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Abstract: In order to qualitatively recognize the behaviors and investigate the relationship between fuel consumption and 

machinery driving modes of the tractor in a low-cost approach, this study proposed a method for behavior recognition and fuel 

consumption prediction of tractor sowing operations using a smartphone.   First, three driving modes were developed for 

maize sowing scenarios: manual driving assisted driving and unmanned driving.   While sowing, smartphone software and 

CAN (Controller Area Network) storage devices collected both positional data and engine operating conditions.   Second, the 

tractor trajectory points were divided into kinematic sequences, with six driving cycle indicators built in each series based on 

the time window.   Based on the semantic information of the kinematic sequences, the three operations of sowing, seeds 

filling, and turning round were well recognized.   Last, a model for maize sowing fuel consumption forecast was advanced 

using the principal component analyses and random forest algorithm, regarding three factors: driving cycles, operating 

behaviors, and driving patterns.   When compared to the traditional K-means algorithm, the results demonstrated that the 

harmonic mean of the precision and recall (F1 score) of sowing behavior recognition, seeds filling behavior recognition, and 

turning behavior recognition were enhanced by 2.06%, 8.99%, and 21.79%, respectively.   In terms of the impacts of driving 

modes and operating behaviors on fuel consumption, assisted driving mode had the lowest fuel usage for both sowing and 

turning behavior.   Therefore, assisted driving is the most fuel-efficient mode for maize sowing.   Combining the three 

driving modes, the relative error of the fuel consumption prediction model was 0.11 L/h, with the manual driving mode having 

the lowest relative error at 0.09 L/h.   This research method lays the foundation for the optimization of tractor operation 

behavior, the selection of tractor driving mode, and the fine management of tractor fuel consumption. 
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1  Introduction

 

In recent years, the level of agricultural mechanization in the 

country has steadily increased, resulting in an increase in 

agricultural fuel consumption[1].  The research on tractor fuel 

consumption has significant practical implications for rural 

environmental governance and the reduction of farmer capital 

investment[2]. 

Numerous research on the fuel usage of road cars is being 
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conducted at the moment.   Historically, the majority of classic 

fuel consumption models were constructed using vehicle dynamics 

principles.  The comprehensive emission model (CMEM) uses 

engine running state characteristics to calculate fuel usage per 

second[3].  Complex parameters and inefficient computation were 

two of the model's less admirable aspects, along with an accurate 

representation of the physical meaning of the vehicle.  In recent 

years, data-driven machine algorithms have been extensively 

applied in fuel consumption modeling.  A portion of the models is 

based on vehicle driving cycle data.  Built a panel data 

fixed-effect regression fuel consumption model based on the 

microscopic operating data, such as instantaneous speed and 

instantaneous fuel consumption of 199 large trucks in Beijing, and 

quantified the fuel-saving potential associated with improving five 

types of bad driving behaviors[4].  The parts of the models are 

based on the external environment when the vehicle is in motion.  

Established an oil consumption prediction model of open-pit mine 

vehicles based on particle swarm optimization and genetic 

algorithm based support vector machine (PSOGA-SVM), which 

related to the weather, road height difference, road condition, and 

other external environmental data of open-pit mine vehicle 

transportation[5].  Both vehicle driving conditions and the external 

environment are taken into consideration in some models.  

According to instantaneous driving conditions, slope, and ambient 

temperature, Constructed a microscopic fuel consumption 

mailto:939994970@qq.com
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prediction model for hybrid-electric buses based on Artificial 

Neural Network (ANN) and divided the instantaneous data into 

groups by the equal time to construct the mesoscopic fuel 

consumption prediction model based on ANN[6].  Building a truck 

fuel consumption prediction model based on random forest, support 

vector machine, and neural network by using the data of truck 

speed, weight, and the slope of the highway[7].  A linear 

mixed-effect model was constructed, which explored the impact of 

external environments on taxi drivers' safe driving and vehicle fuel 

consumption[8].  The model took into account vehicle driving 

cycle, road structure, and weather. 

In summary, fuel consumption prediction for urban road 

vehicles is primarily based on two components of the vehicle 

driving cycle and the external environment.  However, the tractor 

differs significantly from urban road vehicles in two respects.  

First, in most cases, the tractor has been operating at low speeds 

and under large loads; second, the working environment involves 

generally high temperature, high dust, and high vibration[9].  Data 

collection equipment that collects data in real-time OBD is 

commonly employed in the study of urban road car fuel 

consumption.  However, in order to collect data for tractor fuel 

consumption study, aspects such as the equipment install ability, 

cost, and driver willingness must be considered.  Mobile phone 

applications continue to diversify as smartphones gain popularity 

and mobile phone sensor technology advances.  Numerous studies 

on on-road vehicle driving cycle modeling have been published, 

combining vehicle data obtained from mobile phone sensors with 

machine learning or deep learning algorithms, and these studies 

have contributed to the advancement of vehicle fuel consumption 

evaluation[10-12]. 

The research object of this work was agricultural tractors.  It 

investigated the behavior recognition of operations behaviors in 

three driving modes based on the positioning data of smartphones.  

On top of this foundation, the relationship among tractor driving 

cycle, operating behavior, driving mode, and sowing fuel 

consumption was modeled using principal component analysis and 

random forest algorithm.  A method for predicting tractor fuel 

consumption using a smartphone was proposed, which provides a 

reference for fuel consumption evaluation and supervision of 

tractors. 

