fast and effective wavelength selection method.  In 
general, each sampling run consists of four main steps.  Firstly, 
Monte Carlo method was used to select N subsets (each subset 
contains 80%-90% of the calibration set) from the calibration set, 
and the calibration model was established with each subset.  
Secondly, the exponential decay function (EDF) was used to 
remove little or no information in the whole spectrum gradually 
and effectively.  Thirdly, adaptive weighted sampling (ARS) 
simulates the “survival of the fittest” principle by selecting heavier 
wavelengths.  Finally, the wavelengths with the smallest root 
mean square error of cross-verification (RMSECV) were the 
optimal wavelengths.  The SPA algorithm is also widely used in 
the wavelength selection of hyperspectral data.  Vector projection 
analysis was used to find out the minimum redundant information 
variable group in the spectral information, so as to minimize the 
collinearity between variables and reduce the number of modeling 
variables.  In SPA, multiple models based on different subsets 

were established and the root mean square error (RMSE) of the 
models was calculated.  The optimal wavelengths can be 
determined from a subset of the minimum RMSE.  
2.6  Model establishment 

All samples were divided into a calibration set and a prediction 
set by kennard-stone (K-S) algorithm according to a ratio of 3:1.  
Then there were 113 samples in the calibration set and 37 samples 
in the prediction set.  After the sample partition, the spectral data 
in the calibration set was used as the input of LS-SVM, and the 
identification models were verified with the samples in the 
prediction set.  LS-SVM (Suykens, 
http://www.esat.kuleuven.ac.be/sista/members/suykens.html) is an 
improved version of the support vector machine and is used to 
analyze data and pattern recognition as well as classification and 
regression analyses[26].  In addition, LS-SVM runs significantly 
faster than other versions of support vector machines due to its 
least-squares approach.  Compare with methods like convolutional 
neural network, the advantages of LS-SVM include short training 
time, small training sample, strong generalization ability, and high 
accuracy.  The aforementioned data analyses were all 
implemented in MATLAB2014a (The Mathworks Inc., Natick, 
MA, USA).  
2.7  Model evaluation 

Average recognition accuracy, precision, sensitivity, and 
specificity are the general measurement metrics to evaluate the 
performance of the classification model.  The performance of the 
established LS-SVM model was evaluated by calculating the 
accuracy, precision, sensitivity, and specificity according to 
Equations (2)-(5)[27]. 

TP TNAccuracy
TP TN FP FN

+
=

+ + +            
(2) 
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                (3) 
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FP TN
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               (5) 

where, TP represents the number of individuals that are actually in 
category C (the target category) and are correctly classified by the 
classifier; FP represents the number of individuals that do not 
belong to category C but are misclassified into category C; TN 
represents the number of individuals that do not belong to category 
C and are correctly classified by the classifier; FN represents the 
number of individuals that belong to category C but are 
misclassified by the classifier.  The hyperspectral image analysis 
structure is shown in Figure 1. 

3  Results and analysis 

3.1  Sample analysis 
Following the inoculation of pears with a fungal suspension, 

the wound on the fruit surface was barely visible in the early stage 
of infection.  Then, necrosis of the epidermal tissue at the wound 
resulted in the formation of a little black spot that gradually 
expanded as the grade of corruption increased.  The spot was 
characterized by a grayish-brown round shape and became more 
apparent and darker as time progresses.  This may be because, as 
the disease progresses, pathogens proliferated into healthy areas 
around it and began to produce symptoms.  In severely decayed 
fruits, the diseased areas spread further to most of the fruits, and 
significant fruit spot was observed.  Some liquid precipitation was 
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observed in the lesion area, which was probably caused by the 
proliferation of pathogenic microorganisms; this phenomenon 

destroys the cell structure and leads to the exudation of cell fluid.  
Additionally, a few brown spots were formed around the lesion area. 

