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Detection method for the cucumber robotic grasping pose in clutter
scenarios via instance segmentation

H . *
Fan Zhang, Zeyu Hou, Jin Gao, Junxiong Zhang , Xue Deng
(College of Engineering, China Agricultural University, Beijing 100083, China)

Abstract: The application of robotic grasping for agricultural products pushes automation in agriculture-related industries.
Cucumber, a common vegetable in greenhouses and supermarkets, often needs to be grasped from a cluttered scene. In order to
realize efficient grasping in cluttered scenes, a fully automatic cucumber recognition, grasping, and palletizing robot system
was constructed in this paper. The system adopted Yolact++ deep learning network to segment cucumber instances. An early
fusion method of F-RGBD was proposed, which increases the algorithm's discriminative ability for these appearance-similar
cucumbers at different depths, and at different occlusion degrees. The results of the comparative experiment of the F-RGBD
dataset and the common RGB dataset on Yolact++ prove the positive effect of the F-RGBD fusion method. Its segmentation
masks have higher quality, are more continuous, and are less false positive for prioritizing-grasping prediction. Based on the
segmentation result, a 4D grab line prediction method was proposed for cucumber grasping. And the cucumber detection
experiment in cluttered scenarios is carried out in the real world. The success rate is 93.67% and the average sorting time is

9.87 s. The effectiveness of the cucumber segmentation and grasping pose acquisition method is verified by experiments.
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1 Introduction

Robotic grasping is the critical function of robots. It has been
researched for different types of robots in recent years. In
manufacturing or logistic industries, robotic grasping serves for
goods picking, placement, and assembling. Therefore, the
automation of grasping tasks is an important premise to improve
efficiency and save costs. While robots in industries grasp boxes or
standard workpieces!", the robots for agriculture grasp agriculture
products from nature or in the grocery”, where products present a
significant variety of shapes, sizes, and in a cluttered scenario. Ye et
al.”) proposed an improved GrabCut algorithm to extract the
cucumber boundary under a complex background in the greenhouse.
Feng et al." designed a tomato harvesting robot in the greenhouse
for fresh-eating tomatoes. For robotic grasping, the research of
industrial products grasping goes ahead of the agricultural products
grasp. At the early stage, grasp detection is commonly based on
contour detection” and key shape detection® from RGB images as
visual cues for robotic grasp. The typical drawback of these
methods is that they are limited to the detection task in a simple and
monochrome background. Template matching is a relatively
advanced method for object detection with complex shapes and
fixed geometric models by analyzing the corresponding similarity in
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color, contour, and texture features. Hinterstoisser et al.”! proposed
LineMod algorithm, which is created by combining the contour
gradient direction of RGB image and the surface normal direction
of depth image. Although the LineMod algorithm achieves high
industrial

detection accuracy in this template-based

algorithm is not suitable for agricultural products perfectly.

scenes,

In smart agriculture, the detection and grasp of agricultural
products are preliminary for harvesting, sorting, and grading tasks.
Clutter scenarios are very common for agricultural products because
their shape and size vary, even though they are of the same variety.
For this reason, a fixed model is not appropriate for this kind of
object. Fortunately, deep learning is fit for object detection in
complex backgrounds, and a lot of state-of-the-art algorithms have
been proposed and validated in many research fields. Deep learning
is widely used in object detection, grasp point detection®, 2-
dimensional grasp pose”* and even 6-grasp pose detection'”. Mao et
al.l'"" proposed a cucumber recognition method in a natural
environment based on multi-path convolutional neural networks
(MPCNN), color components, and support vector machine (SVM).
Liu et al."™ proposed a cucumber instance segmentation method
based on improved Mask RCNN. Therefore, deep learning is
applied for cucumber detection in this research.

However, there are fewer applications for cucumber grasping in
a cluttered scenario, where objects with similar color and texture are
stacked together, bringing challenges to the visual algorithm.
Except for object detection, grasp planning plays a significant role
in the success of grasping tasks, including grasping pose, and
grasping order. According to humans' prior knowledge and
reasoning, the best grasping order is the upper layer first, the non-
occluded first, and the less obstacle previous. In Reference [13], the
reasonable strategy of grasp order is researched, which can avoid
the collapse of objects and increase grasping efficiency. For a
cucumber with a long strip shape in the cluttered scene, the depth
value on its surface varies from one point to another point. And its
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obstruction degree is hard to numerical descript. The single modal
data source, RGB image, or depth image is insufficient to predict
the upper object or less-obstacle object.

In this case, multimodal information fusion is needed. Tu et
al.' used RGB and depth information for the last fusion. Sa et al.l"”!
compared the effect of early fusion and last fusion of different
models on Faster R-CNN. The results show that the NIR channel
added in early fusion is not compatible with the pre-training
parameters from the common public dataset, which consists of only
RGB images. Therefore, facing the limitation of the number of
training datasets, a fusion method of the color image and depth
image suitable for transfer learning needs to be proposed.
Furthermore, a method to predict the geometric information and
spatial position information of cucumber is necessary for cucumber
grasping.