2  Materials and methods 

2.1  Data collection 

Experiments were carried out on Dongfeng 2204CVT 

wire-controlled tractor at Henanzhai town, Miyun District, Beijing 

city in May 2021.  The tractor rated power 162 kW, rated speed 

2200 r/min, rated pulling force 49 kN, displacement 8.8 L.  Three 

driving modes were designed for maize sowing scenarios: manual 

driving, assisted driving, and unmanned driving.  A schematic 

diagram of sowing in various driving modes is shown in Figure 1.  

The planting area of each mode is around 6.67 hm2.  The farmland 

is divided into strip areas and turning areas.   

 
a. Manual driving mode b. Assisted driving mode c. Unmanned driving mode 

Note: The steering wheel represents the direction control the gauge represents the speed control; gray represents the computer program control; brown represents 

the manual control.  The dotted line in the strip area represents the agricultural machinery operation line, and the solid line represents the strip boundary. 

Figure 1  Schematic diagram of sowing in three driving modes 
 

A meter-level precision Huawei nova4 smartphone and a 

centimeter-level precision T100 vehicle-mounted terminal are 

placed in the cab for the data collection, which records tractor 

positioning data, including time, longitude, latitude, speed, etc.  

Table 1 reports the equipment characteristics.  Simultaneously, the 

GCAN-401 storage instrument collects the tractor's instantaneous 

fuel consumption, speed, torque, and other engine operating 

variables.  GCAN-401 can record data in a tractor CAN bus.  It 

is 102 mm long, 63 mm wide, and 23 mm high, and the power 

supply voltage is 9-30 V.  Three devices operate at the same 

frequency of 10 Hz. 

The tractor operates in the way of shuttle sowing and fishtail 

turning mode, and detailed instructions are listed in Table 2.  In 

manual driving mode, direction, and speed are controlled manually 

whether in strip areas or turning areas.  In assisted driving mode, 

the direction was controlled by the computer program, and speed 

was controlled manually in strip areas, but direction and speed are 

manually controlled in turning areas.  In unmanned driving mode, 

direction and speed were controlled by the computer program both 

in strip areas and turning areas. 
 

Table 1  Huawei nova4 smartphone and T100 

vehicle-mounted terminal characteristics 

Equipment Characteristic Value 

Huawei nova4  

smartphone 

Operating system Android9.0 

Screen size/mm 162.54 

Battery capacity/mAh 3750 

ROM capacity/GB 128 

Positioning signal 
Beidou, GPS, A-GPS,  

GLONASS 

Positioning precision Meter-level 

T100 vehicle-mounted  

terminal 

Operating system Android 6.0 

Screen size/mm 256.54 

Power consumption/W ≤12.0 

ROM capacity/GB 16 

Positioning signal Beidou 

Positioning precision Centimeter-level 
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Table 2  Operating instructions for the three driving modes 

Mode 
Strip area Turning area 

Speed Direction Speed Direction 

Manual driving mode     

Assisted driving mode     

Unmanned driving mode     

Note: The steering wheel represents the direction control the gauge represents 

the speed control; gray represents the computer program control; brown 

represents the manual control. 
 

A total of 237 440 pieces of positional data and 237 510 pieces 

of engine operating condition data were collected.  The 

Transverse Mercator Projection was employed to transform the 

positioning data from the WGS84 geodetic coordinate, to plane 

coordinates.  The tractor engine operating condition data collected 

by the GCAN-401 storage instrument are all in a hexadecimal 

system.  In order to facilitate the calculation, according to the 

conversion method in “Weichai Power Autonomous ECU Vehicle 

Network Communication Technology Application Specification”, 

the hexadecimal data was converted into decimal.  Due to the 

instability of smartphone hardware sensors and the vibration of the 

tractor, there were vacancies and various noises in positioning 

data[13].  The interpolation approach was used to fill in the missing 

values in the positioning data, resulting in the completion of 

237 510 pieces of positioning data.  The Kalman filter method 

was used to filter and denoise the speed data.  According to the 

timestamp, the positioning data was matched with the fuel 

consumption data.  Thus, the tractor’s fuel consumption in 

different positions can be determined. 

 
Note: vt is the working speed of the tractor at the tth second, m/s; vt+k is 

the working speed of the tractor at the t+k second, m/s. 

Figure 2  Tractor sowing operation vt and vt+k correlation 
 

2.2  Kinematic sequence division and reliability examination 

of data collected via smartphone 

2.2.1  Kinematic sequence division 

Since a single instantaneous positioning data cannot reasonably 

reflect the behavioral characteristics of tractor operations.  In this 

study, the continuous trajectory points of agricultural machinery 

operations were divided into multiple kinematic sequences 

according to a fixed time step.  If the time of the kinematics 

sequence is too long, it may increase the probability that the 

trajectory points corresponding to different operation behaviors are 

divided into the same kinematics sequence.  If the kinematic 

sequence time is too short, it will affect the calculation of working 

parameters such as idle speed and constant speed. 

Different operating behaviors of agricultural machinery often 

correspond to different operating speeds[14].  Analysis of the 

correlation between the speed vt in the t second and the speed vt+k in 

the t+k second when the tractor is in the three driving modes of the 

maize sowing.  The value of k is 1-59 s.  Correlation evaluation 

was carried out using Pearson’s correlation coefficient.  The 

correlation result between vt and vt+k is shown in Figure 2.  The 

correlation between vt and vt+k is negatively correlated with k.  