 

 
Figure 1  Hyperspectral image analysis structure 

 

3.2  Spectral characteristics 
The original spectra of all samples are shown in Figure 2a, 

where the blue, yellow, green, and red lines represent the fresh, 
light-decayed, medium-decayed, and severely-decayed samples, 
respectively.  The state of samples with different decayed degrees 
is shown in the lower-right corner of Figure 2a.  It can be 
observed that the trends of the spectra of pear samples with and 
without different corruption grades were consistent; however, the 
spectral reflectance intensity at different wavelengths varied, 
indicating that different samples comprised similar substances, but 
different quantities of these substances.  The spectral reflectance 
of healthy pears was significantly higher than that of decayed pears 
and generally decreased continuously with an increase in 
corruption grades.  The decrease in spectral reflectance represents 
the change in the characteristics of the fruit, including hidden 
information about different components such as sucrose, fructose, 
and glucose.  Three pronounced absorption peaks were observed 
at 485 nm, 650 nm, and 980 nm.  The peaks at 485 nm and 
650 nm correspond to the absorption peaks of carotenoids and 
chlorophyll, and the absorption peak near 980 nm is related to the 
first overtone of O-H[28,29].  In addition, there are small absorption 
peaks at 740 nm and 780 nm, which represent the absorption peaks 
of water and cellulose, respectively[30].  The inoculated fruit 
showed reduced chlorophyll and water content so the two 
absorption peaks of their spectra decreased.  The absorption peak 
at 650 nm was different for some samples of the same grade.  The 
reason might be that there are inevitable differences among pear 
samples, such as inconsistent original chlorophyll content.  
Moreover, the absorption peak at 680 nm gradually disappeared 
with the increase in decayed grades owing to the decomposition of 
chlorophyll during the corruption process due to its instability.  

In general, owing to the complex relationship between different 
wavelengths and functional groups in the entire spectral range, 
there is no evident absorption peak that corresponds directly to the 
disease grade in the reflectance map.  Therefore, it is necessary to 
analyze the disease grades of the samples using modeling. 
3.3  Spectral pretreatment 

Figures 2b-2h show the ability of several pretreatment methods 
to correct the raw spectra.  After preprocessing, the spectral data 

retained the absorption characteristics of the raw spectra and 
improved to a certain degree.  The interference of the baseline and 
background is eliminated when the spectra are processed by FD 
and SD, and the characteristic peaks in the original spectra are 
highlighted.  This implies that the FD and SD pretreatments 
strengthen the small characteristic peaks hidden in the wider 
absorption frequency band in the original spectra.  Moreover, the 
corresponding differences in the absorbance of local positions such 
as extreme and inflection points are also strengthened.  After SNV 
treatment, the spectra were consistent with the original spectra; 
additionally, the spectra became concentrated between 400 and 640 
nm (Figure 2d), indicating that the effect of scattering was 
weakened.  Generally, SNV, FD, and SD have successfully 
reduced spectral dispersion and corrected the baseline shift. 

As individual spectral pretreatment may not offer ideal 
prediction results owing to the complexity of decayed pear fruit 
samples, the combinations of different pretreatment methods were 
also employed to process the original spectra.  As shown in 
Figures 2e and 2g, the trends of these two spectra are consistent, 
but the variations between samples in the FD-SNV spectra are 
greater than those in SNV-FD.  Similarly, Figures 2f and 2h show 
the spectra pretreated by SNV-SD and SD-SNV.  The trends of 
these two spectra are consistent, but the differences between 
samples in the SNV-SD spectra are greater than those in SD-SNV.  
Direct observation of spectral signal characteristics cannot indicate 
the optimal pretreatment method; this is due to the fact that the 
selection factors are subjective in nature.  This leads to incorrect 
results.  Therefore, evaluation should be conducted according to 
the prediction results of further modeling. 
3.4  Model based on the entire spectra 

Based on the full spectra preprocessed by FD, SD, SNV, 
SNV-FD, SNV-SD, FD-SNV, SD-SNV, and untreated spectra, 
classification models were developed.  Table 2 presents the model 
performance for the prediction set in terms of overall accuracy, 
precision, sensitivity, and specificity.  Generally, model prediction 
accuracy increases with the proximity of the four indicator values 
to 1.  Compared to the original spectra, the prediction 
performance of the LS-SVM models developed based on the 
preprocessed spectral data, was satisfactory.  The SNV-SD model 
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yielded the highest accuracy (95.95%), with precision, sensitivity, 
and specificity ranging from 76.73%, 82.33%, 94.08% to 88.35%, 
94.60%, and 97.47%, respectively, implying that the SNV-SD 

method was most suitable for the classification of black spot 
decayed grades.  Additionally, suitable spectral preprocessing 
improves the identification accuracy of the models. 