To sum up, the current research mainly focuses on workpiece
detection and grasping in manufacturing environments and is more
minor in agricultural products. Deep learning has a good
performance in recognizing various agricultural products. Still,
there is a lack of research on inner-class disambiguation in cluttered
scenes, such as upper or lower cucumber, and occluded or non-
occluded cucumber. Although some studies have proved that
multimodal data fusion is conducive to target recognition, it has not
been applied to the cucumber grasping task. In order to realize the
cucumber grasping in a cluttered scene, this study constructs a
specific dataset using the F-RGBD fusion method, training them
based on deep learning algorithm and transfer learning technology,
realizing the easy-grasping cucumber detection and cucumber pose
estimation. The main contributions of this paper are as follows: 1) A
fusion method F-RGBD was proposed, fusing RGB information and
depth information, which can enhance the difference between the
upper-layer cucumber and the lower-layer cucumber; 2) The
prioritizing-grasping cucumber dataset was built and the deep
learning instance segmentation algorithm Yolact++ was applied for
cucumber segmentation; 3) A 4-dimensional cucumber grab line
detection method was proposed, which can guide the robot gripper
to hold the bending and non-bending cucumber stably. Finally, a
continuous grasping experiment is carried out in the real world.

2 Materials and methods

2.1 Build robotic grasping system

An AUBO i5 6-DOF manipulator, a flexible two-finger gripper,
and an Intel RealSense D435 camera are used to build an eye-in-
hand system. The calculation equipment is a personal computer
(CPU is Intel i5-10300H, GPU is Nvidia gtx1650Ti, memory is 16
G). Image acquisition, preprocessing, training, recognition, and
grasping tasks compose the system, as shown in Figure 1. A
customized connector was used to fix the camera and the gripper to
the end of the manipulator. The flexible gripper was driven by the
air circuit. The solenoid valve was connected to the output port of
the manipulator controller. The controller was connected to the host
computer through the network cable. The host computer sends
commands to control the camera to collect images and control the
actions of the manipulator and the flexible gripper. For the eye-in-
hand system, the translation matrix T and rotation matrix R between
the camera coordinate system and the manipulator coordinate
system were obtained by hand-eye calibration. By the hand-eye
system, the grasping position and the grasping line obtained by
the recognition algorithm can be converted to the robot base
coordinate system, so as to control the manipulator to complete the
grasping task.

Robot arm
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Note: The types of connections are written in black, and the information
transported in the connection line is written in blue.

Figure 1 Hand-eye system

2.2 Image acquisition

Firstly, the appropriate distance from the end of the
manipulator to the bottom of the box is controlled to ensure that the
image covers the whole range of the box. In the indoor
environment, 600 images were captured in different periods
(morning, afternoon, evening) and different light intensities (turn on
or turn off the light source), with a resolution of 640x480 pixels.
The collected image contains cucumbers under different shapes,
poses, and illumination conditions, which ensures the diversity of
samples. The RealSense D435 camera was used to acquire the depth
image corresponding to each image in black-to-white mode while
collecting RGB images. Due to the influence of occlusion and
uneven illumination, there were many hot pixels and holes in the
depth information directly obtained by the camera. Therefore, time
filter and hole filling filter are used for post-processing of depth
information to remove hot pixels and fill holes. The time filter
adjusts the depth value based on the previous frame. The hole-
filling filter obtains the farthest or nearest value of the four pixels
adjacent to the missing pixel in the depth image data for filling, and
it can effectively complete the integrity of depth information.

Then, the 600 frames of aligned depth image and RGB image,
namely RGBD image, were obtained from the RealSense and stored
for subsequent processing. Each pixel of the RGB image has
corresponding depth information.

2.3 Overview of the proposed method

The F-RGBD fusion method and deep learning instance
segmentation algorithm were studied to detect the target's masks
accurately and quickly. On the basis of the prediction mask, the
acquisition method of grab lines in images was studied. The grab


https://www.ijabe.org

November, 2023

Zhang F, et al. Detection method for cucumber robotic grasping pose in clutter scenarios via instance segmentation

Vol. 16 No. 6 217

line was transformed into 3D space to complete the actual grasping
task. Cucumber grasping was divided into three steps, multi-modal
data fusion, cucumber instance segmentation, and four-dimensional
grab line acquisition. In Step 1, the F-RGBD fusion method was
illustrated. In Step 2, Yolact++ was used to detect the mask of the

Depth image

ResNet 50

transformation|

Predict outcomes

Affine \

cucumber, and its network structure is shown in detail. Step 3 is the
acquisition method of the grab lines in Pixel Coordinate System and
in Robot Base Coordinate System. The proposed method in this
study is shown in Figure 2, and the specific process is described in
this section.

Step 1 early fusion of RGBD

Step 1 acquisition of mask

Mask
coefficients

Prototype

Step 1 acquisition of grab line

Coordinate
transformation
—_—

3D model of sorting robo

Note: R, G, B, and D refer to red, green, blue, and depth values in each pixel; FPN: Feature Pyramid Network; NMS: Non-Maximum Suppression.