When k is  15 s, the correlation coefficients under the three 

driving modes are 0.92, 0.90, and 0.91, which are all greater than 

0.9, showing a strong correlation (p<0.01)[15].  When k is 20 s, 

the correlation coefficients in the three driving modes are 0.90, 

0.87, and 0.90, respectively, which are slightly lower than when k 

is 15 s, but the correlation coefficients in both manual and 

unmanned driving modes are still greater than 0.9.  When i is 

greater than 20, the correlation coefficients of the three driving 

modes are all less than 0.9, and the correlation gradually weakens.  

In order to ensure that the kinematic segments in the three driving 

modes have the same duration and high-speed correlation while 

keeping as many trajectory points as possible, the time step of each 

kinematic sequence is set to 20 s in this study.  To verify the 

integrity of the trajectory data, a small amount of positioning data 

that does not meet the 20 s time step is also classified as a 

kinematics sequence.  Each kinematics segment comprises 

additional semantic information such as average speed, acceleration 

time ratio, deceleration time ratio, etc.  The experimental data   

of the three driving modes are divided into 1139 kinematic 

sequences. 

This article makes the following provisions for tractor 

kinematic sequences' driving cycle referred to the stated standard of 

heavy vehicle driving cycle[16]:  

1) The tractor is in an acceleration condition when the 

acceleration exceeds 0.15 m/s2; 

2) The tractor is in a decelerating condition when the 

acceleration is less than −0.15 m/s2; 

3) The tractor is in a constant speed working condition when 

the acceleration is greater than −0.15 m/s2 and less than 0.15 m/s2, 

and the speed is greater than or equal to 0.5 m/s; 

4) The tractor is in an idling condition when the acceleration is 

greater than −0.15 m/s2 and less than 0.15 m/s2, and the speed is 

less than 0.5 m/s. 

Fuel consumption is affected by a significant number of 

driving cycles[17].  The tractor driving cycle feature matrix A is 

constructed by estimating six driving cycles using the positioning 

data acquired by the smartphone.  The six parameters of each 

kinematic sequence are the value of the average working speed of 

the tractor (V ), speed standard deviation (Vstd), acceleration time 

ratio (Pa+), deceleration time ratio (Pa–), uniform time ratio ( VP ), 

idle time ratio (PC). 

2.2.2  Reliability examination of data collected via smartphone 

The low-cost smartphone is more easily promoted than the 

high-priced centimeter-level positioning device.  The feature 

matrices A' and A'' of the tractor driving cycle are generated from 

smartphone data and centimeter-level data, respectively, to 

demonstrate the feasibility of recognizing the sowing behavior of 

the tractor based on smartphone data.  Correlations between each 

dimension and the matrix A' and the matrix A'' are evaluated, and 

the T2 distribution test is performed for each dimension.  The 

results are summarized in Table 3. 

By consulting the quantile table of the T distribution, when the 

number of samples is greater than 120, the absolute value of t in the 

T value distribution test is less than 1.96, proving that there is no 

significant difference in the driving cycle perceived by mobile 

devices or centimeter-level positioning devices[19].  Therefore, it is 

practicable to use smartphone positioning data to identify tractor 

behavior and predict fuel consumption. 
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Table 3  Correlation and distribution test of vehicle driving 

cycle based on smartphone and centimeter-level positioning 

equipment 

Driving cycle Pearson correlation coefficient T value 

Average speed 0.99
**

 1.19
*
 

Speed standard deviation 0.91
**

 0.67
*
 

Acceleration time ratio 0.61
**

 0.68* 

Deceleration time ratio 0.78
**

 1.17* 

Uniform time ratio 0.98
**

 1.72
*
 

Idle time ratio 0.99
**

 −1.94
*
 

Note: 
**

 represents obvious in 0.01; 
*
 represents obvious in 0.05; Table 3 shows 

that the correlation coefficient of the driving cycle index between 

smartphone-based data and centimeter-level data is greater than 0.6, indicating 

that the two are highly correlated (p<0.01)
[18]

. 
 

2.3  Data analysis 

2.3.1  Tractor sowing behavior recognition 

To evaluate and assess the difference between tractor sowing 

behavior and fuel consumption, it is necessary to identify the 

operation behavior under three driving modes.  Within a single 

kinematic sequence, the trajectory features and behavior are 

comparable.  The segmentation of the kinematic sequence not 

only compresses the amount of data and reduces the running time 

of the clustering algorithm, but also generates additional kinds of 

driving condition indicators, endowing the trajectory within the 

segment with richer semantics.  The clustering algorithm can learn 

more features, which improves the clustering result.  Used the 

DBSCAN algorithm to distinguish between two types of 

agricultural machinery behaviors in the field and on the road, based 

on the speed and direction of the agricultural machinery, but the 

time complexity of the algorithm is high[20].  Therefore, this paper 

uses the K-means algorithm to perform preliminary clustering 

identification of motion sequences, as depicted in Figures 3a-3c. 