 
a. Original spectra b. FD spectra c. SNV 

 
d. SD e. SNV-FD f. SNV-SD 

 
g. FD-SNV  h. SD-SNV 

 

Figure 2  Original and preprocessed spectra  
 

Table 2  Results of LS-SVM models based on the original and 
preprocessed spectra 

Pretreatment Accuracy/% Precision/% Sensitivity/% Specificity/%

Original 90.54 76.73 82.33 94.08 
FD 93.24 82.59 90.77 95.54 
SD 93.24 83.97 88.76 95.32 

SNV 94.59 85.94 93.04 96.38 
SNV-FD 94.59 85.94 93.04 96.38 
SNV-SD 95.95 88.35 94.60 97.47 
FD-SNV 94.59 88.39 93.75 96.38 
SD-SNV 94.59 88.39 91.74 96.38 

Note: FD: First derivative; SD: Second derivative; SNV: Standard normal 
variate. 

 

To further explore the detailed classification performance for 
each grade, the confusion matrices of the prediction results using 
the LS-SVM models established by different spectra are shown in 
Figure 3.  For G0 pear samples, the models based on pretreated 
spectra presented better results than those based on the original 
spectra.  For G1 pear samples, better results were obtained for the 
models based on spectra pretreated by FD-SNV and SD-SNV.  
For G2 pear samples, SD and SNV-SD pretreated spectra models 
exhibited better results.  However, for G3 pear samples, 
pretreatment by SD and SNV-SD presented results identical to the 
original spectra, which were all satisfactory results as all the 

samples were classified correctly.  In terms of overall recognition 
ability, the SNV-SD model only misjudged three samples, which 
was the least among all models.  Therefore, the SNV-SD model 
was selected for further optimization. 
3.5  Model based on characteristic wavelengths 

The analysis of the models with different pretreatments shows 
the excellent prediction performance of the SNV-SD model.  
Therefore, all further characteristic wavelength selections were 
conducted based on the SNV-SD-treated spectra using 2DCOS, 
CARS, and SPA methods.   
3.5.1  Model based on characteristic wavelengths using 2DCOS 

To obtain more detailed information, the spectra were divided 
into four sub-bands and two-dimensional correlation analysis was 
implemented.  Figures 4a-4d show the synchronous 
two-dimensional correlation spectra in the 398-1004 nm interval.  
It can be seen that the overlapping peaks at the original spectra 
become clearer.  According to Noda’s two-dimensional spectral 
theory, the synchronous two-dimensional correlation spectra are 
symmetric about the main diagonal.  The peak on the diagonal is 
the automatic peak, which is always positive.  Its intensity reflects 
the strength of the system to be tested with a change in external 
perturbation, and the number of circles reflects its automatic peak 
strength.  The greater the number of circles, the stronger the 
automatic peak will be. 
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a. Original spectra b. FD c. SD d. SNV 

 
e. SNV-FD f. SNV-SD g. FD-SNV h. SD-SNV 

 

Figure 3  Confusion matrixes of the prediction results for each grade sample using the LS-SVM models based on  
original spectra and preprocessed spectra using different methods 

 
a. 400-530 nm  b. 530-650 nm 

 
c. 650-780 nm  d. 780-1004 

 

Figure 4  Two-dimensional correlation spectra at different bands 
 

There are six autocorrelation peaks in Figure 4a, located at 410, 
437, 452, 468, 487, and 519 nm respectively; Figure 4b has four 
autocorrelation peaks located at 545, 559, 572, and 634 nm 
respectively; Figure 4c has three autocorrelation peaks located at 

658, 680, and 696 nm respectively; and Figure 4d has two 
autocorrelation peaks located at 925 and 960 nm, respectively.  
The (487, 487) nm and (680, 680) nm peaks are both related to 
chlorophyll absorption from the skin and flesh of pear fruit, while 
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(696, 696) nm is related to cellulose absorption.  The 925 nm 
spectra were ascribed to water, starch, and cellulose, and those at 
960 nm to water and sugar content.  With progressive decay, the 
water and sugar content in the pears decreased continuously.  
These peaks can effectively represent the variation caused by an 
external disturbance in the sample, such as time.  Therefore, these 
15 wavelengths were selected as the characteristic wavelengths to 
develop the model. 