Figure 2 Acquisition method of cucumber mask and the grab pose

2.4 Data fusion

In the common object detection tasks, there were multiple types
of objects in one image, which means a large difference between
objects. However, in the task of this study, there was a small
difference between objects, where the color, and texture features
between the cucumbers were similar. But their illumination,
deformation, and pose were various. The most important is that the
upper cucumbers are hoped to be distinguished from the lower
cucumber, which benefits undamaged picking. A four-channel
RGBD image could be a good option. However, in Reference [15],
it is figured out that a direct-fused four-channel RGBD image has
poor performance. The reason lies in the incompatibility between

the RGBD data and the weight pre-trained by ImageNet, which
consists of only RGB images.

Therefore, a novel method of fusing RGB image and depth
image was proposed to generate a new image. The proposed fusion
method in this study aimed to enlarge the difference of features
between cucumbers, and persist in the good properties for fine-
tuning training. A new three-channel image is calculated by
Equation (1).

C,=R-a+D
C,=G-a+D (1)
Ci;=B-a+D
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where, R, G, B, and D refer to red, green, blue, and depth values in
each pixel; a is a parameter. C;, C,, and C; are the new values of
each pixel at three channels of image. Then, each pixel value in the
new image is normalized from 0 to 255 to get the F-RGBD image.
This parameter a is figured out as 0.75 through analysis of the pixel
of and background and foreground to maximize the g value in
Equation (2), with a constraint to avoid excessive color distortions,
through visual inspection.

g =woX (1o — )’ +wy X (uy — )’ 2

a. RGB image b. Depth image

)
where, g represents the difference between background and
foreground. The w, represents the ratio of the number of pixels in

H=Wo X o +Wi Xy

the background to the number of pixels of the whole image. The w,
represents the ratio of the number of pixels in the foreground to the
number of pixels in the whole image. The y, u,, and g, represent the
average pixel value of the pixels in the whole image, the
background, and the foreground. Finally, these new three-channel
images are named F-RGBD images, in Figure 3c.

o

TR

d. Labeled image

c. F-RGBD image

Figure 3 Cucumber images acquired by Intel RealSense D435 camera

2.5 Data labelling

The dataset is the basis of deep learning application research.
Image labeling software LabelMe!® was used to label images. A
prioritizing policy was used during the dataset labeling, in which the
mask of the prioritizing-grasping cucumber in each picture was
marked. The criterion for prioritizing grasping is that it was located
in the upper layer, and less obstacle, less possibility of causing
collision and damage to other cucumbers in the execution of
grasping. This standard contains human prior knowledge, not only
semantic information, but also logical reasoning, decision-making,
and knowledge of cucumber fruit characteristics, which was helpful
for the algorithm to deal with cluttered scenes. This labelling
method kept constant with the strategy of manual grasping
significantly the
prediction of the upper-layer, less-obstacle cucumber. Based on the
F-RGBD image and label file, the cucumber F-RGBD data set for
cucumber grasping was constructed. In addition, the label file of the
F-RGBD image was converted to a new label file for the
corresponding RGB dataset, which
experiment. The dataset was divided into the training set, validation
set, and testing set at the ratio 8:1:1.

improves labeling efficiency and benefits

served the comparative

2.6 Instance segmentation network

Both object detection and instance segmentation can be applied
for cucumber detection tasks. However, only the rectangular
bounding box and the center position of the object are obtained by
the object detection algorithm. Therefore, it is impossible to obtain
the pose information and accurate contour of the target. Instance
segmentation has the advantage of semantic segmentation and
object precise object
distinguishing. That is, it can classify different instances at the pixel
level. For example, the segmentation method Mask RCNN,
performs very well on MSCOCO datasets'”. The mAP is 37.1, but
the detection speed is only 5 fps. The algorithm relies on the
prediction box of the two-stage target detection algorithm Faster
RCNN to generate a mask, which leads to poor real-time
performance. In order to solve this problem, fast instance

detection, masks, and individual

segmentation Yolact and Yolact++ were proposed by Bolya et
al.'*"! based on a single-stage object detection method that mAP
can achieve 34.1 at 33.5 fps on the COCO dataset. In this study, the
Mask RCNN and Yolact++ are studied comparatively.

2.6.1 Backbone network (ResNet50+FPN)

The main function of the backbone network is to extract the
features of the input image and generate the feature map. Although
the deeper the network is, the more complex the model it can
describe, problems such as gradient disappearance and degradation
will appear. For this concern, the shortcut connection was
introduced in the residual network, which effectively avoids these
problems and improves the whole performance. In addition, the
construction of the Feature Pyramid Network (FPN)* can achieve a
multi-scale fusion of features, so as to better represent the target in a
multi-scale range, benefiting the mask quality on the mask border at
the pixel level. Therefore, FPN was introduced to extend the
backbone network of both Mask RCNN and Yolact++. In terms of
residual networks, Resnet101 and Resnet50 are two options. When
Resnet101 + FPN is used as the backbone network, the mAP of the
models is the highest in the COCO dataset. It is worth noting that
compared with Resnet50+FPN, Resnet101+FPN has no significant
advantage, but the computing speed is significantly slower. For this
reason, Resnet50+FPN was used as the backbone network in this
study to balance the performance and speed of detection.