The kinematic sequence can be classified into three categories 

using K-means analysis.  The green dotted line corresponds to 

Category 1, which is concentrated in the strip areas and correlates 

to tractor sowing behavior.  The blue dotted line represents 

Category 2, which is concentrated in the field head and correlates 

to the tractor seeds filling behavior.  The yellow dotted line 

represents Category 3, which is concentrated at both ends of the 

field and corresponds to tractor turning behavior.  Three labels are 

assigned to categories 1, 2, and 3.  Because the manual driving 

speed is faster than assisted and unmanned driving, the green 

dotted lines in Figure 3a are straighter than those in Figure 3b and 

Figure 3c.  Low speed can result in denser and more discrete 

trajectory point data collecting.  Table 4 shows the recognition 

error rates calculated by the K-means method.  Turning actions 

are incorrectly recognized as seeds filling behaviors in 81.51% of 

the clips.  The primary reason for this is that the seeds filling 

behavior are frequently comparable to the turning behavior, in 

terms of the inescapable pause and huge idle time proportion.  

Therefore, it is necessary to further correct the initial kinematic 

sequence recognition findings after K-means clustering.  As 

shown in Figure 4, this study proposed a technical route for 

operation behavior recognition based on the semantic information 

of kinematic sequence. 
 

Table 4  K-means algorithm recognition error rates (%) 

Category No. Category 1 Category 2 Category 3 

Category 1 -- 5.88 5.88 

Category 2 0.00 -- 0.84 

Category 3 5.88 81.51 -- 
 

  
a. Preliminary recognition results of 

sowing operation behavior under 

manual driving model 

b. Preliminary recognition results 

of sowing operation behavior 

under assisted driving model 

  
c. Preliminary recognition results of 

sowing operation behavior under 

unmanned driving model 

d. Correction results of sowing 

operation behavior under manual 

driving model 

  
e. Correction results of sowing 

operation behavior under assisted 

driving model 

f. Correction results of sowing 

operation behavior under 

unmanned driving model 

Note: The green pointset represents the sowing behavior; the blue pointset 

represents the seed filling behavior; Yellow points are the turning behavior.  

The red circle denotes the error identification component.  S1 is the kinematical 

segment of error recognition, lat1 and lat2 are the latitude range of S1. 

Figure 3  Recognition results and correction results of the 

K-means algorithm 

 
Figure 4  Roadmap of operation behavior recognition based on 

kinematic sequence semantic information 



158   July, 2022                         Int J Agric & Biol Eng      Open Access at https://www.ijabe.org                          Vol. 15 No. 4 

2.3.2  A correction algorithm for misidentified operating behavior 

A three-step approach is described to adjust for three types of 

misidentifications in K-means clustering results: misrecognition of 

sowing behavior, misrecognition of turning behavior, and 

misrecognition of seeds filling behavior. 

1) Sowing behavior misrecognition correction based on 

trajectory geometric characteristics (M1) 

According to Table 4, there are 5.88% of Category 3 behavior 

is misdiagnosed as Category 1 behavior, and the corresponding 

trajectories are depicted by the green points set in the red circle in 

Figure 3c.  The set of points has such geometric characteristics as 

a short length and a modest slope when the beginning points were 

connected with the endpoints in the trajectory sets.  The 

characteristics are different from those of conventional tractor 

sowing.  Define δ1 as the shortest sowing distance, which is 50 m 

equal to the trial sowing distance[21].  Define δ2 as the absolute 

value of the minimum slope at both ends of a set of continuous 

sowing trajectories.  Given the possibility of a kinematic sequence 

with a steeper slope in Category 3, δ2 is the upper quartile of the 

absolute value of the kinematic segment slope for Category 3, 

which is 13.19. 

The steps of the misidentification correction algorithm for 

sowing behavior are as follows: 

Step 1: Construct a sowing behavior continuous trajectories set 

T1={T1, T2, T3, …, Tn} where Ti is the ith group of the continuous 

sowing trajectory.  Ti ={p1, p2, p3, …, pn}, pi is the ith point. 

Step 2: Calculate the length of each trajectory in T1, and 

construct the trajectory length set D ={d1, d2, d3, …, dn}, where di is 

the length of the connection line between two endpoints in Ti.  

The absolute values of slope Ti are calculated round up to an 

integer, and the slope set G ={g1, g2, g3, …, gn} is obtained. 

Step 3: When di is less than δ1 and gi is less than δ2, the label of 

Ti and the corresponding kinematic fragment are modified to 3. 

2) Turning behavior misrecognition correction based on 

“k-nearest neighbor trajectories” (M2) 

In Table 4, 5.88% of Category 1 behavior and 0.84% of 

Category 2 behavior were mistakenly identified as Category 3 

behavior, and corresponding trajectories are displayed in the yellow 

points set in the red circle in Figure 3a.  The trajectory points 

between the red lines are in the same latitude range as the wrongly 

identified kinematic segment S1.  The operation behaviors of 

adjacent trajectories are similar in the [lat1, lat2] latitude range, and 

the closer the more similar the behavior is.  Considering that 

Category 2 misidentification accounts for a very small proportion, 

this paper does not deal with it.  A correction method of turning 

behavior misrecognition by “K-nearest neighbor trajectories” is 

proposed based on M1.  The neighbor trajectories are defined as a 

set of continuous trajectory points, which have the same latitude as 

the kinematic sequence corresponding to Category 3 (example S1) 

select majority labels of K group nearest neighbor trajectory points 

as “voting label”.  When “voting label” is not Label 3, Category 3 

(example S1) and its corresponding trajectory points label are 

modified to “voting label”. 