Taking the preprocessed spectra by SNV-SD at these 
wavelengths as input and different decayed grades as output, the 
simplified LS-SVM model was established again.  The 
performance of the model in terms of each grade is presented in the 

confusion matrix shown in Figure 5a.  The predicted accuracies of 
the G0, G1, G2, and G3 samples were 97.30%, 94.59%, 97.30%, 
and 100%, respectively.  The overall accuracy, precision, 
sensitivity, and specificity were 97.30%, 94.60%, 96.16%, and 
98.21%, respectively.  In comparison to the model based on the 
entire wavelengths, its predictive performance improved 
significantly.  The results demonstrated an intrinsic relationship 
between the variables related to external perturbation selected using 
2DCOS and the target grade classification.  Additionally, model 
performance improvement indicates that the model can be 
effectively simplified, and its prediction ability can be improved by 
eliminating irrelevant variables. 

 
a. 2DCOS b. CARS c. SPA 

 

Figure 5  Confusion matrix of the classification result of the model based on selected characteristic wavelengths 
 

3.5.2  Model based on characteristic wavelengths using CARS 
The CARS algorithm was used to select effective wavelengths 

based on full spectral data by SNV-SD treatment.  For the CARS 
algorithm, the number of Monte Carlo Sampling (MCS) runs was 
set to 1000, and the number of selected wavelengths was 
determined by 10-fold cross-validation.  The process of CARS is 
shown in Figure 6, where Figure 6a is the trend of the screening 
variables, which can be divided into two stages, i.e., rapid and fine 
selection.  As shown in Figure 6a, the sampling variables 
decreased as the number of runs increased.  In the beginning, 
owing to the use of the EDF, the number of selected wavelengths 
drops sharply and thereafter becomes relatively stable.  Figure 6b 
shows the trend diagram for RMSECV.  Because of the 
elimination of uninformative wavelengths, there is a reduction in 
RMSECV from 1-30 sampling runs, followed by a slight increase 
in the range of 30 to 400 runs of sampling.  Finally, when the 
number of sampling runs exceeded 400, the RMSECV increased 
rapidly because some useful wavelengths were also eliminated.  In 
Figure 6c, each curve records the coefficient path for each 
wavelength at different sampling runs, and the line of blue asterisks 
indicates the number of runs and the point of the lowest RMSECV 
value. 

As a result of the CARS calculation, 38 wavelengths were 
selected from the full spectra for predicting black spot grades of the 
Yali pear.  In comparison to the full spectra, the number of 
wavelengths decreased significantly.  The selected wavelengths 
by CARS contained 429, 442, 444, 447, 460, 463, 465, 468, 476, 
479, 489, 503, 505, 516, 518, 521, 537, 540, 558, 593, 596, 599, 
626, 666, 696, 726, 797, 808, 911, 914, 916, 964, 967, 970, 972, 
975, 989 and 992 nm, which were distributed throughout the 
original band range. 

The spectra based on characteristic wavelengths by the CARS 
were the input variables used to establish the LS-SVM model; the 
performance of the model in terms of each grade is presented in the 
confusion matrix in Figure 5b.  The predicted accuracies of the G0, 
G1, G2, and G3 samples were 97.30%, 94.59%, 94.59%, and 

97.30%, respectively.  The overall accuracy, precision, sensitivity, 
and specificity were 95.95%, 88.35%, 94.60%, and 97.47%, 
respectively.  The prediction performance is the same as that of 
the full-spectra model but is poorer than that of the 2DCOS.  

 
a. Changing trend of the number of sampled variables  

 
b. 10-fold RMSECV  

 
c. Regression coefficients 

Figure 6  Wavelength selection by CARS 
 

3.5.3  Model based on characteristic wavelengths using SPA 
SPA was also used to select characteristic bands from the full 

bands.  Multiple linear regression models of different subsets were 
established during the operation of the model, and the RMSEs of 
the models were calculated.  The optimal wavelength can be 
determined from a subset of the minimum RMSE.  Figure 7a 
shows the trend map of the change in the RMSE when variables of 
different wavelengths are selected.  As shown in the data 