2.6.2 Training

Facing the shortage of data, transfer learning is the most
common technic. In this study, transfer learning was achieved
through two steps: pre-training on the public dataset and fine-tuning
on the cucumber dataset. Before training our small specific data, a
pre-trained model trained by the MSCOCO dataset was introduced,
so that the model parameters can be fine-tuned to the best results
more quickly.

The MSCOCO dataset was a large image dataset designed for
target recognition, detection, and image segmentation. There are 91
categories, and about 330 000 images were included in the dataset.
During the fine-tuning phase, all layers are set as trainable. During
fine-tuning, in order to recognize the cucumbers with the different
area sizes, four anchors of area scale are designed: 48x48, 96x96,
192x192, and 384x384.

In addition, cucumbers were mostly long or nearly long in
shape, and the ratio of length to width varies widely, from 0.33 to
3.00. Therefore, five length-width ratio anchors were used,
including 1:1, 1:2, 1:3, 2:1, and 3:1. The loss function and other
parameters are set as Reference [19].
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2.7 Acquisition of grab line

Pose information is the key to robot path planning. In this
study, the grab line was used to describe the pose of the cucumber.
The grab line contains the position information of the midpoint and
the direction information of the straight line. These two key pieces
of information serve to guide the robot arm's position and pose.
Then, the 2D grab lines and positioning points can be converted to
the 3D robot coordinate system through depth information and hand-
eye conversion, so as to plan the robot path and complete the
grasping.
2.7.1 Acquisition of grab line in pixel coordinate system

Using the trained network model to process the image, the
cucumber mask and bounding box can be generated. However, the
edge of the bounding box of the cucumber is horizontal or vertical
to the image line, which can not express the posture of the
cucumber, which is shown in Figure 4a. In Figure 4b, the minimum

circumscribed rectangle of each cucumber is calculated by
analyzing the segmented pixels. In Figure 4c, the desired grab line
is marked in orange point and orange line.

Therefore, it is necessary to generate a minimum bounding
rectangle with the rotation angle according to the cucumber mask,
as shown by the yellow rectangular box line in Figure 4b, so as to
obtain the pose of the cucumber in the image. In the actual
cucumber grasping task, considering the grasping stability, the
centroid of the object is selected for grabbing. Therefore, the
projection line of the cross-section at the half of the cucumber
length is usually selected as the grab line, and the method is also
used in this study. The convex hull is the smallest convex polygon
that contains all the cucumber mask contour points, as shown by the
yellow contour line in Figure 5. Cucumber or strip agricultural
products similar to cucumber generally can be divided into two
cases: non-bending and bending, which is shown in Figure 5.

a. Output of Yolact++

b. Minimum circumscribed rectangle

c. Desired grab line of each cucumber

of each mask

Note: The red pixels are the result of segmentation. The yellow rectangle is the minimum circumscribed rectangle. The white pixels and the black pixels represent the

masks of the target object and background. The orange lines and orange points are the grab lines and their center point.

Figure 4 Obtaining the grab line of cucumber images

a. Non-bending cucumber

b. Bending cucumber

Note: The yellow rectangle is the smallest bounding rectangle.

Figure 5 White area is the segmentation of the cucumber

In the first case, the transverse diameter at half of the length of
the cucumber mask almost coincides with the symmetric line of the
long side of the minimum bounding rectangle, as shown in the
upper left corner of Figure 5a. In this case, the symmetric line of the
long side of the smallest outer rectangle can be equivalent to the
grab line.

However, in the second case, there is a wide gap between the
mask and the side of the rectangle, which is marked as a green line
in Figure 5b. In this case, the symmetric line of the long side of the
rectangle can't represent the grab line. In order to obtain a more
accurate grab line and location, the intersection line between the
symmetric line of the long side and the cucumber mask is taken as
the grab line, as shown in Figure 5b. The processing details are as
follows:

Firstly, the small image in the bounding rectangle was cropped
and its four vertices were obtained for the affine transformation.
The affine transformation matrix was obtained by following
Equations (4), and then the bounding rectangle was transformed
into a new image by affine transformation.

174 u cos(y) —sin(y) ¢, u
vV | =M| v | =| sin(p) cos(p) ¢, v 4)
1 1 0 0 1 1

where, (4, v) and (4, V') represent the pixel coordinate in the
original image and the new image. M is the affine transformation
matrix. y, t,, and ¢, refer to the rotation and translation parameters
for affine transformation. In the new image, the long symmetric axis
is parallel with the row of the image.

Secondly, the pixels in the short symmetric axis of the new
image are traversed pixel by pixel, to find the first and last
intersection of the short symmetric axis and the cucumber mask.
These two points were used as the two ends of the grab line.

Finally, the two endpoints were restored to the original image
pixel position through the inverse affine transformation. Finally,
according to Equation (5), the middle point of the grab line was
taken as the grabbing position.

u, +u,
Uy = ———
2
v+, )
Vo = >

where, (1, v,), (115, v,), and (u,, vy) refer to pixel coordinates of the
two ends of the grab line and the grab position. This method of grab
line and grab point detection is suitable for cucumber bending and
non-bending and ensures the accuracy of the grab line.
2.7.2  Acquisition of the grab line in robot coordinate system

In order to complete the actual grasping task, it is necessary to
provide the robot with 3D pose information of the grasping position
in the robot base coordinate system. Therefore, the 2D information
of the grab line in the image coordinate system was transformed
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into the robot base coordinate system to obtain the corresponding
spatial information in the robot base coordinate system. Firstly, the
coordinate value of the grab position in the camera coordinate
system (x,, ., z.) is calculated by Equation (6).