The selection of the K value is particularly important.  When 

the K value is small, the different rate of the neighbor trajectories is 

small (the difference rate is equal to the number of minority labels), 

but it may not be able to obtain sufficient votes and affect the 

voting results.  However, when the K value is too large, the 

different rates of neighbor trajectories themselves may increase, 

and the amount of data will also increase with the increase of the K 

value, increasing the running time of the algorithm.  In order to 

determine the optimal K value of the three driving modes, the 

turning behavior was randomly sampled in an equal proportion in 

the three driving modes.  The total number of samples is 

seventy-five kinematic sequences, accounting for 1/3 of all turning 

sequences.  Calculate the relationship among the K value, the 

difference rate median, and the minimum votes of the K-nearest 

neighbor trajectories sample, Figure 5 shows the outcome. 

 
Figure 5  Relationship between the K value, the median difference 

rate, and the minimum number of votes 
 

When K=1, the median difference rate is the minimum of 0, 

and the minimum votes are 0.  When K=6, the median difference 

rate is 10.56%, and the minimum vote is 25.  When K>6, with the 

increase of the K value, the median difference rate tends to be 

moderate, and the minimum votes increase slightly and tend to be 

stable.  It can be assumed that the solution with the fewest votes 

collected at the time is the best solution, which means that the total 

votes for the K-nearest neighbor trajectories must be at least 25.  

The following steps are taken to correct the turning behavior error 

recognition: 

Step 1: Using these data sets of the trajectory points and 

kinematic sequences after sowing correction, a kinematic sequence 

set TS ={S1, S2, …, Sn} of turning behavior can be constructed.  

Where Si is the ith kinematic sequence, Si ={p1, p2, …, pn}, where pi 

is the ith point. 

Step 2: Construct the neighbor trajectories set NTi ={T1, T2, …, 

Tn} of Si, where Ti is the ith neighbor trajectories, Ti ={p1, p2, …, pn} 

pi is the ith point on a trajectory, and sort the trajectories in NTi 

according to the distance to Si in ascending, the distance value to Si 

is defined as: 

             (1)
 

where, (xi, yi) are central coordinates of Ti, and ( , ) are central 

coordinates of Si. 

Step 3: Select K groups of neighbor trajectories (K is 1 

initially).  If the total number of votes is fewer than 25, the K 

value is increased by 1.  Calculate the ratio of label 1 points and 

label 3 points in the K groups of adjacent trajectories.  If the ratio 

is not 1, the largest proportion label will be used as the “voting 

label”.  If the current Si label is not equal to the “voting label”, 

then modify the labels of the Si and all points on Si to the “voting 

label”, otherwise, do nothing. 

3) Misrecognition correction of seeds filling behavior based on 

farmland area and track context semantics (M3) 

In Table 4, 5.88% of Category 1 behaviors and 81.51% of 

Category 3 behaviors were misidentified as Category 2 behaviors, 

and the corresponding trajectories are displayed in the blue points 

set in the red circle in Figures 3a and 3b.  The blue points in 

Figures 3a and 3b are the seeds filling trajectories identified by the 
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clustering algorithm, which are distributed both in strip areas and 

turning areas.  In this experiment, the seeds filling behavior 

happens only in the same direction of fields.  Except for the first 

seeds filling operation, there will be turning behaviors before and 

after the seeds filling behaviors.  Therefore, it is considered that 

the seeds filling behavior outlined by the red circle in the figure is a 

misidentification and needs to be corrected. 

The steps of the seeds filling behavior misrecognition 

correction algorithm are as follows: 

Step 1: Using these data sets of the trajectory points and 

kinematic sequences after turning correction, a continuous track set 

T2={T1, T2, …, Tn} of sowing behaviors can be constructed, where 

Ti is the ith group seeds filling behavior trajectory, T1 represents the 

first seeds filling behavior trajectory, Ti ={p1, p2, …, pn}, pi is the ith 

point.  When the labels of the adjacent kinematic sequence to Ti 

are 1, the labels of Ti and the corresponding points on the kinematic 

sequence Ti are modified to 1. 

Step 2: According to the timestamps of the start and end points 

the duration of Ti can be calculated.  The duration of the seeds 

filling is not less than 60 s in general.  Therefore, when both Ti 

and T1 are pointing in the same direction of the field, but the 

duration is less than 60 s, or when Ti and T1 are pointing in 

different directions, the labels of Ti and the corresponding points on 

the kinematic sequence Ti are modified to 3. 

2.4  Fuel consumption forecast 

In recent years, machine learning has become a high-quality 

solution to various regression problems[22-26].  In this study, 

principal component analysis and random forest algorithms are 

employed for current fuel consumption prediction.  Compared 

with traditional fuel consumption prediction models, it avoids the 

need to master the knowledge of the internal structure of the 

vehicle and the principle of the engine.  On the basis of the feature 

matrix A of the tractor driving cycle, the feature matrix B of the 

fuel consumption prediction model is constructed by adding the 

operation behavior characteristic X1 and the driving mode 

characteristic X2, 2[ , ,..., ]stdV V XB .  This study performs 

principal component analysis on feature matrix B to reduce the 

dimension of the feature matrix and eliminate the collinearity 

between features.  The contribution rate of the cumulative 

variance of the principal components is listed in Table 5.  As can 

be observed, the cumulative variance contribution rate of the first 

three principal components reaches 86.38%.  Additionally, the 

eigenvalues exceed 1 and the variance contribution rate is high, 

indicating that the first three principal components capture the 

majority of the information contained in the original characteristic 

data. 