September, 2022       Zhang Y F, et al.  Rapid and non-destructive decay detection of Yali pears using HSI coupled with 2DCOS       Vol. 15 No. 5   243 

presented in Figure 7a, the RMSE of the model reached a minimum 
of 1.3005 when 23 wavelength variables were selected.  The 
number of wavelengths selected by the SPA was reduced to 23, 
compared to the former 224 bands, i.e., the number selected by the 
SPA amounts to only 10.3% of that in the full band.  The 
distribution of the 23 optimal wavelengths selected by the SPA is 
shown in Figure 7b, which contained 402, 410, 418, 423, 434, 447, 
458, 550, 556, 596, 634, 718, 797, 827, 872, 891, 914, 939, 970, 
978, 986, 1000, and 1003 nm. 

 
a. RMSE                                                                                     

 
b. Results 

Figure 7  RMSE and results of SPA wavelength selection 
 

After selecting the characteristic wavelengths by SPA, the 
LS-SVM model was established.  The performance of the model 
in terms of each grade is presented in the confusion matrix in 
Figure 5c.  The predicted accuracies of the G0, G1, G2, and G3 
samples were 94.59%, 89.19%, 91.89%, and 97.30%, respectively.  
The overall accuracy, precision, sensitivity, and specificity were 
93.24%, 86.31%, 87.46%, and 95.19%, respectively.  The 
prediction performance was slightly lower than that of the 
full-spectra model.  This may be due to the mistaken deletion of 
useful characteristic wavelengths. 

4  Discussion 

Pears have been threatened by black spot disease for a long 
time, which adversely affects their yield and quality.  In this study, 
HSI technology was employed to detect and classify the different 
grades of corruption.  The spectral data of black spot pears were 
used as the original information, and the effects of FD, SD, SNV 
and a combination of these on spectral noise removal were studied.  
A thorough comparison with previous individual pretreatment 
methods showed that an appropriate combination pretreatment 
method of mutually complementary methods could potentially 
improve model performance.  However, the evidence provided in 
this study is not enough to prove the superiority of the combination 
method, and whether the combination method can optimize the 
spectrum of other fruits needs further verification. 

The samples prepared at the same culture time also have 

obvious differences due to clear individual differences in pears.  
Therefore, we used Sun's method for reference to conduct a 
secondary classification of the samples[18], taking the lesion area as 
the classification standard rather than the incubation days.  This 
can reduce the impact of individual differences.  

In previous studies on fruit and vegetable detection, 
characteristic wavelength selection methods, such as CARS[31], 
SPA[32], and RF[33], were employed, and the classification accuracy 
was significantly improved.  However, these algorithms possessed 
low interpretability[14], and the selected wavelengths may not be 
directly related to the physicochemical property changes.  In this 
study, 2DCOS was attempted to select feature wavelengths, and the 
optimization effect was compared with CARS and SPA.  The 
2DCOS resulted in visible improvement in model performance, 
owing to its ability to discern small changes in the spectrum at the 
molecular level.  This is consistent with the research conclusion of 
Yue et al.[34].  In contrast with the commonly used algorithms, the 
2DCOS method highlights the relationship between the 
characteristic wavelengths and chemical composition and explains 
the characteristic wavelengths from a chemical perspective, instead 
of a purely mathematical one. 

5  Conclusions 

In this study, the HSI technology was combined with 2DCOS 
to detect the black spot disease of Yali pears, and the decayed 
grades were accurately identified.  The test results show that the 
LS-SVM model based on the spectra obtained by the 
SNV-SD-2DCOS algorithm yielded the best prediction 
performance.  The identification accuracy of the prediction set 
was 97.30%, and the precision, sensitivity, and specificity were 
94.60%, 96.16%, and 98.21%, respectively.  In comparison to the 
model based on raw spectra and feature bands by the CARS and 
SPA, the 2DCOS model not only removed a large amount of 
redundant information but also selected a series of characteristic 
wavelengths from a chemical perspective.  The results of the 
current study revealed that the 2DCOS algorithm is an effective 
tool for selecting feature-related wavebands of HSI data.  This 
study lays a foundation for the development of HSI system for 
pathogenetic process monitoring and classification of fruit diseases.  
In the future work, more emphasis should be put on the accurate 
identification of the incubation period (infected, but no spot on the 
surface) of Yali black spot disease for early warning. 
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