Xe = (U=uo)z/ f: £ 0 u
Ye=(=w)z/fy s Mu=| 0 f w (6)
=z 0 0 1

where, M, is the internal parameter matrix of a camera, which is
obtained from camera calibration; f, and f, are the focal length
parameters of the camera. z, is the depth value of the grab position
in the camera coordinate system, which is obtained directly from the
depth map. Next, the coordinate value in the camera coordinate
system (x,, y., z,) was converted to the corresponding coordinate
value in the robot base coordinate system (x;, Vv, z,) through
Equation (7).

Xp Xc Xe
Yo R T } Ye Ye

- -M 7
Z { 0 1 Z b Z 0
1 1 1

where, M, is the coordinate transformation matrix between the
camera coordinate system and the robot base coordinate system,
which was obtained by hand-eye calibration: R is a 3x3 rotation
matrix and 7 is a 3x1 translation matrix. Similarly, the coordinates
of the two ends of the grab line (u;, v;), (u,, v,), and (uy, v,) can be
used to calculate the coordinates in the robot base coordinate system
P=(xp1, Yors Zo1)s Pr=(n2, Vias Z62)> Po=(xp0, Vio» Z60) by Equation (7)
and Figure 6.

Robot coordinate
system

4 6D pose of
-

4 cucumber

4D grasp pose of
end effector

fffff Grasp line

Note: The transition between the grasp pose and the robot coordinate system
consists of a translation and a rotation around the z-axis.
Figure 6 Three coordinate systems represent the robot coordinate
system, the 6D pose of the cucumber, and the 4D grasp pose of the
end-effector

It needs to be mentioned that the point with a greater v value is

(u;, v;), and the point with a less v value is (u,, v,), so the direction

of the grab line is always towards the bottom of the image, which

can avoid the angle wrap-around problem. Thus, the rotation angle

6 of the grab line relative to the z-axis of the robot base coordinate
system can be obtained by Equation (8).

# = arctan (Lz —n ) ®)

Xp2 = Xp1
When the center of mass of the object was grabbed by the
flexible two-finger gripper, the object was in a stable state. That is,
the 4D grasping line can meet the grasping conditions, including a
spatial three-dimensional coordinate, the rotation angle around the z-
axis. The rotation angle of the grabbing line relative to the z-axis of
the base coordinate system was taken as the grab pose. During the

execution, the gripper on the end of the robot arm reaches above the
grab point first, keeping the x-O-y plane parallel to the ground, and
then the gripper rotates angle § around its z-axis. The opening width
of the gripper was 10 mm wider than the width of the grasping line,
which can ensure that the fingertips of the gripper are correctly
inserted into the gap and separate the target cucumber from other
cucumbers. Finally, the robot arm approaches the cucumber in the
direction perpendicular to its x-O-y plane, and closes the gripper at
the target point, to grasp and transport the cucumber into the target
box in order.

3 Results and discussion

In order to test the effect of F-RGBD dataset and RGB dataset
used in this paper, based on the same backbone feature extraction
network ResNet50, two instance segmentation network models
Mask RCNN and Yolact++ were used to carry out comparative
experiments, including the following three parts.

1) In order to test the effect of F-RGBD data set compared with
RGB data set, different instance segmentation networks were used
to measure the predicated cucumber mask. Including the
measurement of mask AP and mask quality. Mask AP was
measured by changes in the number of training iterations and
Intersection over Union (IoU) threshold. The quality of the mask
was measured by the continuity of the mask and the Mask IoU.

2) In order to test the performance of different combinations in
the grasping scene, the positioning accuracy of the grab positioning
point and the attitude angle accuracy of the grab line were
evaluated.

3) In order to verify the effect of the cucumber mask and grab
line prediction method proposed in this study, the detection and
grasping experiment was carried out in real world.

3.1 Accuracy evaluation cucumber target segmentation
3.1.1 Metric of Mask AP

The Average Precision (AP) is an evaluation index to measure
network performance. Its value is related to the Precision (P) and
Recall rate (R). The higher the AP value, the better the performance
of the network model. Precision refers to the proportion of correct
prediction results in all prediction results. The Recall represents the
proportion of the correct prediction results in the total number of
ground truth in the dataset. The calculation processes are shown as
the following equations Equation (9), Equation (10), and Equation
(11), respectively.