Table 5  Feature matrix B principal component cumulative 

variance contribution rate 

Principal 

component 
Eigenvalues 

Variance  

contribution rate/% 

Cumulative  

contribution rate/% 

Z1 3.258 40.724 40.724 

Z2 2.646 33.081 73.805 

Z3 1.006 12.571 86.376 

Z4 0.610 7.621 93.997 

Z5 0.226 2.827 96.824 

Z6 0.149 1.863 98.687 

Z7 0.105 1.313 100 

Z8 −1.72×10
−14

 −2.15×10
−13

 100 
 

Loads of the original features in the first three principal 

components Z1, Z2, and Z3 are listed in Table 6.  The principal 

component load data reflects the correlation between the principal 

component and various characteristics.  The greater the absolute 

value of the load data, the more the principal component can reflect 

the characteristics[27].  As can be seen from Table 6, the principal 

components Z1, Z2, and Z3 contain the information contained in the 

original eight characteristic parameters.  Z1 mainly includes V , 

VP , PC, X1.  Z2 mainly includes Vstd, Pa+, Pa–.  Z3 mainly 

includes X2.  This study selects the scores of the first three 

principal components to construct the feature matrix C of the fuel 

consumption prediction model, C =[Z1, Z2, Z3]. 
 

Table 6  Principal components Z1, Z2, and Z3 load information 

Original features Z1 Z2 Z3 

V  0.51 0.16 −0.13 

Vstd −0.05 0.57 0.06 

Pa+ −0.11 0.47 0.07 

Pa– −0.11 0.48 −0.11 

VP  0.53 0.12 0.02 

PC −0.49 −0.26 −0.02 

X1 −0.43 0.33 0.11 

X2 −0.10 0.04 −0.97 

Note: V  is the value of the average working speed of the tractor; Vstd is the 

speed standard deviation; Pa+ is the acceleration time ratio; Pa– is the 

deceleration time ratio; VP  is the uniform time ratio; PC is the idle time ratio; X1 

is the operation behavior characteristic; X2 is the driving mode characteristic; Z1, 

Z2, and Z3 are the first three principal components of the feature matrix B. 
 

This study divides the 1139 data of the feature matrix C into 

910 training samples and 229 test samples at the ratio of 8:2.  The 

number of decision trees in the random forest has the biggest 

impact on the accuracy of fuel consumption prediction.  Few 

decision trees will lead to lower model prediction accuracy, and too 

many decision trees will increase the training time sharply.  The 

relationship between the number of decision trees and the model 

average error and the training duration is demonstrated in Figure 6. 

 
Figure 6  Relationship between the number of decision trees,  

the mean absolute error, and the training time 
 

As illustrated in Figure 6, the average absolute error of fuel 

consumption prediction decreases steadily as the number of 

decision trees rises, while training time increases consistently.  

When the number of decision trees reaches 390, the average 

absolute error of the model on the validation set reaches the 

minimum value.  In order to avoid overfitting, the depth h of the 

decision tree, the minimum number of samples n required for node 

splitting, and the minimum number of samples m contained in each 

leaf node are limited.  Additionally, to confirm the prediction 

model’s accuracy and stability, 10-fold cross-validation is 

performed on the training set.  Using the grid search method, it is 

implied that when h=9, n=2, and m=2, the average absolute error of 

the fuel consumption prediction model on the validation set is at 
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least 0.997 L/h. 

3  Results and analysis 

3.1  Evaluation of operation behavior recognition algorithms 

The corrected K-means recognition results for the three driving 

modes are shown in Figures 3d-3f.  Three evaluation indicators of 

Precision, Recall, and F1 score were used to evaluate the operation 

behavior recognition algorithm based on the semantic information 

of the kinematic sequence.  The evaluation indicators are 

calculated as follows: 

TP
Precision

TP FP



               (2) 

TP
Recall

TP FN



                (3) 

2 Precision Recall
F1 score

Precision Recall





          (4) 

where, Precision is the accuracy of a certain kind of operation 

behavior recognition; Recall is how much of a certain kind of 

operation behavior is recognized correctly; F1 score is the 

harmonic mean of precision and recall.  The method proposed in 

this study and the K-means algorithm were separately used to 

identify 1139 kinematic sequences.  The comparison results are 

listed in Table 7.  The F1 score for recognizing sowing behavior 

increased by 2.06%, that for recognizing seeds filling behavior 

increased by 8.99%, and that for recognizing turning behavior 

increased by 21.79%.  The method proposed in this study had 

higher recognition accuracy for the operation behavior of the three 

driving modes. 
 