AP:IPRdR 9)
0
TP
P=T1p.7p (10)
TP
R=Tp+FN an

where, True Positive (TP) is the number of cases that are positive
and detected as positive, False Positive (FP) is the number of cases
that are negative but detected as positive, and False Negative (FN)
is the number of cases that are positive but detected as negative.
MRGBD, MRGB, YRGBD, and YRGB are symbols of four
combinations, which are the combination of Mask RCNN and F-
RGBD/RGB datasets and the combination of Yolact++ and F-
RGBD/RGB datasets, respectively.
3.1.2 Results of Mask AP

Figure 7a shows the change of Mask AP of four combination
validation sets with the increase of training rounds. At the 1000-th
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Iteration, Mask AP of YRGBD and YRGB were 0.3294 and 0.1306,
respectively. At the peak, the Mask AP of YRGBD reaches 0.6092,
which is higher than the optimal value of 0.5712 of YRGB. The

Mask AP of MRGBD is 0.6671, and that of MRGB is 0.66. The F-
RGBD dataset shows better convergence ability compared with the
RGB dataset.
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a. Trend of Mask AP versus training iterations

b. Mask AP at different ToU threshold

Note: MRGBD, MRGB, YRGBD, and YRGB are symbols of four combinations, which are the combination of Mask RCNN and F-RGBD/RGB data sets and the
combination of Yolact++ and F-RGBD/RGB data sets, respectively. Same below. IoU threshold 0.50-0.95.

Figure 7 Changes of Mask AP of four combination validation sets with the increase of training rounds

Figure 7b and Table 1 show the evaluation results of the four
combinations in the validation set at different Mask IoU thresholds.
There is a critical IoU threshold is 0.85. Before 0.85, the Mask AP
of Mask RCNN is better than Yolact++ in both datasets, but the
Mask AP of Yolact++ is higher than Mask RCNN in high-quality
mask area. Taking References [21] and [22] as references, the

higher the IoU, the higher the quality of the prediction mask. Thus,
the Yolact++ has better performance in predicting masks with
higher IoU. As listed in Table 1, compared with YRGB, the Mask
AP of the proposed YRGBD is 9.95% and 8.31% higher than
YRGB, and 13.11% and 17.85% higher than MRGBD, at the
threshold of 0.85 and 0.90 respectively.

Table 1 Mask AP at specific IoU threshold
IoU threshold

Combination
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 Mean@0.50 Mean@0.80
YRGBD 0.7407 0.7407 0.7407 0.7321 0.7321 0.7321 0.7219 0.6566 0.3150 0.00 0.6092 0.4621
YRGB 0.7168 0.7088 0.7088 0.7088 0.7002 0.7002 0.6792 0.5571 0.2319 0.00 0.5712 0.3671
MRGBD 0.8855 0.8855 0.8855 0.8855 0.8642 0.8258 0.7772 0.5255 0.1365 0.00 0.6671 0.3598
MRGB 0.8864 0.8835 0.8835 0.8835 0.8378 0.7902 0.7172 0.5675 0.1504 0.00 0.6600 0.3588

In addition, compared with MRGB, the segmentation effect of
MRGBD is slightly better. In general, the performance of YRGBD
is significantly better in high-quality mask prediction.

3.1.3 Metric of Mask quality

In order to accurately obtain the pose of the cucumber, the
quality of the predicted mask should first be considered, including
the continuity and the Mask IoU of the predicted mask. Mask IoU
refers to the proportion of intersection and union between the mask
predicted value (PD) and its ground truth (GT) of a target object,
which can be calculated by Equation (12).

(PDNGT) .
PDUGT (12)

The continuity of a target prediction mask (Continuity) is

IoU =

determined by the number of connected domains (), as Equation
(13). If the number of connected domains is equal to 1, the
prediction value of the mask is considered to be continuous;
otherwise, it is considered to be discontinuous.

True, N,=1

13
False, N,>1 (13)

Continuity = {
When the prediction value of the mask is discontinuous, the
grab line generated by a certain part of the mask is inaccurate.
3.1.4 Results of Mask quality
The results of the above two indicators are listed in Table 2.

Figure 8 shows the box plot and normal distribution curve of Mask
IoU on the four combinations. Observing the statistical parameters,
the YRGBD's average of Mask IoU is higher than others and has a
more concentrated distribution.

Table 2 Key parameters of the predicted Mask's IoU value

Combination Mean STD Ratio of continuity FPS
YRGBD 0.8895 0.0894 93.62% 11.62
YRGB 0.8677 0.1500 92.63% 12.04
MRGBD 0.8526 0.1449 80.17% 3.06
MRGB 0.8480 0.1634 78.33% 3.83

Note: Mean refers to the mean value of Mask IoU. STD refers to the standard
deviation of Mask IoU. The Ratio of Continuity refers to the ratio of the number
of continuous cucumber masks to the number of cucumbers. FPS is the speed unit
of detection, frames per second (fps).

Table 2 lists the values of three statistical parameters of Mask
IoU value and one quality indicator in four combinations, including
the mean, the standard deviation, and the ratio of the continuous
mask. The Mask IoU predicted by YRGBD is concentrated around
0.8895 with a standard deviation of 0.0894, and the rate of
continuity of the predicted mask is 93.62%. In conclusion, the mask
effect predicted by YRGBD is the best. It is worth noting that
Yolact++ not only has a better effect but also has a faster average
detection speed. The detection speed of YRGBD is 11.62 fps, which
is more than three times as fast as MRGBD, due to the single-stage
algorithm flow of Yolact++.
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Figure 8 Distribution diagram of predicted Mask's IoU value
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3.2 Benefits of data fusion and the network structure
Compared with the RGB dataset, the F-RGBD dataset has
advantages in a variety of situations. On the one hand, the mask
contour predicted by the model trained by the F-RGBD dataset is
closer to the ground truth in most cases, as shown in Figure 9. After
the depth information is superimposed on the image, there will be

Single target
detection

Multi-target |
detection

a. Ground truth b. MRGB

obvious contour around the object due to the difference in depth
information, which is helpful to the segmentation of different
instances in the cluttered scene. On the other hand, Figure 9 shows
the segmentation result of densely stacked cucumber instances with
different depths. Due to the difference in depth information, the F-
RGBD dataset can better distinguish cucumbers at different depths
with complete contour but different depths. The research results
show that the early fusion method of RGB and Depth information
proposed in this study helped to improve the detection effect.

For small datasets, it is necessary to train the network with fine-
tuning technic on the model pre-trained by large general data sets.
The F-RGBD image obtained by the early fusion proposed by us is
still a three-channel image, which can make good use of the pre-
training model. This expectation was verified by experimental
results. It is foreseeable that the method we propose has a good
reference for the grasping of other items in a cluttered environment.

Compared with Mask RCNN, Yolact++ has higher accuracy of
mask prediction. Specifically, Yolact++ can be used to distinguish
the dense cucumber preferably. Figure 10 shows the benefits of
using Yolact++ and shows two cases with different backgrounds.

e. YRGBD

c. MRGBD d. YRGB

Figure 9 Segmentation results of densely stacked cucumber instances with different depths

Complex
background

Simple
background

b. MRGB

a. Ground truth

RIS

c. MRGBD

Figure 10  Effects of using Yolact++ for two cases with different background

The Mask RCNN, a two-stage instance segmentation
algorithm, needs to be based on the proposal region. However, the
area of the proposal region generated by the network for the long-
strip agricultural products is usually large, containing multiple
adjacent instances in one suggestion box, which interferes with the
detection of the main target cucumber. Therefore, even if the
confidence score is high, segmentation errors can easily be caused
by the adjacent cucumber in the proposal region. Error types include
misclassification of other cucumbers in the proposal region into a
part of the target cucumbers, incomplete segmentation of the target
cucumbers, etc. This problem can be effectively avoided by using
Yolact++, which is a typical one-stage instance segmentation
method based on global images.
3.3 Evaluation of grab line
3.3.1 Metric of grabbing line accuracy

The precision of grab line includes grab positioning precision

and grabbing line pose precision. Two indicators, the distance error,
and the angle error, are analyzed in the following. The Euclidean
distance between the predicted value and the true value of the
grasping position (Ad) was calculated by Equation (14) to evaluate
the positioning accuracy of the grasping position.

2 2
Ad = \/(uﬂ —ug) + (v,, —vg)
where, (u,, v,) is the pixel coordinates of the predicted position, (u,,

v,) is the pixel coordinates of the ground truth value of the grasping
position, Ad is the Euclidean distance between them.

(14)

The following Equation (15) was used to calculate the absolute
value of the angle difference between the predicted value and the
ground truth of the grab line, so as to evaluate the pose accuracy of
the grab line.

AO=10,-6, (15)


https://www.ijabe.org

November, 2023  Zhang F, et al.

Detection method for cucumber robotic grasping pose in clutter scenarios via instance segmentation

Vol. 16 No. 6 223

where, 0, is the angle between the predicted value of the grab line
and the u-axis in the image coordinate system, 0, is the angle
between the ground truth value of the grab line and the u-axis in the
image coordinate system, and A@ is the absolute value of the
difference between them.
3.3.2 Results of grab line prediction

The mean value and standard deviation of position and angle
errors of the four combination prediction values are listed in Table 3.

The distribution of position errors of the four combinations is
shown in Figure 11. Specifically, positioning errors are divided into
20 groups within the range of 0-100 pixels, taking 5 pixels as an
interval. Compared with the other combinations, the distribution of
YRGBD was the most concentrated. The samples predicted by

128
[ I MRGBD
640 [ | MRGB |

Al L0 Il
0.5

0 10 20 30 40 50 60 70 80 90 100
Position error/pixel

a. Mask RCNN

Figure 11

The distribution of angle errors of the four combinations is
shown in Figure 12. Specifically, the angle errors were divided into
24 groups at the range of 0°-60°, taking 2.5° as an interval. The

64 Hm [ 1 MRGBD |
[ MRGB
32 H
16 H
E 8h
5]
O
4 -
2 -
LI [[ 1 ]
0.5
0 S5 10 15 20 25 30 35 40 45 50 55 60
Angle error/(°)
a. Mask RCNN

YRGBD with a position error of less than 10 pixels accounted for
93.75% of the total. The proportions of the other three combinations
were 86.25%, 83.75%, and 91.25%, respectively. As shown in the
first two columns of Table 3, the mean, and standard deviation of
YRGBD positioning error are the smallest.