 

Table 7  Behavior recognition algorithm evaluation 

Driving 

mode 
Method 

Sowing Seeds filling Turning 

Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score 

Manual 
K-means 1.00 0.92 0.96 0.93 0.99 0.96 0.92 0.89 0.90 

K-means+M1+M2+M3 1.00 0.99 0.99 1.00 0.97 0.99 0.92 1.00 0.96 

Assisted 
K-means 0.96 1.00 0.98 0.81 1.00 0.90 1.00 0.65 0.79 

K-means+M1+M2+M3 0.98 1.00 0.99 0.94 1.00 0.97 0.94 0.96 0.97 

Unmanned 
K-means 0.98 0.98 0.98 0.67 1.00 0.80 0.98 0.54 0.70 

K-means+M1+M2+M3 1.00 0.98 0.99 0.90 1.00 0.95 0.98 0.90 0.94 

Total 
K-means 0.98 0.97 0.97 0.80 1.00 0.89 0.96 0.65 0.78 

K-means+M1+M2+M3 0.99 0.99 0.99 0.96 0.98 0.97 0.95 0.94 0.95 

Note: Precision is the accuracy of a certain kind of operation behavior recognition; Recall is how much of a certain kind of operation behavior is recognized correctly; F1 

score is the harmonic mean of precision and recall; “Total” represents the comprehensive performance of the model under three driving modes. 
 

3.2  Tractor fuel consumption analysis 

To investigate the variations in fuel consumption between 

tractor operating modes and operating behaviors, the instantaneous 

power, and instantaneous fuel consumption were calculated for 

three operating behaviors.  Due to the fact that the seeds filling 

behavior is present with a long time standing still in all driving 

modes, this study will focus on an investigation of the sowing and 

turning behaviors.  The power calculation equation is shown in 

Equation (5)[28]: 

9545.45

i i
i

r t
p


                  (5) 

where, ri is the rotation speed in the ith s, r/min; ti is the torque in 

the ith s, N·m; pi is the power in the ith second, kW; 9545.45 is a 

constant. 

Table 8 lists the average power of the tractor as sowing time 

arrange from high to low as manual driving, unmanned driving, and 

assisted driving.  Average instantaneous fuel consumption has the 

same rule.  The average tractor power as turning time arrange 

from high to low as unmanned driving, manual driving, and 

assisted driving.  The average instantaneous fuel consumption of a 

single turning has the same rule.  These conform to the positive 

correlation between power and fuel consumption.  Overall, the 

assisted driving mode has the lowest fuel usage for both sowing 

and turning behavior.  The three indicators are comparable in 

terms of the number of starts and stops, the average duration of a 

single turning, and average instantaneous fuel consumption of a 

single turning since the turnings in the manual driving mode and 

the assisted driving mode are all manual activities, the turning route 

is demonstrated in Figure 1a and Figure 1b by drawing lines in the 

turning area.  But the average instantaneous fuel consumption of 

manual driving is slightly higher than that of auxiliary driving.  

That is consistent with the two average turning power.  In 

unmanned mode, the software controls the turning, the turning 

route is demonstrated in Figure 1c with the line drawn in the 

turning area and there are several starts and pauses, which may 

account for the increased average instantaneous fuel consumption 

of a single turn. 
 

Table 8  Sowing behavior and turning behavior of three 

driving modes working condition statistics 

Driving mode Manual Assisted Unmanned 

Sowing 

behavior 

Average speed/m·s
−1

 2.71 2.20 1.57 

Average power/kW 69.37 51.21 56.62 

Average instantaneous FC/L·h
−1

 17.44 13.11 15.98 

Turning 

behavior 

Average speed/m·s
−1

 0.65 0.57 0.29 

Average power/kW 23.37 20.09 27.49 

Start and stop times/times 8 8 13 

Average time for a single turn/min 1.05 1.30 2.09 

Average instantaneous FC for a  

single turning/L·h
−1

 
5.89 5.51 7.62 

Note: FC is fuel consumption. 
 

The investigation demonstrates that fuel usage is affected by 

both operating behavior and driving mode.  In this study, three 

operating behaviors and three driving modes are mapped to 

numbers 0, 1, and 2 as the contributing elements of the fuel 

consumption prediction model.   

The manual driving mode's operation is completely manual, 

from sowing to turning, and the sowing and turning speeds are both 

high, resulting in the highest possible work efficiency.  The 

assisted driving mode operation saves time and labor during 

sowing operations and has nothing to do with the agricultural 

machine operator's driving ability.  The turning efficiency of 

assisted driving mode operation is comparable to that of manual 
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work, and the work efficiency is higher.  From sowing to turning 

around, the unmanned mode of operation is completely unmanned.  