Table 3 Accuracy evaluation of grab line

Standard deviation

Mean position Mean angle Standard deviation

Combination error/pixels ofpos@on error/ error/(°)  of angle error/(°)
pixels
YRGBD 3.7941 5.1552 0.7357 0.8860
YRGB 6.3814 14.7962 1.9502 7.1231
MRGBD 7.8367 15.3753 1.7870 5.1424
MRGB 9.2062 17.6933 2.1865 6.5587
64
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Distribution diagrams of the position errors of predicted grab lines

angle error distribution trend of the four combinations was also
roughly the same as the position errors. The angle errors of YRGBD
were less than 7.5°.

[ ] YRGBD |
[ 1YRGB
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Figure 12 Distribution diagrams of the angle errors of predicted grab lines

Combined with the data of the last two columns in Table 3, the
angle error result of YRGBD is the minimum. According to the
results, it is worth noting that compared with the RGB dataset, the
prediction effect in the two models has been improved by the F-
RGBD dataset. Moreover, each index has been significantly
improved when using Yolact++.

3.3.3 Visualization of grab line

Figure 13 shows the prediction results of YRGBD in different
scenarios. In most scenarios, the top cucumber to be sorted is
separated by a certain distance, and the prediction contour and grab
line of YRGBD is very close to the ground truth, as shown in
Figures 13a and 13b. However, when there is other interference
information or the depth values of the same instance are greatly

different, the predicted contour will be different from the ground
truth at the edge, and the corresponding grasping pose will also
deviate, as shown in Figures 13¢ and 13d.

In general, the advantages of position error and angle error of
YRGBD are significant.
3.4 Detection and Grasping tests

The tests based on Yolact++ and F-RGBD data sets are
conducted by an eye-in-hand system. In the indoor environment, the
experiment was carried out in three different time periods: 10:00 to
11:00, 15:00 to 16:00, and 20:00 to 21:00. First, a certain number of
50 cucumbers were randomly selected and scattered in the box.
Then the test is conducted according to the workflow. In each test, a
total of 120 grasping actions were executed. Table 4 lists the
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Note: The white contour, white line, and the white filled dot are the ground truth of the contour and grab line, and the grab position. The red contour, white line, and the

white filled dot are the prediction of the contour and grab line, and the grab position.

Figure 13 Prediction results of YRGBD of cucumbers in different scenarios

success rate of three experiments, the average results of the three
experiments, and the average cycle time of a single cucumber. It
must be mentioned that bad light condition leads to a relatively
lower success rate at night. Auxiliary lighting could be helpful for
cucumber detection at night.

Table 4 Results of robotic grasping system tests

Inde Testl Test2 Test3 Mean
x 10:00-11:00  15:00-16:00 20:00-21:00
Success rate of picked 94.17% 95.00% 92.50% 93.67%
Average sorted time/s 9.70 10.10 9.80 9.87

In the grabbing tests, grabbing failures are mainly the following
cases.

1) In the case of a partial close arrangement, the gripper was
disturbed by cucumbers on both sides of the target cucumber,
resulting in failure of grasping.

2) When some cucumbers are located at the boundary of the
box, the gripper interferes with the frame of the box, which leads to
the failure of grasping.

Despite all this, the cucumber that fails to be picked will
continue to be identified and picked in the next action until there are
no remaining cucumbers in the box. Because the physical
limitations of all the joints, and the inherent singularities of a 6-
DOF manipulator can restrict the overall working space®. The 6-
DOF manipulator used in this study cannot get a reasonable Inverse
solution for some 6D poses (including translation along the x, y, and
z axes and rotation around the x, y, and z axes) in the workspace but
can get a reasonable Inverse solution for any 4D grasp line
(including translation along the x, y, and z axes and the angle of the
grasp line). Compared with the 6D pose detection, which is based
on 3D point cloud processing and with high computational cost®*,
the 4D grab line detection algorithm used in this study was more
effective. Both the success rate of grabbing and the processing
speed are taken into account.

4 Conclusions

Aiming at cucumber grasping in the unordered scenes, a
method based on the Yolact++ network for a 4D grab line of
cucumber was proposed. In addition, a new early fusion method
was proposed, named F-RGBD, fusing RGB image and depth image
into a new three-channel image. A better convergence and better
discriminative ability were shown on F-RGBD dataset. F-RGBD
fused RGB image and depth image into a new three-channel image,
and compatible with the weights pre-trained by common public
datasets naturally, such as the COCO dataset. Different instance
segmentation models Mask RCNN and Yolact++ were used to
compare the effect of the F-RGBD dataset and RGB dataset. From
comparative experiments of four combinations, the combination of

Yolact++ and F-RGBD data got higher quality masks faster than
others. Its Mask IoU was concentrated around 0.8895 with a
standard deviation of 0.0894, and the rate of continuity of the
predicted mask was 93.62%. The positioning error of 93.75%
predicted grab lines were less than 10 pixels. The angle errors of all
grab lines are less than 7.5°. The experimental results show that
YRGBD has obvious advantages in high-quality mask prediction,
and has less position error and angle error. In a real-world
experiment, the average success rate was 93.67%, and the average
speed was 9.87 s per attempt. The effectiveness of the cucumber
segmentation and grab line acquisition method in cluttered scenes
was verified by experimental results.

In the future, the robustness of the recognition algorithm should
be further improved, and the structure of end effector should be
optimized for the case of partial dense arrangement, to adapt to a
variety of scenes in the cluttered environment.
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