However, due to the performance of tractor hardware (such as 

electronically controlled steering wheels) and personnel safety, the 

speed of driving and turning in the field is limited, resulting in low 

overall work efficiency.  The average instantaneous fuel 

consumption of the three driving modes is compared.  In manual 

driving mode, the speed is manually controlled for sowing and 

turning, and there are other gears and speeds available.  High 

gears and high speeds lead to higher vehicle power and maximum 

fuel consumption.  Sowing and turning safety are manually 

regulated in assisted driving mode, which can intelligently raise 

gear and speed, reduce vehicle power, and minimize fuel 

consumption.  In the unmanned driving mode, a low-speed 

operation is used to manage the sowing quality and turning, and the 

engine torque and the vehicle power both increase, resulting in 

higher fuel consumption.  By calculating the average lateral error 

of the sowing track and the average error of the sowing trajectory 

spacing, the manual driving mode had considerable speed and 

direction variations.  The average lateral error of a sowing 

trajectory is 0.120 m, whereas the average spacing error of a 

sowing track is 2.494 m.  The assisted driving mode has a 

considerable speed fluctuation but a minor direction fluctuation; the 

average lateral error of the trajectory is 0.087 m, while the average 

error of the sowing trajectory spacing is 1.786 m.  The 

fluctuations in speed and direction of the unmanned driving mode 

are small, the average lateral error of the trajectory is 0.041 m, and 

the average error of the spacing between the sowing tracks is  

0.497 m.  For maize sowing, the assisted driving mode is the 

optimal mode of operation, in terms of efficiency, fuel 

consumption, and operating quality.  In this study, 6 driving cycle 

indicators, three operating behaviors, and three driving modes were 

selected to construct the feature matrix of fuel consumption 

prediction, and a model for tractor sowing fuel consumption 

prediction was constructed using the principal component analysis 

and random forest algorithms.  The relative error of model 

prediction under three driving modes is 0.11 L/h, reliable 

predictions can be made for agricultural machinery maize sowing 

fuel consumption.  After the fuel consumption prediction model is 

established, smartphone data can be directly used for agricultural 

fuel consumption detection, which changes the traditional fuel 

consumption collection method and saves equipment installation 

costs.  The behavior recognition and fuel consumption prediction 

model of tractor sowing operations based on smartphone 

positioning data can provide a convenient operation evaluation and 

supervision for operators and farmers. 

3.3  Evaluation of fuel consumption prediction model of 

agricultural machinery 

The relationship between the predicted value of the fuel 

consumption prediction model and the actual value is demonstrated 

in Figure 7. 

As can be seen, the predicted values are essentially dispersed 

on either side of the actual fuel consumption and extremely 

approximate to it.  The model has a high degree of fitness.  The 

average absolute error (MAE), determination coefficient R2 and 

average relative error K are used to evaluate the accuracy of the 

fuel consumption prediction model.  The calculation equations are 

as follows: 
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where, ˆiy  is the ith predicted fuel consumption value in the test set, 

L/h; yi is the ith actual fuel consumption value in the test set, L/h; n 

is the number of samples in the test set; y  is the average value of 

real fuel consumption in the test set, L/h. 

 
Figure 7  Relationship between predicted fuel consumption and 

actual fuel consumption 
 

The evaluation results are shown in Table 9.  The prediction 

model can reasonably predict the fuel consumption of agricultural 

machinery for sowing.  The average relative error and average 

absolute error of the fuel consumption prediction model in the 

manual driving mode are the lowest.  The speed variances of 

manual driving, assisted driving, and unmanned driving are    

1.78 m/s, 1.11 m/s, and 0.58 m/s, respectively.  In comparison to 

the other two driving modes, manual driving is less stable in terms 

of speed control and has the highest variance in vehicle speed.  In 

addition, the driving cycle characteristics of manual driving contain 

more information, resulting in the best prediction model fitting 

effect. 
 

Table 9  Evaluation of fuel consumption prediction models 

Driving mode MAE/L·h
−1

 R
2
 K/L·h

−1
 

Manual 0.61 0.98 0.09 

Assisted 0.83 0.95 0.10 

Unmanned 1.19 0.91 0.14 

“Total” 0.90 0.95 0.11 

Note: “Total” represents the comprehensive performance of the model under 

three driving modes.  MAE means the average absolute error. 

4  Conclusions 

In this study, three modes of driving: manual, assisted, and 

unmanned are presented and discussed in maize sowing operations.  

By dividing trajectory points into several kinematic sequences 

based on time windows, the driving cycle index of the kinematic 

sequence is constructed, which compresses the amount of data 

while providing more semantic information for a single point.  

Based on the semantic information of the tractor kinematics 

sequence, this paper proposes a behavior recognition method for 

sowing operations of the tractor.  After K-means clustering, three 

correction schemes are proposed to finish the behavior of the 

operation identified: 

1) Sowing behavior misrecognition correction based on 

trajectory geometric characteristics; 
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2) Turning behavior misrecognition correction based on 

“k-nearest neighbor trajectories”; 

3) Seeds filling behavior misrecognition correction based on 

farmland area and track context semantics; 

Compared with the K-means algorithm, the F1 score is 

improved by 2.06%, 8.99%, and 21.79% in sowing behavior 

recognition, seeds filling behavior recognition, and turning 

behavior recognition respectively.  The weighted average F1 score 

of the method proposed in this study reached 0.96 in all three 

driving modes, suggesting that it is capable of accurately 

identifying operation behaviors.  It offers the groundwork for 

analyzing the tractor's fuel use.  There are still a few 

misidentifications that are not corrected.  The potential reason is 

that the multiple thresholds in the correction algorithm are needed 

to adjust. 

This study proposed a method for behavior recognition and 

predicting fuel consumption of agricultural machinery sowing 

behavior based on smartphone positioning data.  The positioning 

data was collected by smartphone, which is more convenient than 

fixed GNSS equipment and OBD equipment.  However, there are 

some limitations in the current study that are worth highlighting.  

First of all, the farmland in this experiment is large and regular in 

shape, but it is unavoidable for agricultural machinery to operate in 

a small area of farmland.  Therefore, more data are needed to 

support the proposed method.  Secondly, different crops have 

different requirements for sowing depth and soil moisture.  At 

present, this study is only for maize sowing, so there may be 

inevitable deviations in the results of the fuel consumption 

prediction method proposed in this study for sowing other crops.  

In the future, data on various types of operations of more types of 

agricultural machinery will be collected in irregular farmland.  

Expanding the data set, enriching the feature input of the model, 

and improving the universality of the model will be the next phase 

of work. 
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